ankandrew commited on
Commit
5623aa9
Β·
verified Β·
1 Parent(s): f9ef15e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -1,14 +1,14 @@
1
- import streamlit as st
2
- from open_image_models import LicensePlateDetector
3
- from PIL import Image
4
  import cv2
5
  import numpy as np
 
 
 
 
6
 
7
  # Define the available models
8
- PlateDetectorModel = ['yolo-v9-t-640-license-plate-end2end',
9
- 'yolo-v9-t-512-license-plate-end2end',
10
- 'yolo-v9-t-384-license-plate-end2end',
11
- 'yolo-v9-t-256-license-plate-end2end']
12
 
13
  # Streamlit interface
14
  st.title("πŸ¦€ Open Image Models: Pre-trained Models for Object Detection")
@@ -16,7 +16,7 @@ st.write("Leverage fast and efficient pre-trained ONNX models for various object
16
  st.markdown("---")
17
 
18
  # Model selection dropdown (specific to license plate detection in this example)
19
- selected_model = st.selectbox("πŸ” Select a License Plate Detection Model", PlateDetectorModel)
20
 
21
  # File uploader for images
22
  uploaded_file = st.file_uploader("πŸ“‚ Upload an image...", type=["jpg", "png", "jpeg", "webp"])
@@ -42,15 +42,15 @@ if uploaded_file is not None:
42
  # Streamlit display for detections
43
  if detections:
44
  st.success(f"βœ… {len(detections)} License Plates Detected!")
45
-
46
  # Use an expander to show details in a more organized way
47
  with st.expander("See detected plates details"):
48
  for i, detection in enumerate(detections):
49
  # Access attributes of the DetectionResult class
50
  bbox = detection.bounding_box
51
  st.markdown(f"""
52
- **Plate {i+1}:**
53
- - **Label:** {detection.label}
54
  - **Confidence:** {detection.confidence:.2f}
55
  - **Bounding Box:** (x1: {bbox.x1}, y1: {bbox.y1}, x2: {bbox.x2}, y2: {bbox.y2})
56
  """)
 
1
+ from typing import get_args
2
+
 
3
  import cv2
4
  import numpy as np
5
+ import streamlit as st
6
+ from PIL import Image
7
+
8
+ from open_image_models.detection.core.hub import PlateDetectorModel
9
 
10
  # Define the available models
11
+ detection_models = get_args(PlateDetectorModel)
 
 
 
12
 
13
  # Streamlit interface
14
  st.title("πŸ¦€ Open Image Models: Pre-trained Models for Object Detection")
 
16
  st.markdown("---")
17
 
18
  # Model selection dropdown (specific to license plate detection in this example)
19
+ selected_model = st.selectbox("πŸ” Select a License Plate Detection Model", detection_models)
20
 
21
  # File uploader for images
22
  uploaded_file = st.file_uploader("πŸ“‚ Upload an image...", type=["jpg", "png", "jpeg", "webp"])
 
42
  # Streamlit display for detections
43
  if detections:
44
  st.success(f"βœ… {len(detections)} License Plates Detected!")
45
+
46
  # Use an expander to show details in a more organized way
47
  with st.expander("See detected plates details"):
48
  for i, detection in enumerate(detections):
49
  # Access attributes of the DetectionResult class
50
  bbox = detection.bounding_box
51
  st.markdown(f"""
52
+ **Plate {i+1}:**
53
+ - **Label:** {detection.label}
54
  - **Confidence:** {detection.confidence:.2f}
55
  - **Bounding Box:** (x1: {bbox.x1}, y1: {bbox.y1}, x2: {bbox.x2}, y2: {bbox.y2})
56
  """)