Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from open_image_models import LicensePlateDetector
|
3 |
+
from PIL import Image
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Define the available models
|
8 |
+
PlateDetectorModel = ['yolo-v9-t-640-license-plate-end2end',
|
9 |
+
'yolo-v9-t-512-license-plate-end2end',
|
10 |
+
'yolo-v9-t-384-license-plate-end2end',
|
11 |
+
'yolo-v9-t-256-license-plate-end2end']
|
12 |
+
|
13 |
+
# Streamlit interface
|
14 |
+
st.title("License Plate Detection with Open Image Models")
|
15 |
+
st.write("Select a model and upload an image to perform license plate detection.")
|
16 |
+
|
17 |
+
# Model selection dropdown
|
18 |
+
selected_model = st.selectbox("Select a License Plate Detection Model", PlateDetectorModel)
|
19 |
+
|
20 |
+
# File uploader for images
|
21 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg", "webp"])
|
22 |
+
|
23 |
+
if uploaded_file is not None:
|
24 |
+
# Load the image
|
25 |
+
image = Image.open(uploaded_file)
|
26 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
27 |
+
st.write("")
|
28 |
+
st.write("Detecting license plates...")
|
29 |
+
|
30 |
+
# Convert the image to an OpenCV format
|
31 |
+
image_np = np.array(image)
|
32 |
+
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
33 |
+
|
34 |
+
# Initialize the License Plate Detector
|
35 |
+
lp_detector = LicensePlateDetector(detection_model=selected_model)
|
36 |
+
|
37 |
+
# Perform license plate detection
|
38 |
+
detections = lp_detector.predict(image_cv2)
|
39 |
+
|
40 |
+
# Display the detected plates
|
41 |
+
st.write(f"Detections: {detections}")
|
42 |
+
|
43 |
+
# Annotate and display the image with detected plates
|
44 |
+
annotated_image = lp_detector.display_predictions(image_cv2)
|
45 |
+
st.image(annotated_image, caption='Annotated Image with Detections', use_column_width=True)
|