Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,10 @@ from open_image_models import LicensePlateDetector
|
|
3 |
from PIL import Image
|
4 |
import cv2
|
5 |
import numpy as np
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Define the available models
|
8 |
PlateDetectorModel = ['yolo-v9-t-640-license-plate-end2end',
|
@@ -11,23 +15,25 @@ PlateDetectorModel = ['yolo-v9-t-640-license-plate-end2end',
|
|
11 |
'yolo-v9-t-256-license-plate-end2end']
|
12 |
|
13 |
# Streamlit interface
|
14 |
-
st.title("License Plate Detection with Open Image Models")
|
15 |
st.write("Select a model and upload an image to perform license plate detection.")
|
|
|
16 |
|
17 |
# Model selection dropdown
|
18 |
-
selected_model = st.selectbox("Select a License Plate Detection Model", PlateDetectorModel)
|
19 |
|
20 |
# File uploader for images
|
21 |
-
uploaded_file = st.file_uploader("
|
22 |
|
23 |
if uploaded_file is not None:
|
24 |
-
# Load the image
|
25 |
image = Image.open(uploaded_file)
|
26 |
st.image(image, caption='Uploaded Image', use_column_width=True)
|
|
|
27 |
st.write("")
|
28 |
-
st.write("Detecting license plates
|
29 |
|
30 |
-
# Convert the image to an OpenCV format
|
31 |
image_np = np.array(image)
|
32 |
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
33 |
|
@@ -37,9 +43,32 @@ if uploaded_file is not None:
|
|
37 |
# Perform license plate detection
|
38 |
detections = lp_detector.predict(image_cv2)
|
39 |
|
40 |
-
# Display the detected plates
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# Annotate and display the image with detected plates
|
44 |
annotated_image = lp_detector.display_predictions(image_cv2)
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
import cv2
|
5 |
import numpy as np
|
6 |
+
from rich.console import Console
|
7 |
+
|
8 |
+
# Set up the rich console for better terminal output
|
9 |
+
console = Console()
|
10 |
|
11 |
# Define the available models
|
12 |
PlateDetectorModel = ['yolo-v9-t-640-license-plate-end2end',
|
|
|
15 |
'yolo-v9-t-256-license-plate-end2end']
|
16 |
|
17 |
# Streamlit interface
|
18 |
+
st.title("🚗 License Plate Detection with Open Image Models 🚓")
|
19 |
st.write("Select a model and upload an image to perform license plate detection.")
|
20 |
+
st.markdown("---")
|
21 |
|
22 |
# Model selection dropdown
|
23 |
+
selected_model = st.selectbox("🔍 Select a License Plate Detection Model", PlateDetectorModel)
|
24 |
|
25 |
# File uploader for images
|
26 |
+
uploaded_file = st.file_uploader("📂 Upload an image...", type=["jpg", "png", "jpeg", "webp"])
|
27 |
|
28 |
if uploaded_file is not None:
|
29 |
+
# Load the image using PIL
|
30 |
image = Image.open(uploaded_file)
|
31 |
st.image(image, caption='Uploaded Image', use_column_width=True)
|
32 |
+
|
33 |
st.write("")
|
34 |
+
st.write("🔍 **Detecting license plates...**")
|
35 |
|
36 |
+
# Convert the PIL image to an OpenCV format (NumPy array)
|
37 |
image_np = np.array(image)
|
38 |
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
39 |
|
|
|
43 |
# Perform license plate detection
|
44 |
detections = lp_detector.predict(image_cv2)
|
45 |
|
46 |
+
# Display the detected plates using `rich` for colorful output in the console
|
47 |
+
console.print(f"[bold green]Detections: [/bold green] {detections}")
|
48 |
+
|
49 |
+
# Streamlit display for detections
|
50 |
+
if detections:
|
51 |
+
st.success(f"✅ {len(detections)} License Plates Detected!")
|
52 |
+
for i, detection in enumerate(detections):
|
53 |
+
st.write(f"**Plate {i+1}:** {detection}")
|
54 |
+
else:
|
55 |
+
st.warning("⚠️ No license plates detected!")
|
56 |
|
57 |
# Annotate and display the image with detected plates
|
58 |
annotated_image = lp_detector.display_predictions(image_cv2)
|
59 |
+
|
60 |
+
# Convert the annotated image from BGR to RGB for Streamlit display
|
61 |
+
annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
62 |
+
st.image(annotated_image_rgb, caption='Annotated Image with Detections', use_column_width=True)
|
63 |
+
|
64 |
+
# Add some additional style or layout to make the app more attractive
|
65 |
+
st.markdown("""
|
66 |
+
<style>
|
67 |
+
.stButton>button {
|
68 |
+
font-size: 16px;
|
69 |
+
background-color: #4CAF50;
|
70 |
+
color: white;
|
71 |
+
border-radius: 8px;
|
72 |
+
}
|
73 |
+
</style>
|
74 |
+
""", unsafe_allow_html=True)
|