ankandrew commited on
Commit
e91f981
·
verified ·
1 Parent(s): f92f493

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -9
app.py CHANGED
@@ -3,6 +3,10 @@ from open_image_models import LicensePlateDetector
3
  from PIL import Image
4
  import cv2
5
  import numpy as np
 
 
 
 
6
 
7
  # Define the available models
8
  PlateDetectorModel = ['yolo-v9-t-640-license-plate-end2end',
@@ -11,23 +15,25 @@ PlateDetectorModel = ['yolo-v9-t-640-license-plate-end2end',
11
  'yolo-v9-t-256-license-plate-end2end']
12
 
13
  # Streamlit interface
14
- st.title("License Plate Detection with Open Image Models")
15
  st.write("Select a model and upload an image to perform license plate detection.")
 
16
 
17
  # Model selection dropdown
18
- selected_model = st.selectbox("Select a License Plate Detection Model", PlateDetectorModel)
19
 
20
  # File uploader for images
21
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg", "webp"])
22
 
23
  if uploaded_file is not None:
24
- # Load the image
25
  image = Image.open(uploaded_file)
26
  st.image(image, caption='Uploaded Image', use_column_width=True)
 
27
  st.write("")
28
- st.write("Detecting license plates...")
29
 
30
- # Convert the image to an OpenCV format
31
  image_np = np.array(image)
32
  image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
33
 
@@ -37,9 +43,32 @@ if uploaded_file is not None:
37
  # Perform license plate detection
38
  detections = lp_detector.predict(image_cv2)
39
 
40
- # Display the detected plates
41
- st.write(f"Detections: {detections}")
 
 
 
 
 
 
 
 
42
 
43
  # Annotate and display the image with detected plates
44
  annotated_image = lp_detector.display_predictions(image_cv2)
45
- st.image(annotated_image, caption='Annotated Image with Detections', use_column_width=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from PIL import Image
4
  import cv2
5
  import numpy as np
6
+ from rich.console import Console
7
+
8
+ # Set up the rich console for better terminal output
9
+ console = Console()
10
 
11
  # Define the available models
12
  PlateDetectorModel = ['yolo-v9-t-640-license-plate-end2end',
 
15
  'yolo-v9-t-256-license-plate-end2end']
16
 
17
  # Streamlit interface
18
+ st.title("🚗 License Plate Detection with Open Image Models 🚓")
19
  st.write("Select a model and upload an image to perform license plate detection.")
20
+ st.markdown("---")
21
 
22
  # Model selection dropdown
23
+ selected_model = st.selectbox("🔍 Select a License Plate Detection Model", PlateDetectorModel)
24
 
25
  # File uploader for images
26
+ uploaded_file = st.file_uploader("📂 Upload an image...", type=["jpg", "png", "jpeg", "webp"])
27
 
28
  if uploaded_file is not None:
29
+ # Load the image using PIL
30
  image = Image.open(uploaded_file)
31
  st.image(image, caption='Uploaded Image', use_column_width=True)
32
+
33
  st.write("")
34
+ st.write("🔍 **Detecting license plates...**")
35
 
36
+ # Convert the PIL image to an OpenCV format (NumPy array)
37
  image_np = np.array(image)
38
  image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
39
 
 
43
  # Perform license plate detection
44
  detections = lp_detector.predict(image_cv2)
45
 
46
+ # Display the detected plates using `rich` for colorful output in the console
47
+ console.print(f"[bold green]Detections: [/bold green] {detections}")
48
+
49
+ # Streamlit display for detections
50
+ if detections:
51
+ st.success(f"✅ {len(detections)} License Plates Detected!")
52
+ for i, detection in enumerate(detections):
53
+ st.write(f"**Plate {i+1}:** {detection}")
54
+ else:
55
+ st.warning("⚠️ No license plates detected!")
56
 
57
  # Annotate and display the image with detected plates
58
  annotated_image = lp_detector.display_predictions(image_cv2)
59
+
60
+ # Convert the annotated image from BGR to RGB for Streamlit display
61
+ annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
62
+ st.image(annotated_image_rgb, caption='Annotated Image with Detections', use_column_width=True)
63
+
64
+ # Add some additional style or layout to make the app more attractive
65
+ st.markdown("""
66
+ <style>
67
+ .stButton>button {
68
+ font-size: 16px;
69
+ background-color: #4CAF50;
70
+ color: white;
71
+ border-radius: 8px;
72
+ }
73
+ </style>
74
+ """, unsafe_allow_html=True)