ankanpy commited on
Commit
6481b5d
·
verified ·
1 Parent(s): c0a2a81

Upload 5 files

Browse files
Files changed (5) hide show
  1. app.py +327 -0
  2. indexing.py +106 -0
  3. prompt_template.json +5 -0
  4. requirements.txt +19 -0
  5. retrieval.py +108 -0
app.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ PDF-based chatbot with Retrieval-Augmented Generation
3
+ """
4
+
5
+ import os
6
+ import gradio as gr
7
+
8
+ from dotenv import load_dotenv
9
+
10
+ import indexing
11
+ import retrieval
12
+
13
+
14
+ # default_persist_directory = './chroma_HF/'
15
+ list_llm = [
16
+ "mistralai/Mistral-7B-Instruct-v0.3",
17
+ "microsoft/Phi-3.5-mini-instruct",
18
+ "meta-llama/Llama-3.1-8B-Instruct",
19
+ "meta-llama/Llama-3.2-3B-Instruct",
20
+ "meta-llama/Llama-3.2-1B-Instruct",
21
+ "HuggingFaceTB/SmolLM2-1.7B-Instruct",
22
+ "HuggingFaceH4/zephyr-7b-beta",
23
+ "HuggingFaceH4/zephyr-7b-gemma-v0.1",
24
+ "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
25
+ "google/gemma-2-2b-it",
26
+ "google/gemma-2-9b-it",
27
+ "Qwen/Qwen2.5-1.5B-Instruct",
28
+ "Qwen/Qwen2.5-3B-Instruct",
29
+ "Qwen/Qwen2.5-7B-Instruct",
30
+ ]
31
+ list_llm_simple = [os.path.basename(llm) for llm in list_llm]
32
+
33
+
34
+ # Load environment file - HuggingFace API key
35
+ def retrieve_api():
36
+ """Retrieve HuggingFace API Key"""
37
+ _ = load_dotenv()
38
+ global huggingfacehub_api_token
39
+ huggingfacehub_api_token = os.environ.get("HUGGINGFACE_API_KEY")
40
+
41
+
42
+ # Initialize database
43
+ def initialize_database(list_file_obj, db_type, chunk_size, chunk_overlap, progress=gr.Progress()):
44
+ """Initialize database"""
45
+
46
+ # Create list of documents (when valid)
47
+ list_file_path = [x.name for x in list_file_obj if x is not None]
48
+
49
+ # Create collection_name for vector database
50
+ progress(0.1, desc="Creating collection name...")
51
+ collection_name = indexing.create_collection_name(list_file_path[0])
52
+
53
+ progress(0.25, desc="Loading document...")
54
+ # Load document and create splits
55
+ doc_splits = indexing.load_doc(list_file_path, chunk_size, chunk_overlap)
56
+
57
+ # Create or load vector database
58
+ progress(0.5, desc="Generating vector database...")
59
+
60
+ # global vector_db
61
+ vector_db = indexing.create_db(doc_splits, collection_name, db_type)
62
+
63
+ return vector_db, collection_name, "Complete!"
64
+
65
+
66
+ # Initialize LLM
67
+ def initialize_llm(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
68
+ """Initialize LLM"""
69
+
70
+ # print("llm_option",llm_option)
71
+ llm_name = list_llm[llm_option]
72
+ print("llm_name: ", llm_name)
73
+ qa_chain = retrieval.initialize_llmchain(
74
+ llm_name, huggingfacehub_api_token, llm_temperature, max_tokens, top_k, vector_db, progress
75
+ )
76
+ return qa_chain, "Complete!"
77
+
78
+
79
+ # Chatbot conversation
80
+ def conversation(qa_chain, message, history):
81
+ """Chatbot conversation"""
82
+
83
+ qa_chain, new_history, response_sources = retrieval.invoke_qa_chain(qa_chain, message, history)
84
+
85
+ # Format output gradio components
86
+ response_source1 = response_sources[0].page_content.strip()
87
+ response_source2 = response_sources[1].page_content.strip()
88
+ response_source3 = response_sources[2].page_content.strip()
89
+ # Langchain sources are zero-based
90
+ response_source1_page = response_sources[0].metadata["page"] + 1
91
+ response_source2_page = response_sources[1].metadata["page"] + 1
92
+ response_source3_page = response_sources[2].metadata["page"] + 1
93
+
94
+ return (
95
+ qa_chain,
96
+ gr.update(value=""),
97
+ new_history,
98
+ response_source1,
99
+ response_source1_page,
100
+ response_source2,
101
+ response_source2_page,
102
+ response_source3,
103
+ response_source3_page,
104
+ )
105
+
106
+
107
+ SPACE_TITLE = """
108
+ <center><h2>DocuMind</center></h2>
109
+ <h3>PDF-based chatbot, Ask any questions about your PDF documents!</h3>
110
+ """
111
+
112
+ SPACE_INFO = """
113
+ <b>Description:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
114
+ The user interface explicitely shows multiple steps to help understand the RAG workflow.
115
+ This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
116
+ <br><b>Notes:</b> Updated space with more recent LLM models (Qwen 2.5, Llama 3.2, SmolLM2 series)
117
+ <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
118
+ """
119
+
120
+
121
+ # Gradio User Interface
122
+ def gradio_ui():
123
+ """Gradio User Interface"""
124
+
125
+ with gr.Blocks(title="DocuMind", theme=gr.themes.Soft()) as demo:
126
+ vector_db = gr.State()
127
+ qa_chain = gr.State()
128
+ collection_name = gr.State()
129
+
130
+ gr.Markdown(SPACE_TITLE)
131
+ gr.Markdown(SPACE_INFO)
132
+
133
+ with gr.Tab("Step 1 - Upload PDF"):
134
+ with gr.Row():
135
+ document = gr.File(
136
+ height=200,
137
+ file_count="multiple",
138
+ file_types=[".pdf"],
139
+ interactive=True,
140
+ label="Upload your PDF documents (single or multiple)",
141
+ )
142
+
143
+ with gr.Tab("Step 2 - Process document"):
144
+ with gr.Row():
145
+ db_type_selector = gr.Radio(
146
+ ["ChromaDB", "Weaviate", "FAISS", "Qdrant", "Pinecone"],
147
+ label="Vector database type",
148
+ value="ChromaDB",
149
+ type="value",
150
+ info="Choose your vector database",
151
+ )
152
+ with gr.Accordion("Advanced options - Document text splitter", open=False):
153
+ with gr.Row():
154
+ slider_chunk_size = gr.Slider(
155
+ minimum=100,
156
+ maximum=1000,
157
+ value=600,
158
+ step=20,
159
+ label="Chunk size",
160
+ info="Chunk size",
161
+ interactive=True,
162
+ )
163
+ with gr.Row():
164
+ slider_chunk_overlap = gr.Slider(
165
+ minimum=10,
166
+ maximum=200,
167
+ value=40,
168
+ step=10,
169
+ label="Chunk overlap",
170
+ info="Chunk overlap",
171
+ interactive=True,
172
+ )
173
+ with gr.Row():
174
+ db_progress = gr.Textbox(label="Vector database initialization", value="None")
175
+ with gr.Row():
176
+ db_btn = gr.Button("Generate vector database")
177
+
178
+ with gr.Tab("Step 3 - Initialize QA chain"):
179
+ with gr.Row():
180
+ llm_btn = gr.Radio(
181
+ list_llm_simple,
182
+ label="LLM models",
183
+ value=list_llm_simple[0],
184
+ type="index",
185
+ info="Choose your LLM model",
186
+ )
187
+ with gr.Accordion("Advanced options - LLM model", open=False):
188
+ with gr.Row():
189
+ slider_temperature = gr.Slider(
190
+ minimum=0.01,
191
+ maximum=1.0,
192
+ value=0.7,
193
+ step=0.1,
194
+ label="Temperature",
195
+ info="Model temperature",
196
+ interactive=True,
197
+ )
198
+ with gr.Row():
199
+ slider_maxtokens = gr.Slider(
200
+ minimum=224,
201
+ maximum=4096,
202
+ value=1024,
203
+ step=32,
204
+ label="Max Tokens",
205
+ info="Model max tokens",
206
+ interactive=True,
207
+ )
208
+ with gr.Row():
209
+ slider_topk = gr.Slider(
210
+ minimum=1,
211
+ maximum=10,
212
+ value=3,
213
+ step=1,
214
+ label="top-k samples",
215
+ info="Model top-k samples",
216
+ interactive=True,
217
+ )
218
+ with gr.Row():
219
+ llm_progress = gr.Textbox(value="None", label="QA chain initialization")
220
+ with gr.Row():
221
+ qachain_btn = gr.Button("Initialize Question Answering chain")
222
+
223
+ with gr.Tab("Step 4 - Chatbot"):
224
+ chatbot = gr.Chatbot(height=300)
225
+ with gr.Accordion("Advanced - Document references", open=False):
226
+ with gr.Row():
227
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
228
+ source1_page = gr.Number(label="Page", scale=1)
229
+ with gr.Row():
230
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
231
+ source2_page = gr.Number(label="Page", scale=1)
232
+ with gr.Row():
233
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
234
+ source3_page = gr.Number(label="Page", scale=1)
235
+ with gr.Row():
236
+ msg = gr.Textbox(
237
+ placeholder="Type message (e.g. 'Can you summarize this document in one paragraph?')",
238
+ container=True,
239
+ )
240
+ with gr.Row():
241
+ submit_btn = gr.Button("Submit message")
242
+ clear_btn = gr.ClearButton(components=[msg, chatbot], value="Clear conversation")
243
+
244
+ # Preprocessing events
245
+ db_btn.click(
246
+ initialize_database,
247
+ inputs=[document, db_type_selector, slider_chunk_size, slider_chunk_overlap],
248
+ outputs=[vector_db, collection_name, db_progress],
249
+ )
250
+ qachain_btn.click(
251
+ initialize_llm,
252
+ inputs=[
253
+ llm_btn,
254
+ slider_temperature,
255
+ slider_maxtokens,
256
+ slider_topk,
257
+ vector_db,
258
+ ],
259
+ outputs=[qa_chain, llm_progress],
260
+ ).then(
261
+ lambda: [None, "", 0, "", 0, "", 0],
262
+ inputs=None,
263
+ outputs=[
264
+ chatbot,
265
+ doc_source1,
266
+ source1_page,
267
+ doc_source2,
268
+ source2_page,
269
+ doc_source3,
270
+ source3_page,
271
+ ],
272
+ queue=False,
273
+ )
274
+
275
+ # Chatbot events
276
+ msg.submit(
277
+ conversation,
278
+ inputs=[qa_chain, msg, chatbot],
279
+ outputs=[
280
+ qa_chain,
281
+ msg,
282
+ chatbot,
283
+ doc_source1,
284
+ source1_page,
285
+ doc_source2,
286
+ source2_page,
287
+ doc_source3,
288
+ source3_page,
289
+ ],
290
+ queue=False,
291
+ )
292
+ submit_btn.click(
293
+ conversation,
294
+ inputs=[qa_chain, msg, chatbot],
295
+ outputs=[
296
+ qa_chain,
297
+ msg,
298
+ chatbot,
299
+ doc_source1,
300
+ source1_page,
301
+ doc_source2,
302
+ source2_page,
303
+ doc_source3,
304
+ source3_page,
305
+ ],
306
+ queue=False,
307
+ )
308
+ clear_btn.click(
309
+ lambda: [None, "", 0, "", 0, "", 0],
310
+ inputs=None,
311
+ outputs=[
312
+ chatbot,
313
+ doc_source1,
314
+ source1_page,
315
+ doc_source2,
316
+ source2_page,
317
+ doc_source3,
318
+ source3_page,
319
+ ],
320
+ queue=False,
321
+ )
322
+ demo.queue().launch(debug=True)
323
+
324
+
325
+ if __name__ == "__main__":
326
+ retrieve_api()
327
+ gradio_ui()
indexing.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Indexing with vector database - updated for Weaviate, FAISS, Qdrant, Pinecone
3
+ Compatible with latest LangChain and HuggingFaceEmbeddings
4
+ """
5
+
6
+ from pathlib import Path
7
+ import re
8
+ import
9
+ from unidecode import unidecode
10
+
11
+ from langchain_community.document_loaders import PyPDFLoader
12
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
13
+ from langchain_huggingface import HuggingFaceEmbeddings
14
+
15
+
16
+ def load_doc(list_file_path, chunk_size, chunk_overlap):
17
+ loaders = [PyPDFLoader(x) for x in list_file_path]
18
+ pages = []
19
+ for loader in loaders:
20
+ pages.extend(loader.load())
21
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
22
+ doc_splits = text_splitter.split_documents(pages)
23
+ return doc_splits
24
+
25
+
26
+ def create_collection_name(filepath):
27
+ collection_name = Path(filepath).stem
28
+ collection_name = collection_name.replace(" ", "-")
29
+ collection_name = unidecode(collection_name)
30
+ collection_name = re.sub("[^A-Za-z0-9]+", "-", collection_name)
31
+ collection_name = collection_name[:50]
32
+ if len(collection_name) < 3:
33
+ collection_name += "xyz"
34
+ if not collection_name[0].isalnum():
35
+ collection_name = "A" + collection_name[1:]
36
+ if not collection_name[-1].isalnum():
37
+ collection_name = collection_name[:-1] + "Z"
38
+ print("\n\nFilepath:", filepath)
39
+ print("Collection name:", collection_name)
40
+ return collection_name
41
+
42
+
43
+ def create_db(splits, collection_name, db_type="ChromaDB"):
44
+ embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
45
+
46
+ if db_type == "ChromaDB":
47
+ import chromadb
48
+ from langchain_chroma import Chroma
49
+
50
+ chromadb.api.client.SharedSystemClient.clear_system_cache()
51
+ vectordb = Chroma.from_documents(
52
+ documents=splits,
53
+ embedding=embedding,
54
+ client=chromadb.EphemeralClient(),
55
+ collection_name=collection_name,
56
+ )
57
+ return vectordb
58
+
59
+ elif db_type == "Weaviate":
60
+ import weaviate
61
+ from langchain_weaviate.vectorstores import WeaviateVectorStore
62
+
63
+ client = weaviate.connect_to_local("http://localhost:8080",
64
+ grpc_port=50051)
65
+ vectordb = WeaviateVectorStore.from_documents(
66
+ splits,
67
+ embedding,
68
+ client=client,
69
+ index_name=collection_name,
70
+ text_key="text"
71
+ )
72
+ return vectordb
73
+
74
+ elif db_type == "FAISS":
75
+ from langchain.vectorstores import FAISS
76
+
77
+ vectordb = FAISS.from_documents(splits, embedding)
78
+ vectordb.save_local(f"{collection_name}_index")
79
+ return vectordb
80
+
81
+ elif db_type == "Qdrant":
82
+ from qdrant_client import QdrantClient
83
+ from langchain.vectorstores import Qdrant
84
+
85
+ client = QdrantClient("::memory::")
86
+ vectordb = Qdrant.from_documents(splits, embedding, client=client, collection_name=collection_name)
87
+ return vectordb
88
+
89
+ elif db_type == "Pinecone":
90
+ import pinecone
91
+ from langchain_pinecone import PineconeVectorStore
92
+
93
+ pinecone_api_key = os.environ.get("PINECONE_API_KEY")
94
+ pc = pinecone.Pinecone(api_key=pinecone_api_key)
95
+
96
+ index_name = collection_name
97
+ dim = len(embedding.embed_query("test"))
98
+ if index_name not in [i.name for i in pc.list_indexes()]:
99
+ pc.create_index(name=index_name, dimension=dim, metric="cosine")
100
+
101
+ index = pc.Index(index_name)
102
+ vectordb = PineconeVectorStore.from_documents(docs=splits, index=index, embedding=embedding)
103
+ return vectordb
104
+
105
+ else:
106
+ raise ValueError(f"Unsupported vector DB type: {db_type}")
prompt_template.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "title": "System prompt",
3
+ "prompt": "You are an assistant for question-answering tasks. Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer concise. Question: {question} \\n Context: {context} \\n Helpful Answer:"
4
+ }
5
+
requirements.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ transformers[torch]
2
+ sentence-transformers
3
+ langchain
4
+ langchain-community
5
+ langchain-huggingface
6
+ langchain-chroma
7
+ huggingface-hub
8
+ tqdm
9
+ accelerate
10
+ pypdf
11
+ chromadb
12
+ unidecode
13
+ gradio
14
+ python-dotenv
15
+ pinecone
16
+ pinecone-client
17
+ qdrant_client
18
+ weaviate
19
+ qdrant
retrieval.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ LLM chain retrieval
3
+ """
4
+
5
+ import json
6
+ import gradio as gr
7
+
8
+ from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain
9
+ from langchain.memory import ConversationBufferMemory
10
+ from langchain_huggingface import HuggingFaceEndpoint
11
+ from langchain_core.prompts import PromptTemplate
12
+
13
+
14
+ # Add system template for RAG application
15
+ PROMPT_TEMPLATE = """
16
+ You are an assistant for question-answering tasks. Use the following pieces of context to answer the question at the end.
17
+ If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer concise.
18
+ Question: {question}
19
+ Context: {context}
20
+ Helpful Answer:
21
+ """
22
+
23
+
24
+ # Initialize langchain LLM chain
25
+ def initialize_llmchain(
26
+ llm_model,
27
+ huggingfacehub_api_token,
28
+ temperature,
29
+ max_tokens,
30
+ top_k,
31
+ vector_db,
32
+ progress=gr.Progress(),
33
+ ):
34
+ """Initialize Langchain LLM chain"""
35
+
36
+ progress(0.1, desc="Initializing HF tokenizer...")
37
+ # HuggingFaceHub uses HF inference endpoints
38
+ progress(0.5, desc="Initializing HF Hub...")
39
+ # Use of trust_remote_code as model_kwargs
40
+ # Warning: langchain issue
41
+ # URL: https://github.com/langchain-ai/langchain/issues/6080
42
+
43
+ llm = HuggingFaceEndpoint(
44
+ repo_id=llm_model,
45
+ task="text-generation",
46
+ temperature=temperature,
47
+ max_new_tokens=max_tokens,
48
+ top_k=top_k,
49
+ huggingfacehub_api_token=huggingfacehub_api_token,
50
+ )
51
+
52
+ progress(0.75, desc="Defining buffer memory...")
53
+ memory = ConversationBufferMemory(memory_key="chat_history", output_key="answer", return_messages=True)
54
+ # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
55
+ retriever = vector_db.as_retriever()
56
+
57
+ progress(0.8, desc="Defining retrieval chain...")
58
+ with open("prompt_template.json", "r") as file:
59
+ system_prompt = json.load(file)
60
+ prompt_template = system_prompt["prompt"]
61
+ rag_prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
62
+ qa_chain = ConversationalRetrievalChain.from_llm(
63
+ llm,
64
+ retriever=retriever,
65
+ chain_type="stuff",
66
+ memory=memory,
67
+ combine_docs_chain_kwargs={"prompt": rag_prompt},
68
+ return_source_documents=True,
69
+ # return_generated_question=False,
70
+ verbose=False,
71
+ )
72
+ progress(0.9, desc="Done!")
73
+
74
+ return qa_chain
75
+
76
+
77
+ def format_chat_history(message, chat_history):
78
+ """Format chat history for llm chain"""
79
+
80
+ formatted_chat_history = []
81
+ for user_message, bot_message in chat_history:
82
+ formatted_chat_history.append(f"User: {user_message}")
83
+ formatted_chat_history.append(f"Assistant: {bot_message}")
84
+ return formatted_chat_history
85
+
86
+
87
+ def invoke_qa_chain(qa_chain, message, history):
88
+ """Invoke question-answering chain"""
89
+
90
+ formatted_chat_history = format_chat_history(message, history)
91
+ # print("formatted_chat_history",formatted_chat_history)
92
+
93
+ # Generate response using QA chain
94
+ response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
95
+
96
+ response_sources = response["source_documents"]
97
+
98
+ response_answer = response["answer"]
99
+ if response_answer.find("Helpful Answer:") != -1:
100
+ response_answer = response_answer.split("Helpful Answer:")[-1]
101
+
102
+ # Append user message and response to chat history
103
+ new_history = history + [(message, response_answer)]
104
+
105
+ # print ('chat response: ', response_answer)
106
+ # print('DB source', response_sources)
107
+
108
+ return qa_chain, new_history, response_sources