Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
#import time | |
#video_path = 'D:/OfficeWork/VS_code_exp/exp/video_1.mp4' | |
#image_path = 'D:/OfficeWork/VS_code_exp/exp/test.jpg.jpg' | |
def load_model(): | |
model= cv2.dnn.readNet(model='frozen_inference_graph.pb', | |
config='ssd_mobilenet_v2_coco_2018_03_29.pbtxt.txt', | |
framework='TensorFlow') | |
with open('object_detection_classes_coco.txt', 'r') as f: | |
class_names = f.read().split('\n') | |
COLORS = np.random.uniform(0, 255, size=(len(class_names), 3)) | |
return model, class_names, COLORS | |
def load_img(img_path): | |
img=cv2.imread(img_path) | |
img=cv2.resize(img, None, fx=0.4, fy=0.4) | |
height, width, channels = img.shape | |
return img, height, width, channels | |
def detect_objects(img, net): | |
blob = cv2.dnn.blobFromImage(img, size=(300, 300), mean=(104, 117, 123), swapRB=True) | |
net.setInput(blob) | |
outputs = net.forward() | |
#print (outputs) | |
return blob, outputs | |
def get_box_dimensions(outputs, height, width): | |
boxes = [] | |
class_ids = [] | |
for detect in outputs[0,0,:,:]: | |
scores = detect[2] | |
class_id = detect[1] | |
if scores > 0.3: | |
center_x = int(detect[0] * width) | |
center_y = int(detect[1] * height) | |
w = int(detect[5] * width) | |
h = int(detect[6] * height) | |
x = int((detect[3] * width)) | |
y = int((detect[4] * height)) | |
boxes.append([x, y, w, h]) | |
class_ids.append(class_id) | |
return boxes, class_ids | |
def draw_labels(boxes, colors, class_ids, classes, img): | |
font = cv2.FONT_HERSHEY_PLAIN | |
model, classes, colors = load_model() | |
for i in range(len(boxes)): | |
x, y, w, h = boxes[i] | |
label = classes[int(class_ids[0])-1] | |
color = colors[i] | |
cv2.rectangle(img, (x,y), (w,h), color, 5) | |
cv2.putText(img, label, (x, y - 5), font, 5, color, 5) | |
return img | |
def image_detect(img_path): | |
model, classes, colors = load_model() | |
image, height, width, channels = load_img(img_path) | |
blob, outputs = detect_objects(image, model) | |
boxes, class_ids = get_box_dimensions(outputs, height, width) | |
image1 = draw_labels(boxes, colors, class_ids, classes, image) | |
return image1 | |
#def start_video(video_path): | |
model, classes, colors = load_model() | |
cap = cv2.VideoCapture(video_path) | |
while True: | |
_, frame = cap.read() | |
height, width, channels = frame.shape | |
blob, outputs = detect_objects(frame, model) | |
boxes, class_ids = get_box_dimensions(outputs, height, width) | |
frame=draw_labels(boxes, colors, class_ids, classes, frame) | |
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
cv2.destroyAllWindows() |