Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
#import argparse | |
#import time | |
#ideo_path = 'D:/OfficeWork/VS_code_exp/exp/video_1.mp4' | |
#image_path = 'D:\OfficeWork/VS_code_exp/exp/test.jpg.jpg' | |
#Load yolo | |
def load_yolo(): | |
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg") | |
classes = [] | |
with open("coco.names", "r") as f: | |
classes = [line.strip() for line in f.readlines()] | |
output_layers = [layer_name for layer_name in net.getUnconnectedOutLayersNames()] | |
colors = np.random.uniform(0, 255, size=(len(classes), 3)) | |
return net, classes, colors, output_layers | |
def load_image(img_path): | |
# image loading | |
img = cv2.imread(img_path) | |
img = cv2.resize(img, None, fx=0.4, fy=0.4) | |
height, width, channels = img.shape | |
return img, height, width, channels | |
def start_webcam(): | |
cap = cv2.VideoCapture(0) | |
return cap | |
def display_blob(blob): | |
''' | |
Three images each for RED, GREEN, BLUE channel | |
''' | |
for b in blob: | |
for n, imgb in enumerate(b): | |
cv2.imshow(str(n), imgb) | |
def detect_objects_yolo(img, net, outputLayers): | |
blob = cv2.dnn.blobFromImage(img, scalefactor=0.00392, size=(320, 320), mean=(0, 0, 0), swapRB=True, crop=False) | |
net.setInput(blob) | |
outputs = net.forward(outputLayers) | |
#output=np.ascontiguousarray(list(outputs)) | |
#print(outputs) | |
#for i, out in enumerate(outputs): | |
# print(i, np.array(out).shape) | |
return blob, outputs | |
def get_box_dimensions_yolo(outputs, height, width): | |
boxes = [] | |
confs = [] | |
class_ids = [] | |
for output in outputs: | |
for detect in output: | |
scores = detect[5:] | |
#print('detect', scores) | |
class_id = np.argmax(scores) | |
conf = scores[class_id] | |
if conf > 0.3: | |
center_x = int(detect[0] * width) | |
center_y = int(detect[1] * height) | |
w = int(detect[2] * width) | |
h = int(detect[3] * height) | |
x = int(center_x - w/2) | |
y = int(center_y - h / 2) | |
boxes.append([x, y, w, h]) | |
#print(boxes) | |
confs.append(float(conf)) | |
class_ids.append(class_id) | |
return boxes, confs, class_ids | |
def draw_labels_yolo(boxes, confs, colors, class_ids, classes, img): | |
indexes = cv2.dnn.NMSBoxes(boxes, confs, 0.5, 0.4) | |
font = cv2.FONT_HERSHEY_PLAIN | |
for i in range(len(boxes)): | |
if i in indexes: | |
x, y, w, h = boxes[i] | |
label = str(classes[class_ids[i]]) | |
color = colors[i] | |
cv2.rectangle(img, (x,y), (x+w, y+h), color, 5) | |
cv2.putText(img, label, (x, y - 5), font, 5, color, 5) | |
return img | |
def image_detect_yolo(img_path): | |
model, classes, colors, output_layers = load_yolo() | |
image, height, width, channels = load_image(img_path) | |
blob, outputs = detect_objects_yolo(image, model, output_layers) | |
#print(outputs) | |
boxes, confs, class_ids = get_box_dimensions_yolo(outputs, height, width) | |
image=draw_labels_yolo(boxes, confs, colors, class_ids, classes, image) | |
return image | |
'''while True: | |
key = cv2.waitKey(1) | |
if key == 27: | |
break''' | |
#def webcam_detect(): | |
model, classes, colors, output_layers = load_yolo() | |
cap = start_webcam() | |
while True: | |
_, frame = cap.read() | |
height, width, channels = frame.shape | |
blob, outputs = detect_objects(frame, model, output_layers) | |
boxes, confs, class_ids = get_box_dimensions(outputs, height, width) | |
draw_labels(boxes, confs, colors, class_ids, classes, frame) | |
key = cv2.waitKey(1) | |
if key == 27: | |
break | |
cap.release() | |
#def start_video_yolo(video_path): | |
model, classes, colors, output_layers = load_yolo() | |
cap = cv2.VideoCapture(video_path) | |
while True: | |
_, frame = cap.read() | |
height, width, channels = frame.shape | |
blob, outputs = detect_objects_yolo(frame, model, output_layers) | |
boxes, confs, class_ids = get_box_dimensions_yolo(outputs, height, width) | |
frame=draw_labels_yolo(boxes, confs, colors, class_ids, classes, frame) | |
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
'''key = cv2.waitKey(1) | |
if key == 27 : | |
break | |
cap.release()''' | |
cv2.destroyAllWindows() |