Spaces:
Sleeping
Sleeping
Ankan Ghosh
commited on
Commit
·
45296db
1
Parent(s):
0d5d5f5
Upload 2 files
Browse files- app.py +62 -0
- requirement.txt +5 -0
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#imported all required libraries
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel
|
8 |
+
|
9 |
+
|
10 |
+
#used a pretrained model hosted on huggingface
|
11 |
+
loc = "ydshieh/vit-gpt2-coco-en"
|
12 |
+
|
13 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(loc)
|
15 |
+
model = VisionEncoderDecoderModel.from_pretrained(loc)
|
16 |
+
model.eval()
|
17 |
+
|
18 |
+
#defined a function for prediction
|
19 |
+
|
20 |
+
def predict(image):
|
21 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
22 |
+
|
23 |
+
with torch.no_grad():
|
24 |
+
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
|
25 |
+
|
26 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
27 |
+
preds = [pred.strip() for pred in preds]
|
28 |
+
|
29 |
+
return preds
|
30 |
+
|
31 |
+
#defined a function for Streamlit App
|
32 |
+
def app():
|
33 |
+
st.title("Image Captioner")
|
34 |
+
st.write("ViT and GPT2 are used to generate Image Caption for the uploaded image. COCO Dataset was used for training. This image captioning model might have some biases that I couldn’t figure during testing")
|
35 |
+
st.write("Upload an image or paste a URL to get predicted captions.")
|
36 |
+
|
37 |
+
upload_option = st.selectbox("Choose an option:", ("Upload Image", "Paste URL"))
|
38 |
+
|
39 |
+
if upload_option == "Upload Image":
|
40 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg"])
|
41 |
+
|
42 |
+
if uploaded_file is not None:
|
43 |
+
image = Image.open(uploaded_file)
|
44 |
+
preds = predict(image)
|
45 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
46 |
+
st.write("Predicted Caption:", preds)
|
47 |
+
|
48 |
+
|
49 |
+
elif upload_option == "Paste URL":
|
50 |
+
image_url = st.text_input("Enter Image URL")
|
51 |
+
if st.button("Submit") and image_url:
|
52 |
+
try:
|
53 |
+
response = requests.get(image_url, stream=True)
|
54 |
+
image = Image.open(BytesIO(response.content))
|
55 |
+
preds = predict(image)
|
56 |
+
st.image(image, caption="Image from URL", use_column_width=True)
|
57 |
+
st.write("Predicted Caption:", preds)
|
58 |
+
except:
|
59 |
+
st.write("Error: Invalid URL or unable to fetch image.")
|
60 |
+
|
61 |
+
if __name__ == "__main__":
|
62 |
+
app()
|
requirement.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.0.1
|
2 |
+
streamlit==1.22.0
|
3 |
+
transformers==4.29.2
|
4 |
+
requests
|
5 |
+
pillow
|