Ankan Ghosh commited on
Commit
2e036ef
·
verified ·
1 Parent(s): a0a1b50

Upload 6 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ DenseNet_121.caffemodel filter=lfs diff=lfs merge=lfs -text
DenseNet_121.caffemodel ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6a6ec988d76c468c3f67501a23a39ec7bf6ebe6729fd99496a15d0e845478b2
3
+ size 32303870
DenseNet_121.prototxt ADDED
@@ -0,0 +1,4762 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: "DENSENET_121"
2
+ input: "data"
3
+ input_dim: 1
4
+ input_dim: 3
5
+ input_dim: 224
6
+ input_dim: 224
7
+ layer {
8
+ name: "conv1"
9
+ type: "Convolution"
10
+ bottom: "data"
11
+ top: "conv1"
12
+ convolution_param {
13
+ num_output: 64
14
+ bias_term: false
15
+ pad: 3
16
+ kernel_size: 7
17
+ stride: 2
18
+ }
19
+ }
20
+ layer {
21
+ name: "conv1/bn"
22
+ type: "BatchNorm"
23
+ bottom: "conv1"
24
+ top: "conv1/bn"
25
+ batch_norm_param {
26
+ eps: 1e-5
27
+ }
28
+ }
29
+ layer {
30
+ name: "conv1/scale"
31
+ type: "Scale"
32
+ bottom: "conv1/bn"
33
+ top: "conv1/bn"
34
+ scale_param {
35
+ bias_term: true
36
+ }
37
+ }
38
+ layer {
39
+ name: "relu1"
40
+ type: "ReLU"
41
+ bottom: "conv1/bn"
42
+ top: "conv1/bn"
43
+ }
44
+ layer {
45
+ name: "pool1"
46
+ type: "Pooling"
47
+ bottom: "conv1/bn"
48
+ top: "pool1"
49
+ pooling_param {
50
+ pool: MAX
51
+ kernel_size: 3
52
+ stride: 2
53
+ pad: 1
54
+ ceil_mode: false
55
+ }
56
+ }
57
+ layer {
58
+ name: "conv2_1/x1/bn"
59
+ type: "BatchNorm"
60
+ bottom: "pool1"
61
+ top: "conv2_1/x1/bn"
62
+ batch_norm_param {
63
+ eps: 1e-5
64
+ }
65
+ }
66
+ layer {
67
+ name: "conv2_1/x1/scale"
68
+ type: "Scale"
69
+ bottom: "conv2_1/x1/bn"
70
+ top: "conv2_1/x1/bn"
71
+ scale_param {
72
+ bias_term: true
73
+ }
74
+ }
75
+ layer {
76
+ name: "relu2_1/x1"
77
+ type: "ReLU"
78
+ bottom: "conv2_1/x1/bn"
79
+ top: "conv2_1/x1/bn"
80
+ }
81
+ layer {
82
+ name: "conv2_1/x1"
83
+ type: "Convolution"
84
+ bottom: "conv2_1/x1/bn"
85
+ top: "conv2_1/x1"
86
+ convolution_param {
87
+ num_output: 128
88
+ bias_term: false
89
+ kernel_size: 1
90
+ }
91
+ }
92
+ layer {
93
+ name: "conv2_1/x2/bn"
94
+ type: "BatchNorm"
95
+ bottom: "conv2_1/x1"
96
+ top: "conv2_1/x2/bn"
97
+ batch_norm_param {
98
+ eps: 1e-5
99
+ }
100
+ }
101
+ layer {
102
+ name: "conv2_1/x2/scale"
103
+ type: "Scale"
104
+ bottom: "conv2_1/x2/bn"
105
+ top: "conv2_1/x2/bn"
106
+ scale_param {
107
+ bias_term: true
108
+ }
109
+ }
110
+ layer {
111
+ name: "relu2_1/x2"
112
+ type: "ReLU"
113
+ bottom: "conv2_1/x2/bn"
114
+ top: "conv2_1/x2/bn"
115
+ }
116
+ layer {
117
+ name: "conv2_1/x2"
118
+ type: "Convolution"
119
+ bottom: "conv2_1/x2/bn"
120
+ top: "conv2_1/x2"
121
+ convolution_param {
122
+ num_output: 32
123
+ bias_term: false
124
+ pad: 1
125
+ kernel_size: 3
126
+ }
127
+ }
128
+ layer {
129
+ name: "concat_2_1"
130
+ type: "Concat"
131
+ bottom: "pool1"
132
+ bottom: "conv2_1/x2"
133
+ top: "concat_2_1"
134
+ }
135
+ layer {
136
+ name: "conv2_2/x1/bn"
137
+ type: "BatchNorm"
138
+ bottom: "concat_2_1"
139
+ top: "conv2_2/x1/bn"
140
+ batch_norm_param {
141
+ eps: 1e-5
142
+ }
143
+ }
144
+ layer {
145
+ name: "conv2_2/x1/scale"
146
+ type: "Scale"
147
+ bottom: "conv2_2/x1/bn"
148
+ top: "conv2_2/x1/bn"
149
+ scale_param {
150
+ bias_term: true
151
+ }
152
+ }
153
+ layer {
154
+ name: "relu2_2/x1"
155
+ type: "ReLU"
156
+ bottom: "conv2_2/x1/bn"
157
+ top: "conv2_2/x1/bn"
158
+ }
159
+ layer {
160
+ name: "conv2_2/x1"
161
+ type: "Convolution"
162
+ bottom: "conv2_2/x1/bn"
163
+ top: "conv2_2/x1"
164
+ convolution_param {
165
+ num_output: 128
166
+ bias_term: false
167
+ kernel_size: 1
168
+ }
169
+ }
170
+ layer {
171
+ name: "conv2_2/x2/bn"
172
+ type: "BatchNorm"
173
+ bottom: "conv2_2/x1"
174
+ top: "conv2_2/x2/bn"
175
+ batch_norm_param {
176
+ eps: 1e-5
177
+ }
178
+ }
179
+ layer {
180
+ name: "conv2_2/x2/scale"
181
+ type: "Scale"
182
+ bottom: "conv2_2/x2/bn"
183
+ top: "conv2_2/x2/bn"
184
+ scale_param {
185
+ bias_term: true
186
+ }
187
+ }
188
+ layer {
189
+ name: "relu2_2/x2"
190
+ type: "ReLU"
191
+ bottom: "conv2_2/x2/bn"
192
+ top: "conv2_2/x2/bn"
193
+ }
194
+ layer {
195
+ name: "conv2_2/x2"
196
+ type: "Convolution"
197
+ bottom: "conv2_2/x2/bn"
198
+ top: "conv2_2/x2"
199
+ convolution_param {
200
+ num_output: 32
201
+ bias_term: false
202
+ pad: 1
203
+ kernel_size: 3
204
+ }
205
+ }
206
+ layer {
207
+ name: "concat_2_2"
208
+ type: "Concat"
209
+ bottom: "concat_2_1"
210
+ bottom: "conv2_2/x2"
211
+ top: "concat_2_2"
212
+ }
213
+ layer {
214
+ name: "conv2_3/x1/bn"
215
+ type: "BatchNorm"
216
+ bottom: "concat_2_2"
217
+ top: "conv2_3/x1/bn"
218
+ batch_norm_param {
219
+ eps: 1e-5
220
+ }
221
+ }
222
+ layer {
223
+ name: "conv2_3/x1/scale"
224
+ type: "Scale"
225
+ bottom: "conv2_3/x1/bn"
226
+ top: "conv2_3/x1/bn"
227
+ scale_param {
228
+ bias_term: true
229
+ }
230
+ }
231
+ layer {
232
+ name: "relu2_3/x1"
233
+ type: "ReLU"
234
+ bottom: "conv2_3/x1/bn"
235
+ top: "conv2_3/x1/bn"
236
+ }
237
+ layer {
238
+ name: "conv2_3/x1"
239
+ type: "Convolution"
240
+ bottom: "conv2_3/x1/bn"
241
+ top: "conv2_3/x1"
242
+ convolution_param {
243
+ num_output: 128
244
+ bias_term: false
245
+ kernel_size: 1
246
+ }
247
+ }
248
+ layer {
249
+ name: "conv2_3/x2/bn"
250
+ type: "BatchNorm"
251
+ bottom: "conv2_3/x1"
252
+ top: "conv2_3/x2/bn"
253
+ batch_norm_param {
254
+ eps: 1e-5
255
+ }
256
+ }
257
+ layer {
258
+ name: "conv2_3/x2/scale"
259
+ type: "Scale"
260
+ bottom: "conv2_3/x2/bn"
261
+ top: "conv2_3/x2/bn"
262
+ scale_param {
263
+ bias_term: true
264
+ }
265
+ }
266
+ layer {
267
+ name: "relu2_3/x2"
268
+ type: "ReLU"
269
+ bottom: "conv2_3/x2/bn"
270
+ top: "conv2_3/x2/bn"
271
+ }
272
+ layer {
273
+ name: "conv2_3/x2"
274
+ type: "Convolution"
275
+ bottom: "conv2_3/x2/bn"
276
+ top: "conv2_3/x2"
277
+ convolution_param {
278
+ num_output: 32
279
+ bias_term: false
280
+ pad: 1
281
+ kernel_size: 3
282
+ }
283
+ }
284
+ layer {
285
+ name: "concat_2_3"
286
+ type: "Concat"
287
+ bottom: "concat_2_2"
288
+ bottom: "conv2_3/x2"
289
+ top: "concat_2_3"
290
+ }
291
+ layer {
292
+ name: "conv2_4/x1/bn"
293
+ type: "BatchNorm"
294
+ bottom: "concat_2_3"
295
+ top: "conv2_4/x1/bn"
296
+ batch_norm_param {
297
+ eps: 1e-5
298
+ }
299
+ }
300
+ layer {
301
+ name: "conv2_4/x1/scale"
302
+ type: "Scale"
303
+ bottom: "conv2_4/x1/bn"
304
+ top: "conv2_4/x1/bn"
305
+ scale_param {
306
+ bias_term: true
307
+ }
308
+ }
309
+ layer {
310
+ name: "relu2_4/x1"
311
+ type: "ReLU"
312
+ bottom: "conv2_4/x1/bn"
313
+ top: "conv2_4/x1/bn"
314
+ }
315
+ layer {
316
+ name: "conv2_4/x1"
317
+ type: "Convolution"
318
+ bottom: "conv2_4/x1/bn"
319
+ top: "conv2_4/x1"
320
+ convolution_param {
321
+ num_output: 128
322
+ bias_term: false
323
+ kernel_size: 1
324
+ }
325
+ }
326
+ layer {
327
+ name: "conv2_4/x2/bn"
328
+ type: "BatchNorm"
329
+ bottom: "conv2_4/x1"
330
+ top: "conv2_4/x2/bn"
331
+ batch_norm_param {
332
+ eps: 1e-5
333
+ }
334
+ }
335
+ layer {
336
+ name: "conv2_4/x2/scale"
337
+ type: "Scale"
338
+ bottom: "conv2_4/x2/bn"
339
+ top: "conv2_4/x2/bn"
340
+ scale_param {
341
+ bias_term: true
342
+ }
343
+ }
344
+ layer {
345
+ name: "relu2_4/x2"
346
+ type: "ReLU"
347
+ bottom: "conv2_4/x2/bn"
348
+ top: "conv2_4/x2/bn"
349
+ }
350
+ layer {
351
+ name: "conv2_4/x2"
352
+ type: "Convolution"
353
+ bottom: "conv2_4/x2/bn"
354
+ top: "conv2_4/x2"
355
+ convolution_param {
356
+ num_output: 32
357
+ bias_term: false
358
+ pad: 1
359
+ kernel_size: 3
360
+ }
361
+ }
362
+ layer {
363
+ name: "concat_2_4"
364
+ type: "Concat"
365
+ bottom: "concat_2_3"
366
+ bottom: "conv2_4/x2"
367
+ top: "concat_2_4"
368
+ }
369
+ layer {
370
+ name: "conv2_5/x1/bn"
371
+ type: "BatchNorm"
372
+ bottom: "concat_2_4"
373
+ top: "conv2_5/x1/bn"
374
+ batch_norm_param {
375
+ eps: 1e-5
376
+ }
377
+ }
378
+ layer {
379
+ name: "conv2_5/x1/scale"
380
+ type: "Scale"
381
+ bottom: "conv2_5/x1/bn"
382
+ top: "conv2_5/x1/bn"
383
+ scale_param {
384
+ bias_term: true
385
+ }
386
+ }
387
+ layer {
388
+ name: "relu2_5/x1"
389
+ type: "ReLU"
390
+ bottom: "conv2_5/x1/bn"
391
+ top: "conv2_5/x1/bn"
392
+ }
393
+ layer {
394
+ name: "conv2_5/x1"
395
+ type: "Convolution"
396
+ bottom: "conv2_5/x1/bn"
397
+ top: "conv2_5/x1"
398
+ convolution_param {
399
+ num_output: 128
400
+ bias_term: false
401
+ kernel_size: 1
402
+ }
403
+ }
404
+ layer {
405
+ name: "conv2_5/x2/bn"
406
+ type: "BatchNorm"
407
+ bottom: "conv2_5/x1"
408
+ top: "conv2_5/x2/bn"
409
+ batch_norm_param {
410
+ eps: 1e-5
411
+ }
412
+ }
413
+ layer {
414
+ name: "conv2_5/x2/scale"
415
+ type: "Scale"
416
+ bottom: "conv2_5/x2/bn"
417
+ top: "conv2_5/x2/bn"
418
+ scale_param {
419
+ bias_term: true
420
+ }
421
+ }
422
+ layer {
423
+ name: "relu2_5/x2"
424
+ type: "ReLU"
425
+ bottom: "conv2_5/x2/bn"
426
+ top: "conv2_5/x2/bn"
427
+ }
428
+ layer {
429
+ name: "conv2_5/x2"
430
+ type: "Convolution"
431
+ bottom: "conv2_5/x2/bn"
432
+ top: "conv2_5/x2"
433
+ convolution_param {
434
+ num_output: 32
435
+ bias_term: false
436
+ pad: 1
437
+ kernel_size: 3
438
+ }
439
+ }
440
+ layer {
441
+ name: "concat_2_5"
442
+ type: "Concat"
443
+ bottom: "concat_2_4"
444
+ bottom: "conv2_5/x2"
445
+ top: "concat_2_5"
446
+ }
447
+ layer {
448
+ name: "conv2_6/x1/bn"
449
+ type: "BatchNorm"
450
+ bottom: "concat_2_5"
451
+ top: "conv2_6/x1/bn"
452
+ batch_norm_param {
453
+ eps: 1e-5
454
+ }
455
+ }
456
+ layer {
457
+ name: "conv2_6/x1/scale"
458
+ type: "Scale"
459
+ bottom: "conv2_6/x1/bn"
460
+ top: "conv2_6/x1/bn"
461
+ scale_param {
462
+ bias_term: true
463
+ }
464
+ }
465
+ layer {
466
+ name: "relu2_6/x1"
467
+ type: "ReLU"
468
+ bottom: "conv2_6/x1/bn"
469
+ top: "conv2_6/x1/bn"
470
+ }
471
+ layer {
472
+ name: "conv2_6/x1"
473
+ type: "Convolution"
474
+ bottom: "conv2_6/x1/bn"
475
+ top: "conv2_6/x1"
476
+ convolution_param {
477
+ num_output: 128
478
+ bias_term: false
479
+ kernel_size: 1
480
+ }
481
+ }
482
+ layer {
483
+ name: "conv2_6/x2/bn"
484
+ type: "BatchNorm"
485
+ bottom: "conv2_6/x1"
486
+ top: "conv2_6/x2/bn"
487
+ batch_norm_param {
488
+ eps: 1e-5
489
+ }
490
+ }
491
+ layer {
492
+ name: "conv2_6/x2/scale"
493
+ type: "Scale"
494
+ bottom: "conv2_6/x2/bn"
495
+ top: "conv2_6/x2/bn"
496
+ scale_param {
497
+ bias_term: true
498
+ }
499
+ }
500
+ layer {
501
+ name: "relu2_6/x2"
502
+ type: "ReLU"
503
+ bottom: "conv2_6/x2/bn"
504
+ top: "conv2_6/x2/bn"
505
+ }
506
+ layer {
507
+ name: "conv2_6/x2"
508
+ type: "Convolution"
509
+ bottom: "conv2_6/x2/bn"
510
+ top: "conv2_6/x2"
511
+ convolution_param {
512
+ num_output: 32
513
+ bias_term: false
514
+ pad: 1
515
+ kernel_size: 3
516
+ }
517
+ }
518
+ layer {
519
+ name: "concat_2_6"
520
+ type: "Concat"
521
+ bottom: "concat_2_5"
522
+ bottom: "conv2_6/x2"
523
+ top: "concat_2_6"
524
+ }
525
+ layer {
526
+ name: "conv2_blk/bn"
527
+ type: "BatchNorm"
528
+ bottom: "concat_2_6"
529
+ top: "conv2_blk/bn"
530
+ batch_norm_param {
531
+ eps: 1e-5
532
+ }
533
+ }
534
+ layer {
535
+ name: "conv2_blk/scale"
536
+ type: "Scale"
537
+ bottom: "conv2_blk/bn"
538
+ top: "conv2_blk/bn"
539
+ scale_param {
540
+ bias_term: true
541
+ }
542
+ }
543
+ layer {
544
+ name: "relu2_blk"
545
+ type: "ReLU"
546
+ bottom: "conv2_blk/bn"
547
+ top: "conv2_blk/bn"
548
+ }
549
+ layer {
550
+ name: "conv2_blk"
551
+ type: "Convolution"
552
+ bottom: "conv2_blk/bn"
553
+ top: "conv2_blk"
554
+ convolution_param {
555
+ num_output: 128
556
+ bias_term: false
557
+ kernel_size: 1
558
+ }
559
+ }
560
+ layer {
561
+ name: "pool2"
562
+ type: "Pooling"
563
+ bottom: "conv2_blk"
564
+ top: "pool2"
565
+ pooling_param {
566
+ pool: AVE
567
+ kernel_size: 2
568
+ stride: 2
569
+ }
570
+ }
571
+ layer {
572
+ name: "conv3_1/x1/bn"
573
+ type: "BatchNorm"
574
+ bottom: "pool2"
575
+ top: "conv3_1/x1/bn"
576
+ batch_norm_param {
577
+ eps: 1e-5
578
+ }
579
+ }
580
+ layer {
581
+ name: "conv3_1/x1/scale"
582
+ type: "Scale"
583
+ bottom: "conv3_1/x1/bn"
584
+ top: "conv3_1/x1/bn"
585
+ scale_param {
586
+ bias_term: true
587
+ }
588
+ }
589
+ layer {
590
+ name: "relu3_1/x1"
591
+ type: "ReLU"
592
+ bottom: "conv3_1/x1/bn"
593
+ top: "conv3_1/x1/bn"
594
+ }
595
+ layer {
596
+ name: "conv3_1/x1"
597
+ type: "Convolution"
598
+ bottom: "conv3_1/x1/bn"
599
+ top: "conv3_1/x1"
600
+ convolution_param {
601
+ num_output: 128
602
+ bias_term: false
603
+ kernel_size: 1
604
+ }
605
+ }
606
+ layer {
607
+ name: "conv3_1/x2/bn"
608
+ type: "BatchNorm"
609
+ bottom: "conv3_1/x1"
610
+ top: "conv3_1/x2/bn"
611
+ batch_norm_param {
612
+ eps: 1e-5
613
+ }
614
+ }
615
+ layer {
616
+ name: "conv3_1/x2/scale"
617
+ type: "Scale"
618
+ bottom: "conv3_1/x2/bn"
619
+ top: "conv3_1/x2/bn"
620
+ scale_param {
621
+ bias_term: true
622
+ }
623
+ }
624
+ layer {
625
+ name: "relu3_1/x2"
626
+ type: "ReLU"
627
+ bottom: "conv3_1/x2/bn"
628
+ top: "conv3_1/x2/bn"
629
+ }
630
+ layer {
631
+ name: "conv3_1/x2"
632
+ type: "Convolution"
633
+ bottom: "conv3_1/x2/bn"
634
+ top: "conv3_1/x2"
635
+ convolution_param {
636
+ num_output: 32
637
+ bias_term: false
638
+ pad: 1
639
+ kernel_size: 3
640
+ }
641
+ }
642
+ layer {
643
+ name: "concat_3_1"
644
+ type: "Concat"
645
+ bottom: "pool2"
646
+ bottom: "conv3_1/x2"
647
+ top: "concat_3_1"
648
+ }
649
+ layer {
650
+ name: "conv3_2/x1/bn"
651
+ type: "BatchNorm"
652
+ bottom: "concat_3_1"
653
+ top: "conv3_2/x1/bn"
654
+ batch_norm_param {
655
+ eps: 1e-5
656
+ }
657
+ }
658
+ layer {
659
+ name: "conv3_2/x1/scale"
660
+ type: "Scale"
661
+ bottom: "conv3_2/x1/bn"
662
+ top: "conv3_2/x1/bn"
663
+ scale_param {
664
+ bias_term: true
665
+ }
666
+ }
667
+ layer {
668
+ name: "relu3_2/x1"
669
+ type: "ReLU"
670
+ bottom: "conv3_2/x1/bn"
671
+ top: "conv3_2/x1/bn"
672
+ }
673
+ layer {
674
+ name: "conv3_2/x1"
675
+ type: "Convolution"
676
+ bottom: "conv3_2/x1/bn"
677
+ top: "conv3_2/x1"
678
+ convolution_param {
679
+ num_output: 128
680
+ bias_term: false
681
+ kernel_size: 1
682
+ }
683
+ }
684
+ layer {
685
+ name: "conv3_2/x2/bn"
686
+ type: "BatchNorm"
687
+ bottom: "conv3_2/x1"
688
+ top: "conv3_2/x2/bn"
689
+ batch_norm_param {
690
+ eps: 1e-5
691
+ }
692
+ }
693
+ layer {
694
+ name: "conv3_2/x2/scale"
695
+ type: "Scale"
696
+ bottom: "conv3_2/x2/bn"
697
+ top: "conv3_2/x2/bn"
698
+ scale_param {
699
+ bias_term: true
700
+ }
701
+ }
702
+ layer {
703
+ name: "relu3_2/x2"
704
+ type: "ReLU"
705
+ bottom: "conv3_2/x2/bn"
706
+ top: "conv3_2/x2/bn"
707
+ }
708
+ layer {
709
+ name: "conv3_2/x2"
710
+ type: "Convolution"
711
+ bottom: "conv3_2/x2/bn"
712
+ top: "conv3_2/x2"
713
+ convolution_param {
714
+ num_output: 32
715
+ bias_term: false
716
+ pad: 1
717
+ kernel_size: 3
718
+ }
719
+ }
720
+ layer {
721
+ name: "concat_3_2"
722
+ type: "Concat"
723
+ bottom: "concat_3_1"
724
+ bottom: "conv3_2/x2"
725
+ top: "concat_3_2"
726
+ }
727
+ layer {
728
+ name: "conv3_3/x1/bn"
729
+ type: "BatchNorm"
730
+ bottom: "concat_3_2"
731
+ top: "conv3_3/x1/bn"
732
+ batch_norm_param {
733
+ eps: 1e-5
734
+ }
735
+ }
736
+ layer {
737
+ name: "conv3_3/x1/scale"
738
+ type: "Scale"
739
+ bottom: "conv3_3/x1/bn"
740
+ top: "conv3_3/x1/bn"
741
+ scale_param {
742
+ bias_term: true
743
+ }
744
+ }
745
+ layer {
746
+ name: "relu3_3/x1"
747
+ type: "ReLU"
748
+ bottom: "conv3_3/x1/bn"
749
+ top: "conv3_3/x1/bn"
750
+ }
751
+ layer {
752
+ name: "conv3_3/x1"
753
+ type: "Convolution"
754
+ bottom: "conv3_3/x1/bn"
755
+ top: "conv3_3/x1"
756
+ convolution_param {
757
+ num_output: 128
758
+ bias_term: false
759
+ kernel_size: 1
760
+ }
761
+ }
762
+ layer {
763
+ name: "conv3_3/x2/bn"
764
+ type: "BatchNorm"
765
+ bottom: "conv3_3/x1"
766
+ top: "conv3_3/x2/bn"
767
+ batch_norm_param {
768
+ eps: 1e-5
769
+ }
770
+ }
771
+ layer {
772
+ name: "conv3_3/x2/scale"
773
+ type: "Scale"
774
+ bottom: "conv3_3/x2/bn"
775
+ top: "conv3_3/x2/bn"
776
+ scale_param {
777
+ bias_term: true
778
+ }
779
+ }
780
+ layer {
781
+ name: "relu3_3/x2"
782
+ type: "ReLU"
783
+ bottom: "conv3_3/x2/bn"
784
+ top: "conv3_3/x2/bn"
785
+ }
786
+ layer {
787
+ name: "conv3_3/x2"
788
+ type: "Convolution"
789
+ bottom: "conv3_3/x2/bn"
790
+ top: "conv3_3/x2"
791
+ convolution_param {
792
+ num_output: 32
793
+ bias_term: false
794
+ pad: 1
795
+ kernel_size: 3
796
+ }
797
+ }
798
+ layer {
799
+ name: "concat_3_3"
800
+ type: "Concat"
801
+ bottom: "concat_3_2"
802
+ bottom: "conv3_3/x2"
803
+ top: "concat_3_3"
804
+ }
805
+ layer {
806
+ name: "conv3_4/x1/bn"
807
+ type: "BatchNorm"
808
+ bottom: "concat_3_3"
809
+ top: "conv3_4/x1/bn"
810
+ batch_norm_param {
811
+ eps: 1e-5
812
+ }
813
+ }
814
+ layer {
815
+ name: "conv3_4/x1/scale"
816
+ type: "Scale"
817
+ bottom: "conv3_4/x1/bn"
818
+ top: "conv3_4/x1/bn"
819
+ scale_param {
820
+ bias_term: true
821
+ }
822
+ }
823
+ layer {
824
+ name: "relu3_4/x1"
825
+ type: "ReLU"
826
+ bottom: "conv3_4/x1/bn"
827
+ top: "conv3_4/x1/bn"
828
+ }
829
+ layer {
830
+ name: "conv3_4/x1"
831
+ type: "Convolution"
832
+ bottom: "conv3_4/x1/bn"
833
+ top: "conv3_4/x1"
834
+ convolution_param {
835
+ num_output: 128
836
+ bias_term: false
837
+ kernel_size: 1
838
+ }
839
+ }
840
+ layer {
841
+ name: "conv3_4/x2/bn"
842
+ type: "BatchNorm"
843
+ bottom: "conv3_4/x1"
844
+ top: "conv3_4/x2/bn"
845
+ batch_norm_param {
846
+ eps: 1e-5
847
+ }
848
+ }
849
+ layer {
850
+ name: "conv3_4/x2/scale"
851
+ type: "Scale"
852
+ bottom: "conv3_4/x2/bn"
853
+ top: "conv3_4/x2/bn"
854
+ scale_param {
855
+ bias_term: true
856
+ }
857
+ }
858
+ layer {
859
+ name: "relu3_4/x2"
860
+ type: "ReLU"
861
+ bottom: "conv3_4/x2/bn"
862
+ top: "conv3_4/x2/bn"
863
+ }
864
+ layer {
865
+ name: "conv3_4/x2"
866
+ type: "Convolution"
867
+ bottom: "conv3_4/x2/bn"
868
+ top: "conv3_4/x2"
869
+ convolution_param {
870
+ num_output: 32
871
+ bias_term: false
872
+ pad: 1
873
+ kernel_size: 3
874
+ }
875
+ }
876
+ layer {
877
+ name: "concat_3_4"
878
+ type: "Concat"
879
+ bottom: "concat_3_3"
880
+ bottom: "conv3_4/x2"
881
+ top: "concat_3_4"
882
+ }
883
+ layer {
884
+ name: "conv3_5/x1/bn"
885
+ type: "BatchNorm"
886
+ bottom: "concat_3_4"
887
+ top: "conv3_5/x1/bn"
888
+ batch_norm_param {
889
+ eps: 1e-5
890
+ }
891
+ }
892
+ layer {
893
+ name: "conv3_5/x1/scale"
894
+ type: "Scale"
895
+ bottom: "conv3_5/x1/bn"
896
+ top: "conv3_5/x1/bn"
897
+ scale_param {
898
+ bias_term: true
899
+ }
900
+ }
901
+ layer {
902
+ name: "relu3_5/x1"
903
+ type: "ReLU"
904
+ bottom: "conv3_5/x1/bn"
905
+ top: "conv3_5/x1/bn"
906
+ }
907
+ layer {
908
+ name: "conv3_5/x1"
909
+ type: "Convolution"
910
+ bottom: "conv3_5/x1/bn"
911
+ top: "conv3_5/x1"
912
+ convolution_param {
913
+ num_output: 128
914
+ bias_term: false
915
+ kernel_size: 1
916
+ }
917
+ }
918
+ layer {
919
+ name: "conv3_5/x2/bn"
920
+ type: "BatchNorm"
921
+ bottom: "conv3_5/x1"
922
+ top: "conv3_5/x2/bn"
923
+ batch_norm_param {
924
+ eps: 1e-5
925
+ }
926
+ }
927
+ layer {
928
+ name: "conv3_5/x2/scale"
929
+ type: "Scale"
930
+ bottom: "conv3_5/x2/bn"
931
+ top: "conv3_5/x2/bn"
932
+ scale_param {
933
+ bias_term: true
934
+ }
935
+ }
936
+ layer {
937
+ name: "relu3_5/x2"
938
+ type: "ReLU"
939
+ bottom: "conv3_5/x2/bn"
940
+ top: "conv3_5/x2/bn"
941
+ }
942
+ layer {
943
+ name: "conv3_5/x2"
944
+ type: "Convolution"
945
+ bottom: "conv3_5/x2/bn"
946
+ top: "conv3_5/x2"
947
+ convolution_param {
948
+ num_output: 32
949
+ bias_term: false
950
+ pad: 1
951
+ kernel_size: 3
952
+ }
953
+ }
954
+ layer {
955
+ name: "concat_3_5"
956
+ type: "Concat"
957
+ bottom: "concat_3_4"
958
+ bottom: "conv3_5/x2"
959
+ top: "concat_3_5"
960
+ }
961
+ layer {
962
+ name: "conv3_6/x1/bn"
963
+ type: "BatchNorm"
964
+ bottom: "concat_3_5"
965
+ top: "conv3_6/x1/bn"
966
+ batch_norm_param {
967
+ eps: 1e-5
968
+ }
969
+ }
970
+ layer {
971
+ name: "conv3_6/x1/scale"
972
+ type: "Scale"
973
+ bottom: "conv3_6/x1/bn"
974
+ top: "conv3_6/x1/bn"
975
+ scale_param {
976
+ bias_term: true
977
+ }
978
+ }
979
+ layer {
980
+ name: "relu3_6/x1"
981
+ type: "ReLU"
982
+ bottom: "conv3_6/x1/bn"
983
+ top: "conv3_6/x1/bn"
984
+ }
985
+ layer {
986
+ name: "conv3_6/x1"
987
+ type: "Convolution"
988
+ bottom: "conv3_6/x1/bn"
989
+ top: "conv3_6/x1"
990
+ convolution_param {
991
+ num_output: 128
992
+ bias_term: false
993
+ kernel_size: 1
994
+ }
995
+ }
996
+ layer {
997
+ name: "conv3_6/x2/bn"
998
+ type: "BatchNorm"
999
+ bottom: "conv3_6/x1"
1000
+ top: "conv3_6/x2/bn"
1001
+ batch_norm_param {
1002
+ eps: 1e-5
1003
+ }
1004
+ }
1005
+ layer {
1006
+ name: "conv3_6/x2/scale"
1007
+ type: "Scale"
1008
+ bottom: "conv3_6/x2/bn"
1009
+ top: "conv3_6/x2/bn"
1010
+ scale_param {
1011
+ bias_term: true
1012
+ }
1013
+ }
1014
+ layer {
1015
+ name: "relu3_6/x2"
1016
+ type: "ReLU"
1017
+ bottom: "conv3_6/x2/bn"
1018
+ top: "conv3_6/x2/bn"
1019
+ }
1020
+ layer {
1021
+ name: "conv3_6/x2"
1022
+ type: "Convolution"
1023
+ bottom: "conv3_6/x2/bn"
1024
+ top: "conv3_6/x2"
1025
+ convolution_param {
1026
+ num_output: 32
1027
+ bias_term: false
1028
+ pad: 1
1029
+ kernel_size: 3
1030
+ }
1031
+ }
1032
+ layer {
1033
+ name: "concat_3_6"
1034
+ type: "Concat"
1035
+ bottom: "concat_3_5"
1036
+ bottom: "conv3_6/x2"
1037
+ top: "concat_3_6"
1038
+ }
1039
+ layer {
1040
+ name: "conv3_7/x1/bn"
1041
+ type: "BatchNorm"
1042
+ bottom: "concat_3_6"
1043
+ top: "conv3_7/x1/bn"
1044
+ batch_norm_param {
1045
+ eps: 1e-5
1046
+ }
1047
+ }
1048
+ layer {
1049
+ name: "conv3_7/x1/scale"
1050
+ type: "Scale"
1051
+ bottom: "conv3_7/x1/bn"
1052
+ top: "conv3_7/x1/bn"
1053
+ scale_param {
1054
+ bias_term: true
1055
+ }
1056
+ }
1057
+ layer {
1058
+ name: "relu3_7/x1"
1059
+ type: "ReLU"
1060
+ bottom: "conv3_7/x1/bn"
1061
+ top: "conv3_7/x1/bn"
1062
+ }
1063
+ layer {
1064
+ name: "conv3_7/x1"
1065
+ type: "Convolution"
1066
+ bottom: "conv3_7/x1/bn"
1067
+ top: "conv3_7/x1"
1068
+ convolution_param {
1069
+ num_output: 128
1070
+ bias_term: false
1071
+ kernel_size: 1
1072
+ }
1073
+ }
1074
+ layer {
1075
+ name: "conv3_7/x2/bn"
1076
+ type: "BatchNorm"
1077
+ bottom: "conv3_7/x1"
1078
+ top: "conv3_7/x2/bn"
1079
+ batch_norm_param {
1080
+ eps: 1e-5
1081
+ }
1082
+ }
1083
+ layer {
1084
+ name: "conv3_7/x2/scale"
1085
+ type: "Scale"
1086
+ bottom: "conv3_7/x2/bn"
1087
+ top: "conv3_7/x2/bn"
1088
+ scale_param {
1089
+ bias_term: true
1090
+ }
1091
+ }
1092
+ layer {
1093
+ name: "relu3_7/x2"
1094
+ type: "ReLU"
1095
+ bottom: "conv3_7/x2/bn"
1096
+ top: "conv3_7/x2/bn"
1097
+ }
1098
+ layer {
1099
+ name: "conv3_7/x2"
1100
+ type: "Convolution"
1101
+ bottom: "conv3_7/x2/bn"
1102
+ top: "conv3_7/x2"
1103
+ convolution_param {
1104
+ num_output: 32
1105
+ bias_term: false
1106
+ pad: 1
1107
+ kernel_size: 3
1108
+ }
1109
+ }
1110
+ layer {
1111
+ name: "concat_3_7"
1112
+ type: "Concat"
1113
+ bottom: "concat_3_6"
1114
+ bottom: "conv3_7/x2"
1115
+ top: "concat_3_7"
1116
+ }
1117
+ layer {
1118
+ name: "conv3_8/x1/bn"
1119
+ type: "BatchNorm"
1120
+ bottom: "concat_3_7"
1121
+ top: "conv3_8/x1/bn"
1122
+ batch_norm_param {
1123
+ eps: 1e-5
1124
+ }
1125
+ }
1126
+ layer {
1127
+ name: "conv3_8/x1/scale"
1128
+ type: "Scale"
1129
+ bottom: "conv3_8/x1/bn"
1130
+ top: "conv3_8/x1/bn"
1131
+ scale_param {
1132
+ bias_term: true
1133
+ }
1134
+ }
1135
+ layer {
1136
+ name: "relu3_8/x1"
1137
+ type: "ReLU"
1138
+ bottom: "conv3_8/x1/bn"
1139
+ top: "conv3_8/x1/bn"
1140
+ }
1141
+ layer {
1142
+ name: "conv3_8/x1"
1143
+ type: "Convolution"
1144
+ bottom: "conv3_8/x1/bn"
1145
+ top: "conv3_8/x1"
1146
+ convolution_param {
1147
+ num_output: 128
1148
+ bias_term: false
1149
+ kernel_size: 1
1150
+ }
1151
+ }
1152
+ layer {
1153
+ name: "conv3_8/x2/bn"
1154
+ type: "BatchNorm"
1155
+ bottom: "conv3_8/x1"
1156
+ top: "conv3_8/x2/bn"
1157
+ batch_norm_param {
1158
+ eps: 1e-5
1159
+ }
1160
+ }
1161
+ layer {
1162
+ name: "conv3_8/x2/scale"
1163
+ type: "Scale"
1164
+ bottom: "conv3_8/x2/bn"
1165
+ top: "conv3_8/x2/bn"
1166
+ scale_param {
1167
+ bias_term: true
1168
+ }
1169
+ }
1170
+ layer {
1171
+ name: "relu3_8/x2"
1172
+ type: "ReLU"
1173
+ bottom: "conv3_8/x2/bn"
1174
+ top: "conv3_8/x2/bn"
1175
+ }
1176
+ layer {
1177
+ name: "conv3_8/x2"
1178
+ type: "Convolution"
1179
+ bottom: "conv3_8/x2/bn"
1180
+ top: "conv3_8/x2"
1181
+ convolution_param {
1182
+ num_output: 32
1183
+ bias_term: false
1184
+ pad: 1
1185
+ kernel_size: 3
1186
+ }
1187
+ }
1188
+ layer {
1189
+ name: "concat_3_8"
1190
+ type: "Concat"
1191
+ bottom: "concat_3_7"
1192
+ bottom: "conv3_8/x2"
1193
+ top: "concat_3_8"
1194
+ }
1195
+ layer {
1196
+ name: "conv3_9/x1/bn"
1197
+ type: "BatchNorm"
1198
+ bottom: "concat_3_8"
1199
+ top: "conv3_9/x1/bn"
1200
+ batch_norm_param {
1201
+ eps: 1e-5
1202
+ }
1203
+ }
1204
+ layer {
1205
+ name: "conv3_9/x1/scale"
1206
+ type: "Scale"
1207
+ bottom: "conv3_9/x1/bn"
1208
+ top: "conv3_9/x1/bn"
1209
+ scale_param {
1210
+ bias_term: true
1211
+ }
1212
+ }
1213
+ layer {
1214
+ name: "relu3_9/x1"
1215
+ type: "ReLU"
1216
+ bottom: "conv3_9/x1/bn"
1217
+ top: "conv3_9/x1/bn"
1218
+ }
1219
+ layer {
1220
+ name: "conv3_9/x1"
1221
+ type: "Convolution"
1222
+ bottom: "conv3_9/x1/bn"
1223
+ top: "conv3_9/x1"
1224
+ convolution_param {
1225
+ num_output: 128
1226
+ bias_term: false
1227
+ kernel_size: 1
1228
+ }
1229
+ }
1230
+ layer {
1231
+ name: "conv3_9/x2/bn"
1232
+ type: "BatchNorm"
1233
+ bottom: "conv3_9/x1"
1234
+ top: "conv3_9/x2/bn"
1235
+ batch_norm_param {
1236
+ eps: 1e-5
1237
+ }
1238
+ }
1239
+ layer {
1240
+ name: "conv3_9/x2/scale"
1241
+ type: "Scale"
1242
+ bottom: "conv3_9/x2/bn"
1243
+ top: "conv3_9/x2/bn"
1244
+ scale_param {
1245
+ bias_term: true
1246
+ }
1247
+ }
1248
+ layer {
1249
+ name: "relu3_9/x2"
1250
+ type: "ReLU"
1251
+ bottom: "conv3_9/x2/bn"
1252
+ top: "conv3_9/x2/bn"
1253
+ }
1254
+ layer {
1255
+ name: "conv3_9/x2"
1256
+ type: "Convolution"
1257
+ bottom: "conv3_9/x2/bn"
1258
+ top: "conv3_9/x2"
1259
+ convolution_param {
1260
+ num_output: 32
1261
+ bias_term: false
1262
+ pad: 1
1263
+ kernel_size: 3
1264
+ }
1265
+ }
1266
+ layer {
1267
+ name: "concat_3_9"
1268
+ type: "Concat"
1269
+ bottom: "concat_3_8"
1270
+ bottom: "conv3_9/x2"
1271
+ top: "concat_3_9"
1272
+ }
1273
+ layer {
1274
+ name: "conv3_10/x1/bn"
1275
+ type: "BatchNorm"
1276
+ bottom: "concat_3_9"
1277
+ top: "conv3_10/x1/bn"
1278
+ batch_norm_param {
1279
+ eps: 1e-5
1280
+ }
1281
+ }
1282
+ layer {
1283
+ name: "conv3_10/x1/scale"
1284
+ type: "Scale"
1285
+ bottom: "conv3_10/x1/bn"
1286
+ top: "conv3_10/x1/bn"
1287
+ scale_param {
1288
+ bias_term: true
1289
+ }
1290
+ }
1291
+ layer {
1292
+ name: "relu3_10/x1"
1293
+ type: "ReLU"
1294
+ bottom: "conv3_10/x1/bn"
1295
+ top: "conv3_10/x1/bn"
1296
+ }
1297
+ layer {
1298
+ name: "conv3_10/x1"
1299
+ type: "Convolution"
1300
+ bottom: "conv3_10/x1/bn"
1301
+ top: "conv3_10/x1"
1302
+ convolution_param {
1303
+ num_output: 128
1304
+ bias_term: false
1305
+ kernel_size: 1
1306
+ }
1307
+ }
1308
+ layer {
1309
+ name: "conv3_10/x2/bn"
1310
+ type: "BatchNorm"
1311
+ bottom: "conv3_10/x1"
1312
+ top: "conv3_10/x2/bn"
1313
+ batch_norm_param {
1314
+ eps: 1e-5
1315
+ }
1316
+ }
1317
+ layer {
1318
+ name: "conv3_10/x2/scale"
1319
+ type: "Scale"
1320
+ bottom: "conv3_10/x2/bn"
1321
+ top: "conv3_10/x2/bn"
1322
+ scale_param {
1323
+ bias_term: true
1324
+ }
1325
+ }
1326
+ layer {
1327
+ name: "relu3_10/x2"
1328
+ type: "ReLU"
1329
+ bottom: "conv3_10/x2/bn"
1330
+ top: "conv3_10/x2/bn"
1331
+ }
1332
+ layer {
1333
+ name: "conv3_10/x2"
1334
+ type: "Convolution"
1335
+ bottom: "conv3_10/x2/bn"
1336
+ top: "conv3_10/x2"
1337
+ convolution_param {
1338
+ num_output: 32
1339
+ bias_term: false
1340
+ pad: 1
1341
+ kernel_size: 3
1342
+ }
1343
+ }
1344
+ layer {
1345
+ name: "concat_3_10"
1346
+ type: "Concat"
1347
+ bottom: "concat_3_9"
1348
+ bottom: "conv3_10/x2"
1349
+ top: "concat_3_10"
1350
+ }
1351
+ layer {
1352
+ name: "conv3_11/x1/bn"
1353
+ type: "BatchNorm"
1354
+ bottom: "concat_3_10"
1355
+ top: "conv3_11/x1/bn"
1356
+ batch_norm_param {
1357
+ eps: 1e-5
1358
+ }
1359
+ }
1360
+ layer {
1361
+ name: "conv3_11/x1/scale"
1362
+ type: "Scale"
1363
+ bottom: "conv3_11/x1/bn"
1364
+ top: "conv3_11/x1/bn"
1365
+ scale_param {
1366
+ bias_term: true
1367
+ }
1368
+ }
1369
+ layer {
1370
+ name: "relu3_11/x1"
1371
+ type: "ReLU"
1372
+ bottom: "conv3_11/x1/bn"
1373
+ top: "conv3_11/x1/bn"
1374
+ }
1375
+ layer {
1376
+ name: "conv3_11/x1"
1377
+ type: "Convolution"
1378
+ bottom: "conv3_11/x1/bn"
1379
+ top: "conv3_11/x1"
1380
+ convolution_param {
1381
+ num_output: 128
1382
+ bias_term: false
1383
+ kernel_size: 1
1384
+ }
1385
+ }
1386
+ layer {
1387
+ name: "conv3_11/x2/bn"
1388
+ type: "BatchNorm"
1389
+ bottom: "conv3_11/x1"
1390
+ top: "conv3_11/x2/bn"
1391
+ batch_norm_param {
1392
+ eps: 1e-5
1393
+ }
1394
+ }
1395
+ layer {
1396
+ name: "conv3_11/x2/scale"
1397
+ type: "Scale"
1398
+ bottom: "conv3_11/x2/bn"
1399
+ top: "conv3_11/x2/bn"
1400
+ scale_param {
1401
+ bias_term: true
1402
+ }
1403
+ }
1404
+ layer {
1405
+ name: "relu3_11/x2"
1406
+ type: "ReLU"
1407
+ bottom: "conv3_11/x2/bn"
1408
+ top: "conv3_11/x2/bn"
1409
+ }
1410
+ layer {
1411
+ name: "conv3_11/x2"
1412
+ type: "Convolution"
1413
+ bottom: "conv3_11/x2/bn"
1414
+ top: "conv3_11/x2"
1415
+ convolution_param {
1416
+ num_output: 32
1417
+ bias_term: false
1418
+ pad: 1
1419
+ kernel_size: 3
1420
+ }
1421
+ }
1422
+ layer {
1423
+ name: "concat_3_11"
1424
+ type: "Concat"
1425
+ bottom: "concat_3_10"
1426
+ bottom: "conv3_11/x2"
1427
+ top: "concat_3_11"
1428
+ }
1429
+ layer {
1430
+ name: "conv3_12/x1/bn"
1431
+ type: "BatchNorm"
1432
+ bottom: "concat_3_11"
1433
+ top: "conv3_12/x1/bn"
1434
+ batch_norm_param {
1435
+ eps: 1e-5
1436
+ }
1437
+ }
1438
+ layer {
1439
+ name: "conv3_12/x1/scale"
1440
+ type: "Scale"
1441
+ bottom: "conv3_12/x1/bn"
1442
+ top: "conv3_12/x1/bn"
1443
+ scale_param {
1444
+ bias_term: true
1445
+ }
1446
+ }
1447
+ layer {
1448
+ name: "relu3_12/x1"
1449
+ type: "ReLU"
1450
+ bottom: "conv3_12/x1/bn"
1451
+ top: "conv3_12/x1/bn"
1452
+ }
1453
+ layer {
1454
+ name: "conv3_12/x1"
1455
+ type: "Convolution"
1456
+ bottom: "conv3_12/x1/bn"
1457
+ top: "conv3_12/x1"
1458
+ convolution_param {
1459
+ num_output: 128
1460
+ bias_term: false
1461
+ kernel_size: 1
1462
+ }
1463
+ }
1464
+ layer {
1465
+ name: "conv3_12/x2/bn"
1466
+ type: "BatchNorm"
1467
+ bottom: "conv3_12/x1"
1468
+ top: "conv3_12/x2/bn"
1469
+ batch_norm_param {
1470
+ eps: 1e-5
1471
+ }
1472
+ }
1473
+ layer {
1474
+ name: "conv3_12/x2/scale"
1475
+ type: "Scale"
1476
+ bottom: "conv3_12/x2/bn"
1477
+ top: "conv3_12/x2/bn"
1478
+ scale_param {
1479
+ bias_term: true
1480
+ }
1481
+ }
1482
+ layer {
1483
+ name: "relu3_12/x2"
1484
+ type: "ReLU"
1485
+ bottom: "conv3_12/x2/bn"
1486
+ top: "conv3_12/x2/bn"
1487
+ }
1488
+ layer {
1489
+ name: "conv3_12/x2"
1490
+ type: "Convolution"
1491
+ bottom: "conv3_12/x2/bn"
1492
+ top: "conv3_12/x2"
1493
+ convolution_param {
1494
+ num_output: 32
1495
+ bias_term: false
1496
+ pad: 1
1497
+ kernel_size: 3
1498
+ }
1499
+ }
1500
+ layer {
1501
+ name: "concat_3_12"
1502
+ type: "Concat"
1503
+ bottom: "concat_3_11"
1504
+ bottom: "conv3_12/x2"
1505
+ top: "concat_3_12"
1506
+ }
1507
+ layer {
1508
+ name: "conv3_blk/bn"
1509
+ type: "BatchNorm"
1510
+ bottom: "concat_3_12"
1511
+ top: "conv3_blk/bn"
1512
+ batch_norm_param {
1513
+ eps: 1e-5
1514
+ }
1515
+ }
1516
+ layer {
1517
+ name: "conv3_blk/scale"
1518
+ type: "Scale"
1519
+ bottom: "conv3_blk/bn"
1520
+ top: "conv3_blk/bn"
1521
+ scale_param {
1522
+ bias_term: true
1523
+ }
1524
+ }
1525
+ layer {
1526
+ name: "relu3_blk"
1527
+ type: "ReLU"
1528
+ bottom: "conv3_blk/bn"
1529
+ top: "conv3_blk/bn"
1530
+ }
1531
+ layer {
1532
+ name: "conv3_blk"
1533
+ type: "Convolution"
1534
+ bottom: "conv3_blk/bn"
1535
+ top: "conv3_blk"
1536
+ convolution_param {
1537
+ num_output: 256
1538
+ bias_term: false
1539
+ kernel_size: 1
1540
+ }
1541
+ }
1542
+ layer {
1543
+ name: "pool3"
1544
+ type: "Pooling"
1545
+ bottom: "conv3_blk"
1546
+ top: "pool3"
1547
+ pooling_param {
1548
+ pool: AVE
1549
+ kernel_size: 2
1550
+ stride: 2
1551
+ }
1552
+ }
1553
+ layer {
1554
+ name: "conv4_1/x1/bn"
1555
+ type: "BatchNorm"
1556
+ bottom: "pool3"
1557
+ top: "conv4_1/x1/bn"
1558
+ batch_norm_param {
1559
+ eps: 1e-5
1560
+ }
1561
+ }
1562
+ layer {
1563
+ name: "conv4_1/x1/scale"
1564
+ type: "Scale"
1565
+ bottom: "conv4_1/x1/bn"
1566
+ top: "conv4_1/x1/bn"
1567
+ scale_param {
1568
+ bias_term: true
1569
+ }
1570
+ }
1571
+ layer {
1572
+ name: "relu4_1/x1"
1573
+ type: "ReLU"
1574
+ bottom: "conv4_1/x1/bn"
1575
+ top: "conv4_1/x1/bn"
1576
+ }
1577
+ layer {
1578
+ name: "conv4_1/x1"
1579
+ type: "Convolution"
1580
+ bottom: "conv4_1/x1/bn"
1581
+ top: "conv4_1/x1"
1582
+ convolution_param {
1583
+ num_output: 128
1584
+ bias_term: false
1585
+ kernel_size: 1
1586
+ }
1587
+ }
1588
+ layer {
1589
+ name: "conv4_1/x2/bn"
1590
+ type: "BatchNorm"
1591
+ bottom: "conv4_1/x1"
1592
+ top: "conv4_1/x2/bn"
1593
+ batch_norm_param {
1594
+ eps: 1e-5
1595
+ }
1596
+ }
1597
+ layer {
1598
+ name: "conv4_1/x2/scale"
1599
+ type: "Scale"
1600
+ bottom: "conv4_1/x2/bn"
1601
+ top: "conv4_1/x2/bn"
1602
+ scale_param {
1603
+ bias_term: true
1604
+ }
1605
+ }
1606
+ layer {
1607
+ name: "relu4_1/x2"
1608
+ type: "ReLU"
1609
+ bottom: "conv4_1/x2/bn"
1610
+ top: "conv4_1/x2/bn"
1611
+ }
1612
+ layer {
1613
+ name: "conv4_1/x2"
1614
+ type: "Convolution"
1615
+ bottom: "conv4_1/x2/bn"
1616
+ top: "conv4_1/x2"
1617
+ convolution_param {
1618
+ num_output: 32
1619
+ bias_term: false
1620
+ pad: 1
1621
+ kernel_size: 3
1622
+ }
1623
+ }
1624
+ layer {
1625
+ name: "concat_4_1"
1626
+ type: "Concat"
1627
+ bottom: "pool3"
1628
+ bottom: "conv4_1/x2"
1629
+ top: "concat_4_1"
1630
+ }
1631
+ layer {
1632
+ name: "conv4_2/x1/bn"
1633
+ type: "BatchNorm"
1634
+ bottom: "concat_4_1"
1635
+ top: "conv4_2/x1/bn"
1636
+ batch_norm_param {
1637
+ eps: 1e-5
1638
+ }
1639
+ }
1640
+ layer {
1641
+ name: "conv4_2/x1/scale"
1642
+ type: "Scale"
1643
+ bottom: "conv4_2/x1/bn"
1644
+ top: "conv4_2/x1/bn"
1645
+ scale_param {
1646
+ bias_term: true
1647
+ }
1648
+ }
1649
+ layer {
1650
+ name: "relu4_2/x1"
1651
+ type: "ReLU"
1652
+ bottom: "conv4_2/x1/bn"
1653
+ top: "conv4_2/x1/bn"
1654
+ }
1655
+ layer {
1656
+ name: "conv4_2/x1"
1657
+ type: "Convolution"
1658
+ bottom: "conv4_2/x1/bn"
1659
+ top: "conv4_2/x1"
1660
+ convolution_param {
1661
+ num_output: 128
1662
+ bias_term: false
1663
+ kernel_size: 1
1664
+ }
1665
+ }
1666
+ layer {
1667
+ name: "conv4_2/x2/bn"
1668
+ type: "BatchNorm"
1669
+ bottom: "conv4_2/x1"
1670
+ top: "conv4_2/x2/bn"
1671
+ batch_norm_param {
1672
+ eps: 1e-5
1673
+ }
1674
+ }
1675
+ layer {
1676
+ name: "conv4_2/x2/scale"
1677
+ type: "Scale"
1678
+ bottom: "conv4_2/x2/bn"
1679
+ top: "conv4_2/x2/bn"
1680
+ scale_param {
1681
+ bias_term: true
1682
+ }
1683
+ }
1684
+ layer {
1685
+ name: "relu4_2/x2"
1686
+ type: "ReLU"
1687
+ bottom: "conv4_2/x2/bn"
1688
+ top: "conv4_2/x2/bn"
1689
+ }
1690
+ layer {
1691
+ name: "conv4_2/x2"
1692
+ type: "Convolution"
1693
+ bottom: "conv4_2/x2/bn"
1694
+ top: "conv4_2/x2"
1695
+ convolution_param {
1696
+ num_output: 32
1697
+ bias_term: false
1698
+ pad: 1
1699
+ kernel_size: 3
1700
+ }
1701
+ }
1702
+ layer {
1703
+ name: "concat_4_2"
1704
+ type: "Concat"
1705
+ bottom: "concat_4_1"
1706
+ bottom: "conv4_2/x2"
1707
+ top: "concat_4_2"
1708
+ }
1709
+ layer {
1710
+ name: "conv4_3/x1/bn"
1711
+ type: "BatchNorm"
1712
+ bottom: "concat_4_2"
1713
+ top: "conv4_3/x1/bn"
1714
+ batch_norm_param {
1715
+ eps: 1e-5
1716
+ }
1717
+ }
1718
+ layer {
1719
+ name: "conv4_3/x1/scale"
1720
+ type: "Scale"
1721
+ bottom: "conv4_3/x1/bn"
1722
+ top: "conv4_3/x1/bn"
1723
+ scale_param {
1724
+ bias_term: true
1725
+ }
1726
+ }
1727
+ layer {
1728
+ name: "relu4_3/x1"
1729
+ type: "ReLU"
1730
+ bottom: "conv4_3/x1/bn"
1731
+ top: "conv4_3/x1/bn"
1732
+ }
1733
+ layer {
1734
+ name: "conv4_3/x1"
1735
+ type: "Convolution"
1736
+ bottom: "conv4_3/x1/bn"
1737
+ top: "conv4_3/x1"
1738
+ convolution_param {
1739
+ num_output: 128
1740
+ bias_term: false
1741
+ kernel_size: 1
1742
+ }
1743
+ }
1744
+ layer {
1745
+ name: "conv4_3/x2/bn"
1746
+ type: "BatchNorm"
1747
+ bottom: "conv4_3/x1"
1748
+ top: "conv4_3/x2/bn"
1749
+ batch_norm_param {
1750
+ eps: 1e-5
1751
+ }
1752
+ }
1753
+ layer {
1754
+ name: "conv4_3/x2/scale"
1755
+ type: "Scale"
1756
+ bottom: "conv4_3/x2/bn"
1757
+ top: "conv4_3/x2/bn"
1758
+ scale_param {
1759
+ bias_term: true
1760
+ }
1761
+ }
1762
+ layer {
1763
+ name: "relu4_3/x2"
1764
+ type: "ReLU"
1765
+ bottom: "conv4_3/x2/bn"
1766
+ top: "conv4_3/x2/bn"
1767
+ }
1768
+ layer {
1769
+ name: "conv4_3/x2"
1770
+ type: "Convolution"
1771
+ bottom: "conv4_3/x2/bn"
1772
+ top: "conv4_3/x2"
1773
+ convolution_param {
1774
+ num_output: 32
1775
+ bias_term: false
1776
+ pad: 1
1777
+ kernel_size: 3
1778
+ }
1779
+ }
1780
+ layer {
1781
+ name: "concat_4_3"
1782
+ type: "Concat"
1783
+ bottom: "concat_4_2"
1784
+ bottom: "conv4_3/x2"
1785
+ top: "concat_4_3"
1786
+ }
1787
+ layer {
1788
+ name: "conv4_4/x1/bn"
1789
+ type: "BatchNorm"
1790
+ bottom: "concat_4_3"
1791
+ top: "conv4_4/x1/bn"
1792
+ batch_norm_param {
1793
+ eps: 1e-5
1794
+ }
1795
+ }
1796
+ layer {
1797
+ name: "conv4_4/x1/scale"
1798
+ type: "Scale"
1799
+ bottom: "conv4_4/x1/bn"
1800
+ top: "conv4_4/x1/bn"
1801
+ scale_param {
1802
+ bias_term: true
1803
+ }
1804
+ }
1805
+ layer {
1806
+ name: "relu4_4/x1"
1807
+ type: "ReLU"
1808
+ bottom: "conv4_4/x1/bn"
1809
+ top: "conv4_4/x1/bn"
1810
+ }
1811
+ layer {
1812
+ name: "conv4_4/x1"
1813
+ type: "Convolution"
1814
+ bottom: "conv4_4/x1/bn"
1815
+ top: "conv4_4/x1"
1816
+ convolution_param {
1817
+ num_output: 128
1818
+ bias_term: false
1819
+ kernel_size: 1
1820
+ }
1821
+ }
1822
+ layer {
1823
+ name: "conv4_4/x2/bn"
1824
+ type: "BatchNorm"
1825
+ bottom: "conv4_4/x1"
1826
+ top: "conv4_4/x2/bn"
1827
+ batch_norm_param {
1828
+ eps: 1e-5
1829
+ }
1830
+ }
1831
+ layer {
1832
+ name: "conv4_4/x2/scale"
1833
+ type: "Scale"
1834
+ bottom: "conv4_4/x2/bn"
1835
+ top: "conv4_4/x2/bn"
1836
+ scale_param {
1837
+ bias_term: true
1838
+ }
1839
+ }
1840
+ layer {
1841
+ name: "relu4_4/x2"
1842
+ type: "ReLU"
1843
+ bottom: "conv4_4/x2/bn"
1844
+ top: "conv4_4/x2/bn"
1845
+ }
1846
+ layer {
1847
+ name: "conv4_4/x2"
1848
+ type: "Convolution"
1849
+ bottom: "conv4_4/x2/bn"
1850
+ top: "conv4_4/x2"
1851
+ convolution_param {
1852
+ num_output: 32
1853
+ bias_term: false
1854
+ pad: 1
1855
+ kernel_size: 3
1856
+ }
1857
+ }
1858
+ layer {
1859
+ name: "concat_4_4"
1860
+ type: "Concat"
1861
+ bottom: "concat_4_3"
1862
+ bottom: "conv4_4/x2"
1863
+ top: "concat_4_4"
1864
+ }
1865
+ layer {
1866
+ name: "conv4_5/x1/bn"
1867
+ type: "BatchNorm"
1868
+ bottom: "concat_4_4"
1869
+ top: "conv4_5/x1/bn"
1870
+ batch_norm_param {
1871
+ eps: 1e-5
1872
+ }
1873
+ }
1874
+ layer {
1875
+ name: "conv4_5/x1/scale"
1876
+ type: "Scale"
1877
+ bottom: "conv4_5/x1/bn"
1878
+ top: "conv4_5/x1/bn"
1879
+ scale_param {
1880
+ bias_term: true
1881
+ }
1882
+ }
1883
+ layer {
1884
+ name: "relu4_5/x1"
1885
+ type: "ReLU"
1886
+ bottom: "conv4_5/x1/bn"
1887
+ top: "conv4_5/x1/bn"
1888
+ }
1889
+ layer {
1890
+ name: "conv4_5/x1"
1891
+ type: "Convolution"
1892
+ bottom: "conv4_5/x1/bn"
1893
+ top: "conv4_5/x1"
1894
+ convolution_param {
1895
+ num_output: 128
1896
+ bias_term: false
1897
+ kernel_size: 1
1898
+ }
1899
+ }
1900
+ layer {
1901
+ name: "conv4_5/x2/bn"
1902
+ type: "BatchNorm"
1903
+ bottom: "conv4_5/x1"
1904
+ top: "conv4_5/x2/bn"
1905
+ batch_norm_param {
1906
+ eps: 1e-5
1907
+ }
1908
+ }
1909
+ layer {
1910
+ name: "conv4_5/x2/scale"
1911
+ type: "Scale"
1912
+ bottom: "conv4_5/x2/bn"
1913
+ top: "conv4_5/x2/bn"
1914
+ scale_param {
1915
+ bias_term: true
1916
+ }
1917
+ }
1918
+ layer {
1919
+ name: "relu4_5/x2"
1920
+ type: "ReLU"
1921
+ bottom: "conv4_5/x2/bn"
1922
+ top: "conv4_5/x2/bn"
1923
+ }
1924
+ layer {
1925
+ name: "conv4_5/x2"
1926
+ type: "Convolution"
1927
+ bottom: "conv4_5/x2/bn"
1928
+ top: "conv4_5/x2"
1929
+ convolution_param {
1930
+ num_output: 32
1931
+ bias_term: false
1932
+ pad: 1
1933
+ kernel_size: 3
1934
+ }
1935
+ }
1936
+ layer {
1937
+ name: "concat_4_5"
1938
+ type: "Concat"
1939
+ bottom: "concat_4_4"
1940
+ bottom: "conv4_5/x2"
1941
+ top: "concat_4_5"
1942
+ }
1943
+ layer {
1944
+ name: "conv4_6/x1/bn"
1945
+ type: "BatchNorm"
1946
+ bottom: "concat_4_5"
1947
+ top: "conv4_6/x1/bn"
1948
+ batch_norm_param {
1949
+ eps: 1e-5
1950
+ }
1951
+ }
1952
+ layer {
1953
+ name: "conv4_6/x1/scale"
1954
+ type: "Scale"
1955
+ bottom: "conv4_6/x1/bn"
1956
+ top: "conv4_6/x1/bn"
1957
+ scale_param {
1958
+ bias_term: true
1959
+ }
1960
+ }
1961
+ layer {
1962
+ name: "relu4_6/x1"
1963
+ type: "ReLU"
1964
+ bottom: "conv4_6/x1/bn"
1965
+ top: "conv4_6/x1/bn"
1966
+ }
1967
+ layer {
1968
+ name: "conv4_6/x1"
1969
+ type: "Convolution"
1970
+ bottom: "conv4_6/x1/bn"
1971
+ top: "conv4_6/x1"
1972
+ convolution_param {
1973
+ num_output: 128
1974
+ bias_term: false
1975
+ kernel_size: 1
1976
+ }
1977
+ }
1978
+ layer {
1979
+ name: "conv4_6/x2/bn"
1980
+ type: "BatchNorm"
1981
+ bottom: "conv4_6/x1"
1982
+ top: "conv4_6/x2/bn"
1983
+ batch_norm_param {
1984
+ eps: 1e-5
1985
+ }
1986
+ }
1987
+ layer {
1988
+ name: "conv4_6/x2/scale"
1989
+ type: "Scale"
1990
+ bottom: "conv4_6/x2/bn"
1991
+ top: "conv4_6/x2/bn"
1992
+ scale_param {
1993
+ bias_term: true
1994
+ }
1995
+ }
1996
+ layer {
1997
+ name: "relu4_6/x2"
1998
+ type: "ReLU"
1999
+ bottom: "conv4_6/x2/bn"
2000
+ top: "conv4_6/x2/bn"
2001
+ }
2002
+ layer {
2003
+ name: "conv4_6/x2"
2004
+ type: "Convolution"
2005
+ bottom: "conv4_6/x2/bn"
2006
+ top: "conv4_6/x2"
2007
+ convolution_param {
2008
+ num_output: 32
2009
+ bias_term: false
2010
+ pad: 1
2011
+ kernel_size: 3
2012
+ }
2013
+ }
2014
+ layer {
2015
+ name: "concat_4_6"
2016
+ type: "Concat"
2017
+ bottom: "concat_4_5"
2018
+ bottom: "conv4_6/x2"
2019
+ top: "concat_4_6"
2020
+ }
2021
+ layer {
2022
+ name: "conv4_7/x1/bn"
2023
+ type: "BatchNorm"
2024
+ bottom: "concat_4_6"
2025
+ top: "conv4_7/x1/bn"
2026
+ batch_norm_param {
2027
+ eps: 1e-5
2028
+ }
2029
+ }
2030
+ layer {
2031
+ name: "conv4_7/x1/scale"
2032
+ type: "Scale"
2033
+ bottom: "conv4_7/x1/bn"
2034
+ top: "conv4_7/x1/bn"
2035
+ scale_param {
2036
+ bias_term: true
2037
+ }
2038
+ }
2039
+ layer {
2040
+ name: "relu4_7/x1"
2041
+ type: "ReLU"
2042
+ bottom: "conv4_7/x1/bn"
2043
+ top: "conv4_7/x1/bn"
2044
+ }
2045
+ layer {
2046
+ name: "conv4_7/x1"
2047
+ type: "Convolution"
2048
+ bottom: "conv4_7/x1/bn"
2049
+ top: "conv4_7/x1"
2050
+ convolution_param {
2051
+ num_output: 128
2052
+ bias_term: false
2053
+ kernel_size: 1
2054
+ }
2055
+ }
2056
+ layer {
2057
+ name: "conv4_7/x2/bn"
2058
+ type: "BatchNorm"
2059
+ bottom: "conv4_7/x1"
2060
+ top: "conv4_7/x2/bn"
2061
+ batch_norm_param {
2062
+ eps: 1e-5
2063
+ }
2064
+ }
2065
+ layer {
2066
+ name: "conv4_7/x2/scale"
2067
+ type: "Scale"
2068
+ bottom: "conv4_7/x2/bn"
2069
+ top: "conv4_7/x2/bn"
2070
+ scale_param {
2071
+ bias_term: true
2072
+ }
2073
+ }
2074
+ layer {
2075
+ name: "relu4_7/x2"
2076
+ type: "ReLU"
2077
+ bottom: "conv4_7/x2/bn"
2078
+ top: "conv4_7/x2/bn"
2079
+ }
2080
+ layer {
2081
+ name: "conv4_7/x2"
2082
+ type: "Convolution"
2083
+ bottom: "conv4_7/x2/bn"
2084
+ top: "conv4_7/x2"
2085
+ convolution_param {
2086
+ num_output: 32
2087
+ bias_term: false
2088
+ pad: 1
2089
+ kernel_size: 3
2090
+ }
2091
+ }
2092
+ layer {
2093
+ name: "concat_4_7"
2094
+ type: "Concat"
2095
+ bottom: "concat_4_6"
2096
+ bottom: "conv4_7/x2"
2097
+ top: "concat_4_7"
2098
+ }
2099
+ layer {
2100
+ name: "conv4_8/x1/bn"
2101
+ type: "BatchNorm"
2102
+ bottom: "concat_4_7"
2103
+ top: "conv4_8/x1/bn"
2104
+ batch_norm_param {
2105
+ eps: 1e-5
2106
+ }
2107
+ }
2108
+ layer {
2109
+ name: "conv4_8/x1/scale"
2110
+ type: "Scale"
2111
+ bottom: "conv4_8/x1/bn"
2112
+ top: "conv4_8/x1/bn"
2113
+ scale_param {
2114
+ bias_term: true
2115
+ }
2116
+ }
2117
+ layer {
2118
+ name: "relu4_8/x1"
2119
+ type: "ReLU"
2120
+ bottom: "conv4_8/x1/bn"
2121
+ top: "conv4_8/x1/bn"
2122
+ }
2123
+ layer {
2124
+ name: "conv4_8/x1"
2125
+ type: "Convolution"
2126
+ bottom: "conv4_8/x1/bn"
2127
+ top: "conv4_8/x1"
2128
+ convolution_param {
2129
+ num_output: 128
2130
+ bias_term: false
2131
+ kernel_size: 1
2132
+ }
2133
+ }
2134
+ layer {
2135
+ name: "conv4_8/x2/bn"
2136
+ type: "BatchNorm"
2137
+ bottom: "conv4_8/x1"
2138
+ top: "conv4_8/x2/bn"
2139
+ batch_norm_param {
2140
+ eps: 1e-5
2141
+ }
2142
+ }
2143
+ layer {
2144
+ name: "conv4_8/x2/scale"
2145
+ type: "Scale"
2146
+ bottom: "conv4_8/x2/bn"
2147
+ top: "conv4_8/x2/bn"
2148
+ scale_param {
2149
+ bias_term: true
2150
+ }
2151
+ }
2152
+ layer {
2153
+ name: "relu4_8/x2"
2154
+ type: "ReLU"
2155
+ bottom: "conv4_8/x2/bn"
2156
+ top: "conv4_8/x2/bn"
2157
+ }
2158
+ layer {
2159
+ name: "conv4_8/x2"
2160
+ type: "Convolution"
2161
+ bottom: "conv4_8/x2/bn"
2162
+ top: "conv4_8/x2"
2163
+ convolution_param {
2164
+ num_output: 32
2165
+ bias_term: false
2166
+ pad: 1
2167
+ kernel_size: 3
2168
+ }
2169
+ }
2170
+ layer {
2171
+ name: "concat_4_8"
2172
+ type: "Concat"
2173
+ bottom: "concat_4_7"
2174
+ bottom: "conv4_8/x2"
2175
+ top: "concat_4_8"
2176
+ }
2177
+ layer {
2178
+ name: "conv4_9/x1/bn"
2179
+ type: "BatchNorm"
2180
+ bottom: "concat_4_8"
2181
+ top: "conv4_9/x1/bn"
2182
+ batch_norm_param {
2183
+ eps: 1e-5
2184
+ }
2185
+ }
2186
+ layer {
2187
+ name: "conv4_9/x1/scale"
2188
+ type: "Scale"
2189
+ bottom: "conv4_9/x1/bn"
2190
+ top: "conv4_9/x1/bn"
2191
+ scale_param {
2192
+ bias_term: true
2193
+ }
2194
+ }
2195
+ layer {
2196
+ name: "relu4_9/x1"
2197
+ type: "ReLU"
2198
+ bottom: "conv4_9/x1/bn"
2199
+ top: "conv4_9/x1/bn"
2200
+ }
2201
+ layer {
2202
+ name: "conv4_9/x1"
2203
+ type: "Convolution"
2204
+ bottom: "conv4_9/x1/bn"
2205
+ top: "conv4_9/x1"
2206
+ convolution_param {
2207
+ num_output: 128
2208
+ bias_term: false
2209
+ kernel_size: 1
2210
+ }
2211
+ }
2212
+ layer {
2213
+ name: "conv4_9/x2/bn"
2214
+ type: "BatchNorm"
2215
+ bottom: "conv4_9/x1"
2216
+ top: "conv4_9/x2/bn"
2217
+ batch_norm_param {
2218
+ eps: 1e-5
2219
+ }
2220
+ }
2221
+ layer {
2222
+ name: "conv4_9/x2/scale"
2223
+ type: "Scale"
2224
+ bottom: "conv4_9/x2/bn"
2225
+ top: "conv4_9/x2/bn"
2226
+ scale_param {
2227
+ bias_term: true
2228
+ }
2229
+ }
2230
+ layer {
2231
+ name: "relu4_9/x2"
2232
+ type: "ReLU"
2233
+ bottom: "conv4_9/x2/bn"
2234
+ top: "conv4_9/x2/bn"
2235
+ }
2236
+ layer {
2237
+ name: "conv4_9/x2"
2238
+ type: "Convolution"
2239
+ bottom: "conv4_9/x2/bn"
2240
+ top: "conv4_9/x2"
2241
+ convolution_param {
2242
+ num_output: 32
2243
+ bias_term: false
2244
+ pad: 1
2245
+ kernel_size: 3
2246
+ }
2247
+ }
2248
+ layer {
2249
+ name: "concat_4_9"
2250
+ type: "Concat"
2251
+ bottom: "concat_4_8"
2252
+ bottom: "conv4_9/x2"
2253
+ top: "concat_4_9"
2254
+ }
2255
+ layer {
2256
+ name: "conv4_10/x1/bn"
2257
+ type: "BatchNorm"
2258
+ bottom: "concat_4_9"
2259
+ top: "conv4_10/x1/bn"
2260
+ batch_norm_param {
2261
+ eps: 1e-5
2262
+ }
2263
+ }
2264
+ layer {
2265
+ name: "conv4_10/x1/scale"
2266
+ type: "Scale"
2267
+ bottom: "conv4_10/x1/bn"
2268
+ top: "conv4_10/x1/bn"
2269
+ scale_param {
2270
+ bias_term: true
2271
+ }
2272
+ }
2273
+ layer {
2274
+ name: "relu4_10/x1"
2275
+ type: "ReLU"
2276
+ bottom: "conv4_10/x1/bn"
2277
+ top: "conv4_10/x1/bn"
2278
+ }
2279
+ layer {
2280
+ name: "conv4_10/x1"
2281
+ type: "Convolution"
2282
+ bottom: "conv4_10/x1/bn"
2283
+ top: "conv4_10/x1"
2284
+ convolution_param {
2285
+ num_output: 128
2286
+ bias_term: false
2287
+ kernel_size: 1
2288
+ }
2289
+ }
2290
+ layer {
2291
+ name: "conv4_10/x2/bn"
2292
+ type: "BatchNorm"
2293
+ bottom: "conv4_10/x1"
2294
+ top: "conv4_10/x2/bn"
2295
+ batch_norm_param {
2296
+ eps: 1e-5
2297
+ }
2298
+ }
2299
+ layer {
2300
+ name: "conv4_10/x2/scale"
2301
+ type: "Scale"
2302
+ bottom: "conv4_10/x2/bn"
2303
+ top: "conv4_10/x2/bn"
2304
+ scale_param {
2305
+ bias_term: true
2306
+ }
2307
+ }
2308
+ layer {
2309
+ name: "relu4_10/x2"
2310
+ type: "ReLU"
2311
+ bottom: "conv4_10/x2/bn"
2312
+ top: "conv4_10/x2/bn"
2313
+ }
2314
+ layer {
2315
+ name: "conv4_10/x2"
2316
+ type: "Convolution"
2317
+ bottom: "conv4_10/x2/bn"
2318
+ top: "conv4_10/x2"
2319
+ convolution_param {
2320
+ num_output: 32
2321
+ bias_term: false
2322
+ pad: 1
2323
+ kernel_size: 3
2324
+ }
2325
+ }
2326
+ layer {
2327
+ name: "concat_4_10"
2328
+ type: "Concat"
2329
+ bottom: "concat_4_9"
2330
+ bottom: "conv4_10/x2"
2331
+ top: "concat_4_10"
2332
+ }
2333
+ layer {
2334
+ name: "conv4_11/x1/bn"
2335
+ type: "BatchNorm"
2336
+ bottom: "concat_4_10"
2337
+ top: "conv4_11/x1/bn"
2338
+ batch_norm_param {
2339
+ eps: 1e-5
2340
+ }
2341
+ }
2342
+ layer {
2343
+ name: "conv4_11/x1/scale"
2344
+ type: "Scale"
2345
+ bottom: "conv4_11/x1/bn"
2346
+ top: "conv4_11/x1/bn"
2347
+ scale_param {
2348
+ bias_term: true
2349
+ }
2350
+ }
2351
+ layer {
2352
+ name: "relu4_11/x1"
2353
+ type: "ReLU"
2354
+ bottom: "conv4_11/x1/bn"
2355
+ top: "conv4_11/x1/bn"
2356
+ }
2357
+ layer {
2358
+ name: "conv4_11/x1"
2359
+ type: "Convolution"
2360
+ bottom: "conv4_11/x1/bn"
2361
+ top: "conv4_11/x1"
2362
+ convolution_param {
2363
+ num_output: 128
2364
+ bias_term: false
2365
+ kernel_size: 1
2366
+ }
2367
+ }
2368
+ layer {
2369
+ name: "conv4_11/x2/bn"
2370
+ type: "BatchNorm"
2371
+ bottom: "conv4_11/x1"
2372
+ top: "conv4_11/x2/bn"
2373
+ batch_norm_param {
2374
+ eps: 1e-5
2375
+ }
2376
+ }
2377
+ layer {
2378
+ name: "conv4_11/x2/scale"
2379
+ type: "Scale"
2380
+ bottom: "conv4_11/x2/bn"
2381
+ top: "conv4_11/x2/bn"
2382
+ scale_param {
2383
+ bias_term: true
2384
+ }
2385
+ }
2386
+ layer {
2387
+ name: "relu4_11/x2"
2388
+ type: "ReLU"
2389
+ bottom: "conv4_11/x2/bn"
2390
+ top: "conv4_11/x2/bn"
2391
+ }
2392
+ layer {
2393
+ name: "conv4_11/x2"
2394
+ type: "Convolution"
2395
+ bottom: "conv4_11/x2/bn"
2396
+ top: "conv4_11/x2"
2397
+ convolution_param {
2398
+ num_output: 32
2399
+ bias_term: false
2400
+ pad: 1
2401
+ kernel_size: 3
2402
+ }
2403
+ }
2404
+ layer {
2405
+ name: "concat_4_11"
2406
+ type: "Concat"
2407
+ bottom: "concat_4_10"
2408
+ bottom: "conv4_11/x2"
2409
+ top: "concat_4_11"
2410
+ }
2411
+ layer {
2412
+ name: "conv4_12/x1/bn"
2413
+ type: "BatchNorm"
2414
+ bottom: "concat_4_11"
2415
+ top: "conv4_12/x1/bn"
2416
+ batch_norm_param {
2417
+ eps: 1e-5
2418
+ }
2419
+ }
2420
+ layer {
2421
+ name: "conv4_12/x1/scale"
2422
+ type: "Scale"
2423
+ bottom: "conv4_12/x1/bn"
2424
+ top: "conv4_12/x1/bn"
2425
+ scale_param {
2426
+ bias_term: true
2427
+ }
2428
+ }
2429
+ layer {
2430
+ name: "relu4_12/x1"
2431
+ type: "ReLU"
2432
+ bottom: "conv4_12/x1/bn"
2433
+ top: "conv4_12/x1/bn"
2434
+ }
2435
+ layer {
2436
+ name: "conv4_12/x1"
2437
+ type: "Convolution"
2438
+ bottom: "conv4_12/x1/bn"
2439
+ top: "conv4_12/x1"
2440
+ convolution_param {
2441
+ num_output: 128
2442
+ bias_term: false
2443
+ kernel_size: 1
2444
+ }
2445
+ }
2446
+ layer {
2447
+ name: "conv4_12/x2/bn"
2448
+ type: "BatchNorm"
2449
+ bottom: "conv4_12/x1"
2450
+ top: "conv4_12/x2/bn"
2451
+ batch_norm_param {
2452
+ eps: 1e-5
2453
+ }
2454
+ }
2455
+ layer {
2456
+ name: "conv4_12/x2/scale"
2457
+ type: "Scale"
2458
+ bottom: "conv4_12/x2/bn"
2459
+ top: "conv4_12/x2/bn"
2460
+ scale_param {
2461
+ bias_term: true
2462
+ }
2463
+ }
2464
+ layer {
2465
+ name: "relu4_12/x2"
2466
+ type: "ReLU"
2467
+ bottom: "conv4_12/x2/bn"
2468
+ top: "conv4_12/x2/bn"
2469
+ }
2470
+ layer {
2471
+ name: "conv4_12/x2"
2472
+ type: "Convolution"
2473
+ bottom: "conv4_12/x2/bn"
2474
+ top: "conv4_12/x2"
2475
+ convolution_param {
2476
+ num_output: 32
2477
+ bias_term: false
2478
+ pad: 1
2479
+ kernel_size: 3
2480
+ }
2481
+ }
2482
+ layer {
2483
+ name: "concat_4_12"
2484
+ type: "Concat"
2485
+ bottom: "concat_4_11"
2486
+ bottom: "conv4_12/x2"
2487
+ top: "concat_4_12"
2488
+ }
2489
+ layer {
2490
+ name: "conv4_13/x1/bn"
2491
+ type: "BatchNorm"
2492
+ bottom: "concat_4_12"
2493
+ top: "conv4_13/x1/bn"
2494
+ batch_norm_param {
2495
+ eps: 1e-5
2496
+ }
2497
+ }
2498
+ layer {
2499
+ name: "conv4_13/x1/scale"
2500
+ type: "Scale"
2501
+ bottom: "conv4_13/x1/bn"
2502
+ top: "conv4_13/x1/bn"
2503
+ scale_param {
2504
+ bias_term: true
2505
+ }
2506
+ }
2507
+ layer {
2508
+ name: "relu4_13/x1"
2509
+ type: "ReLU"
2510
+ bottom: "conv4_13/x1/bn"
2511
+ top: "conv4_13/x1/bn"
2512
+ }
2513
+ layer {
2514
+ name: "conv4_13/x1"
2515
+ type: "Convolution"
2516
+ bottom: "conv4_13/x1/bn"
2517
+ top: "conv4_13/x1"
2518
+ convolution_param {
2519
+ num_output: 128
2520
+ bias_term: false
2521
+ kernel_size: 1
2522
+ }
2523
+ }
2524
+ layer {
2525
+ name: "conv4_13/x2/bn"
2526
+ type: "BatchNorm"
2527
+ bottom: "conv4_13/x1"
2528
+ top: "conv4_13/x2/bn"
2529
+ batch_norm_param {
2530
+ eps: 1e-5
2531
+ }
2532
+ }
2533
+ layer {
2534
+ name: "conv4_13/x2/scale"
2535
+ type: "Scale"
2536
+ bottom: "conv4_13/x2/bn"
2537
+ top: "conv4_13/x2/bn"
2538
+ scale_param {
2539
+ bias_term: true
2540
+ }
2541
+ }
2542
+ layer {
2543
+ name: "relu4_13/x2"
2544
+ type: "ReLU"
2545
+ bottom: "conv4_13/x2/bn"
2546
+ top: "conv4_13/x2/bn"
2547
+ }
2548
+ layer {
2549
+ name: "conv4_13/x2"
2550
+ type: "Convolution"
2551
+ bottom: "conv4_13/x2/bn"
2552
+ top: "conv4_13/x2"
2553
+ convolution_param {
2554
+ num_output: 32
2555
+ bias_term: false
2556
+ pad: 1
2557
+ kernel_size: 3
2558
+ }
2559
+ }
2560
+ layer {
2561
+ name: "concat_4_13"
2562
+ type: "Concat"
2563
+ bottom: "concat_4_12"
2564
+ bottom: "conv4_13/x2"
2565
+ top: "concat_4_13"
2566
+ }
2567
+ layer {
2568
+ name: "conv4_14/x1/bn"
2569
+ type: "BatchNorm"
2570
+ bottom: "concat_4_13"
2571
+ top: "conv4_14/x1/bn"
2572
+ batch_norm_param {
2573
+ eps: 1e-5
2574
+ }
2575
+ }
2576
+ layer {
2577
+ name: "conv4_14/x1/scale"
2578
+ type: "Scale"
2579
+ bottom: "conv4_14/x1/bn"
2580
+ top: "conv4_14/x1/bn"
2581
+ scale_param {
2582
+ bias_term: true
2583
+ }
2584
+ }
2585
+ layer {
2586
+ name: "relu4_14/x1"
2587
+ type: "ReLU"
2588
+ bottom: "conv4_14/x1/bn"
2589
+ top: "conv4_14/x1/bn"
2590
+ }
2591
+ layer {
2592
+ name: "conv4_14/x1"
2593
+ type: "Convolution"
2594
+ bottom: "conv4_14/x1/bn"
2595
+ top: "conv4_14/x1"
2596
+ convolution_param {
2597
+ num_output: 128
2598
+ bias_term: false
2599
+ kernel_size: 1
2600
+ }
2601
+ }
2602
+ layer {
2603
+ name: "conv4_14/x2/bn"
2604
+ type: "BatchNorm"
2605
+ bottom: "conv4_14/x1"
2606
+ top: "conv4_14/x2/bn"
2607
+ batch_norm_param {
2608
+ eps: 1e-5
2609
+ }
2610
+ }
2611
+ layer {
2612
+ name: "conv4_14/x2/scale"
2613
+ type: "Scale"
2614
+ bottom: "conv4_14/x2/bn"
2615
+ top: "conv4_14/x2/bn"
2616
+ scale_param {
2617
+ bias_term: true
2618
+ }
2619
+ }
2620
+ layer {
2621
+ name: "relu4_14/x2"
2622
+ type: "ReLU"
2623
+ bottom: "conv4_14/x2/bn"
2624
+ top: "conv4_14/x2/bn"
2625
+ }
2626
+ layer {
2627
+ name: "conv4_14/x2"
2628
+ type: "Convolution"
2629
+ bottom: "conv4_14/x2/bn"
2630
+ top: "conv4_14/x2"
2631
+ convolution_param {
2632
+ num_output: 32
2633
+ bias_term: false
2634
+ pad: 1
2635
+ kernel_size: 3
2636
+ }
2637
+ }
2638
+ layer {
2639
+ name: "concat_4_14"
2640
+ type: "Concat"
2641
+ bottom: "concat_4_13"
2642
+ bottom: "conv4_14/x2"
2643
+ top: "concat_4_14"
2644
+ }
2645
+ layer {
2646
+ name: "conv4_15/x1/bn"
2647
+ type: "BatchNorm"
2648
+ bottom: "concat_4_14"
2649
+ top: "conv4_15/x1/bn"
2650
+ batch_norm_param {
2651
+ eps: 1e-5
2652
+ }
2653
+ }
2654
+ layer {
2655
+ name: "conv4_15/x1/scale"
2656
+ type: "Scale"
2657
+ bottom: "conv4_15/x1/bn"
2658
+ top: "conv4_15/x1/bn"
2659
+ scale_param {
2660
+ bias_term: true
2661
+ }
2662
+ }
2663
+ layer {
2664
+ name: "relu4_15/x1"
2665
+ type: "ReLU"
2666
+ bottom: "conv4_15/x1/bn"
2667
+ top: "conv4_15/x1/bn"
2668
+ }
2669
+ layer {
2670
+ name: "conv4_15/x1"
2671
+ type: "Convolution"
2672
+ bottom: "conv4_15/x1/bn"
2673
+ top: "conv4_15/x1"
2674
+ convolution_param {
2675
+ num_output: 128
2676
+ bias_term: false
2677
+ kernel_size: 1
2678
+ }
2679
+ }
2680
+ layer {
2681
+ name: "conv4_15/x2/bn"
2682
+ type: "BatchNorm"
2683
+ bottom: "conv4_15/x1"
2684
+ top: "conv4_15/x2/bn"
2685
+ batch_norm_param {
2686
+ eps: 1e-5
2687
+ }
2688
+ }
2689
+ layer {
2690
+ name: "conv4_15/x2/scale"
2691
+ type: "Scale"
2692
+ bottom: "conv4_15/x2/bn"
2693
+ top: "conv4_15/x2/bn"
2694
+ scale_param {
2695
+ bias_term: true
2696
+ }
2697
+ }
2698
+ layer {
2699
+ name: "relu4_15/x2"
2700
+ type: "ReLU"
2701
+ bottom: "conv4_15/x2/bn"
2702
+ top: "conv4_15/x2/bn"
2703
+ }
2704
+ layer {
2705
+ name: "conv4_15/x2"
2706
+ type: "Convolution"
2707
+ bottom: "conv4_15/x2/bn"
2708
+ top: "conv4_15/x2"
2709
+ convolution_param {
2710
+ num_output: 32
2711
+ bias_term: false
2712
+ pad: 1
2713
+ kernel_size: 3
2714
+ }
2715
+ }
2716
+ layer {
2717
+ name: "concat_4_15"
2718
+ type: "Concat"
2719
+ bottom: "concat_4_14"
2720
+ bottom: "conv4_15/x2"
2721
+ top: "concat_4_15"
2722
+ }
2723
+ layer {
2724
+ name: "conv4_16/x1/bn"
2725
+ type: "BatchNorm"
2726
+ bottom: "concat_4_15"
2727
+ top: "conv4_16/x1/bn"
2728
+ batch_norm_param {
2729
+ eps: 1e-5
2730
+ }
2731
+ }
2732
+ layer {
2733
+ name: "conv4_16/x1/scale"
2734
+ type: "Scale"
2735
+ bottom: "conv4_16/x1/bn"
2736
+ top: "conv4_16/x1/bn"
2737
+ scale_param {
2738
+ bias_term: true
2739
+ }
2740
+ }
2741
+ layer {
2742
+ name: "relu4_16/x1"
2743
+ type: "ReLU"
2744
+ bottom: "conv4_16/x1/bn"
2745
+ top: "conv4_16/x1/bn"
2746
+ }
2747
+ layer {
2748
+ name: "conv4_16/x1"
2749
+ type: "Convolution"
2750
+ bottom: "conv4_16/x1/bn"
2751
+ top: "conv4_16/x1"
2752
+ convolution_param {
2753
+ num_output: 128
2754
+ bias_term: false
2755
+ kernel_size: 1
2756
+ }
2757
+ }
2758
+ layer {
2759
+ name: "conv4_16/x2/bn"
2760
+ type: "BatchNorm"
2761
+ bottom: "conv4_16/x1"
2762
+ top: "conv4_16/x2/bn"
2763
+ batch_norm_param {
2764
+ eps: 1e-5
2765
+ }
2766
+ }
2767
+ layer {
2768
+ name: "conv4_16/x2/scale"
2769
+ type: "Scale"
2770
+ bottom: "conv4_16/x2/bn"
2771
+ top: "conv4_16/x2/bn"
2772
+ scale_param {
2773
+ bias_term: true
2774
+ }
2775
+ }
2776
+ layer {
2777
+ name: "relu4_16/x2"
2778
+ type: "ReLU"
2779
+ bottom: "conv4_16/x2/bn"
2780
+ top: "conv4_16/x2/bn"
2781
+ }
2782
+ layer {
2783
+ name: "conv4_16/x2"
2784
+ type: "Convolution"
2785
+ bottom: "conv4_16/x2/bn"
2786
+ top: "conv4_16/x2"
2787
+ convolution_param {
2788
+ num_output: 32
2789
+ bias_term: false
2790
+ pad: 1
2791
+ kernel_size: 3
2792
+ }
2793
+ }
2794
+ layer {
2795
+ name: "concat_4_16"
2796
+ type: "Concat"
2797
+ bottom: "concat_4_15"
2798
+ bottom: "conv4_16/x2"
2799
+ top: "concat_4_16"
2800
+ }
2801
+ layer {
2802
+ name: "conv4_17/x1/bn"
2803
+ type: "BatchNorm"
2804
+ bottom: "concat_4_16"
2805
+ top: "conv4_17/x1/bn"
2806
+ batch_norm_param {
2807
+ eps: 1e-5
2808
+ }
2809
+ }
2810
+ layer {
2811
+ name: "conv4_17/x1/scale"
2812
+ type: "Scale"
2813
+ bottom: "conv4_17/x1/bn"
2814
+ top: "conv4_17/x1/bn"
2815
+ scale_param {
2816
+ bias_term: true
2817
+ }
2818
+ }
2819
+ layer {
2820
+ name: "relu4_17/x1"
2821
+ type: "ReLU"
2822
+ bottom: "conv4_17/x1/bn"
2823
+ top: "conv4_17/x1/bn"
2824
+ }
2825
+ layer {
2826
+ name: "conv4_17/x1"
2827
+ type: "Convolution"
2828
+ bottom: "conv4_17/x1/bn"
2829
+ top: "conv4_17/x1"
2830
+ convolution_param {
2831
+ num_output: 128
2832
+ bias_term: false
2833
+ kernel_size: 1
2834
+ }
2835
+ }
2836
+ layer {
2837
+ name: "conv4_17/x2/bn"
2838
+ type: "BatchNorm"
2839
+ bottom: "conv4_17/x1"
2840
+ top: "conv4_17/x2/bn"
2841
+ batch_norm_param {
2842
+ eps: 1e-5
2843
+ }
2844
+ }
2845
+ layer {
2846
+ name: "conv4_17/x2/scale"
2847
+ type: "Scale"
2848
+ bottom: "conv4_17/x2/bn"
2849
+ top: "conv4_17/x2/bn"
2850
+ scale_param {
2851
+ bias_term: true
2852
+ }
2853
+ }
2854
+ layer {
2855
+ name: "relu4_17/x2"
2856
+ type: "ReLU"
2857
+ bottom: "conv4_17/x2/bn"
2858
+ top: "conv4_17/x2/bn"
2859
+ }
2860
+ layer {
2861
+ name: "conv4_17/x2"
2862
+ type: "Convolution"
2863
+ bottom: "conv4_17/x2/bn"
2864
+ top: "conv4_17/x2"
2865
+ convolution_param {
2866
+ num_output: 32
2867
+ bias_term: false
2868
+ pad: 1
2869
+ kernel_size: 3
2870
+ }
2871
+ }
2872
+ layer {
2873
+ name: "concat_4_17"
2874
+ type: "Concat"
2875
+ bottom: "concat_4_16"
2876
+ bottom: "conv4_17/x2"
2877
+ top: "concat_4_17"
2878
+ }
2879
+ layer {
2880
+ name: "conv4_18/x1/bn"
2881
+ type: "BatchNorm"
2882
+ bottom: "concat_4_17"
2883
+ top: "conv4_18/x1/bn"
2884
+ batch_norm_param {
2885
+ eps: 1e-5
2886
+ }
2887
+ }
2888
+ layer {
2889
+ name: "conv4_18/x1/scale"
2890
+ type: "Scale"
2891
+ bottom: "conv4_18/x1/bn"
2892
+ top: "conv4_18/x1/bn"
2893
+ scale_param {
2894
+ bias_term: true
2895
+ }
2896
+ }
2897
+ layer {
2898
+ name: "relu4_18/x1"
2899
+ type: "ReLU"
2900
+ bottom: "conv4_18/x1/bn"
2901
+ top: "conv4_18/x1/bn"
2902
+ }
2903
+ layer {
2904
+ name: "conv4_18/x1"
2905
+ type: "Convolution"
2906
+ bottom: "conv4_18/x1/bn"
2907
+ top: "conv4_18/x1"
2908
+ convolution_param {
2909
+ num_output: 128
2910
+ bias_term: false
2911
+ kernel_size: 1
2912
+ }
2913
+ }
2914
+ layer {
2915
+ name: "conv4_18/x2/bn"
2916
+ type: "BatchNorm"
2917
+ bottom: "conv4_18/x1"
2918
+ top: "conv4_18/x2/bn"
2919
+ batch_norm_param {
2920
+ eps: 1e-5
2921
+ }
2922
+ }
2923
+ layer {
2924
+ name: "conv4_18/x2/scale"
2925
+ type: "Scale"
2926
+ bottom: "conv4_18/x2/bn"
2927
+ top: "conv4_18/x2/bn"
2928
+ scale_param {
2929
+ bias_term: true
2930
+ }
2931
+ }
2932
+ layer {
2933
+ name: "relu4_18/x2"
2934
+ type: "ReLU"
2935
+ bottom: "conv4_18/x2/bn"
2936
+ top: "conv4_18/x2/bn"
2937
+ }
2938
+ layer {
2939
+ name: "conv4_18/x2"
2940
+ type: "Convolution"
2941
+ bottom: "conv4_18/x2/bn"
2942
+ top: "conv4_18/x2"
2943
+ convolution_param {
2944
+ num_output: 32
2945
+ bias_term: false
2946
+ pad: 1
2947
+ kernel_size: 3
2948
+ }
2949
+ }
2950
+ layer {
2951
+ name: "concat_4_18"
2952
+ type: "Concat"
2953
+ bottom: "concat_4_17"
2954
+ bottom: "conv4_18/x2"
2955
+ top: "concat_4_18"
2956
+ }
2957
+ layer {
2958
+ name: "conv4_19/x1/bn"
2959
+ type: "BatchNorm"
2960
+ bottom: "concat_4_18"
2961
+ top: "conv4_19/x1/bn"
2962
+ batch_norm_param {
2963
+ eps: 1e-5
2964
+ }
2965
+ }
2966
+ layer {
2967
+ name: "conv4_19/x1/scale"
2968
+ type: "Scale"
2969
+ bottom: "conv4_19/x1/bn"
2970
+ top: "conv4_19/x1/bn"
2971
+ scale_param {
2972
+ bias_term: true
2973
+ }
2974
+ }
2975
+ layer {
2976
+ name: "relu4_19/x1"
2977
+ type: "ReLU"
2978
+ bottom: "conv4_19/x1/bn"
2979
+ top: "conv4_19/x1/bn"
2980
+ }
2981
+ layer {
2982
+ name: "conv4_19/x1"
2983
+ type: "Convolution"
2984
+ bottom: "conv4_19/x1/bn"
2985
+ top: "conv4_19/x1"
2986
+ convolution_param {
2987
+ num_output: 128
2988
+ bias_term: false
2989
+ kernel_size: 1
2990
+ }
2991
+ }
2992
+ layer {
2993
+ name: "conv4_19/x2/bn"
2994
+ type: "BatchNorm"
2995
+ bottom: "conv4_19/x1"
2996
+ top: "conv4_19/x2/bn"
2997
+ batch_norm_param {
2998
+ eps: 1e-5
2999
+ }
3000
+ }
3001
+ layer {
3002
+ name: "conv4_19/x2/scale"
3003
+ type: "Scale"
3004
+ bottom: "conv4_19/x2/bn"
3005
+ top: "conv4_19/x2/bn"
3006
+ scale_param {
3007
+ bias_term: true
3008
+ }
3009
+ }
3010
+ layer {
3011
+ name: "relu4_19/x2"
3012
+ type: "ReLU"
3013
+ bottom: "conv4_19/x2/bn"
3014
+ top: "conv4_19/x2/bn"
3015
+ }
3016
+ layer {
3017
+ name: "conv4_19/x2"
3018
+ type: "Convolution"
3019
+ bottom: "conv4_19/x2/bn"
3020
+ top: "conv4_19/x2"
3021
+ convolution_param {
3022
+ num_output: 32
3023
+ bias_term: false
3024
+ pad: 1
3025
+ kernel_size: 3
3026
+ }
3027
+ }
3028
+ layer {
3029
+ name: "concat_4_19"
3030
+ type: "Concat"
3031
+ bottom: "concat_4_18"
3032
+ bottom: "conv4_19/x2"
3033
+ top: "concat_4_19"
3034
+ }
3035
+ layer {
3036
+ name: "conv4_20/x1/bn"
3037
+ type: "BatchNorm"
3038
+ bottom: "concat_4_19"
3039
+ top: "conv4_20/x1/bn"
3040
+ batch_norm_param {
3041
+ eps: 1e-5
3042
+ }
3043
+ }
3044
+ layer {
3045
+ name: "conv4_20/x1/scale"
3046
+ type: "Scale"
3047
+ bottom: "conv4_20/x1/bn"
3048
+ top: "conv4_20/x1/bn"
3049
+ scale_param {
3050
+ bias_term: true
3051
+ }
3052
+ }
3053
+ layer {
3054
+ name: "relu4_20/x1"
3055
+ type: "ReLU"
3056
+ bottom: "conv4_20/x1/bn"
3057
+ top: "conv4_20/x1/bn"
3058
+ }
3059
+ layer {
3060
+ name: "conv4_20/x1"
3061
+ type: "Convolution"
3062
+ bottom: "conv4_20/x1/bn"
3063
+ top: "conv4_20/x1"
3064
+ convolution_param {
3065
+ num_output: 128
3066
+ bias_term: false
3067
+ kernel_size: 1
3068
+ }
3069
+ }
3070
+ layer {
3071
+ name: "conv4_20/x2/bn"
3072
+ type: "BatchNorm"
3073
+ bottom: "conv4_20/x1"
3074
+ top: "conv4_20/x2/bn"
3075
+ batch_norm_param {
3076
+ eps: 1e-5
3077
+ }
3078
+ }
3079
+ layer {
3080
+ name: "conv4_20/x2/scale"
3081
+ type: "Scale"
3082
+ bottom: "conv4_20/x2/bn"
3083
+ top: "conv4_20/x2/bn"
3084
+ scale_param {
3085
+ bias_term: true
3086
+ }
3087
+ }
3088
+ layer {
3089
+ name: "relu4_20/x2"
3090
+ type: "ReLU"
3091
+ bottom: "conv4_20/x2/bn"
3092
+ top: "conv4_20/x2/bn"
3093
+ }
3094
+ layer {
3095
+ name: "conv4_20/x2"
3096
+ type: "Convolution"
3097
+ bottom: "conv4_20/x2/bn"
3098
+ top: "conv4_20/x2"
3099
+ convolution_param {
3100
+ num_output: 32
3101
+ bias_term: false
3102
+ pad: 1
3103
+ kernel_size: 3
3104
+ }
3105
+ }
3106
+ layer {
3107
+ name: "concat_4_20"
3108
+ type: "Concat"
3109
+ bottom: "concat_4_19"
3110
+ bottom: "conv4_20/x2"
3111
+ top: "concat_4_20"
3112
+ }
3113
+ layer {
3114
+ name: "conv4_21/x1/bn"
3115
+ type: "BatchNorm"
3116
+ bottom: "concat_4_20"
3117
+ top: "conv4_21/x1/bn"
3118
+ batch_norm_param {
3119
+ eps: 1e-5
3120
+ }
3121
+ }
3122
+ layer {
3123
+ name: "conv4_21/x1/scale"
3124
+ type: "Scale"
3125
+ bottom: "conv4_21/x1/bn"
3126
+ top: "conv4_21/x1/bn"
3127
+ scale_param {
3128
+ bias_term: true
3129
+ }
3130
+ }
3131
+ layer {
3132
+ name: "relu4_21/x1"
3133
+ type: "ReLU"
3134
+ bottom: "conv4_21/x1/bn"
3135
+ top: "conv4_21/x1/bn"
3136
+ }
3137
+ layer {
3138
+ name: "conv4_21/x1"
3139
+ type: "Convolution"
3140
+ bottom: "conv4_21/x1/bn"
3141
+ top: "conv4_21/x1"
3142
+ convolution_param {
3143
+ num_output: 128
3144
+ bias_term: false
3145
+ kernel_size: 1
3146
+ }
3147
+ }
3148
+ layer {
3149
+ name: "conv4_21/x2/bn"
3150
+ type: "BatchNorm"
3151
+ bottom: "conv4_21/x1"
3152
+ top: "conv4_21/x2/bn"
3153
+ batch_norm_param {
3154
+ eps: 1e-5
3155
+ }
3156
+ }
3157
+ layer {
3158
+ name: "conv4_21/x2/scale"
3159
+ type: "Scale"
3160
+ bottom: "conv4_21/x2/bn"
3161
+ top: "conv4_21/x2/bn"
3162
+ scale_param {
3163
+ bias_term: true
3164
+ }
3165
+ }
3166
+ layer {
3167
+ name: "relu4_21/x2"
3168
+ type: "ReLU"
3169
+ bottom: "conv4_21/x2/bn"
3170
+ top: "conv4_21/x2/bn"
3171
+ }
3172
+ layer {
3173
+ name: "conv4_21/x2"
3174
+ type: "Convolution"
3175
+ bottom: "conv4_21/x2/bn"
3176
+ top: "conv4_21/x2"
3177
+ convolution_param {
3178
+ num_output: 32
3179
+ bias_term: false
3180
+ pad: 1
3181
+ kernel_size: 3
3182
+ }
3183
+ }
3184
+ layer {
3185
+ name: "concat_4_21"
3186
+ type: "Concat"
3187
+ bottom: "concat_4_20"
3188
+ bottom: "conv4_21/x2"
3189
+ top: "concat_4_21"
3190
+ }
3191
+ layer {
3192
+ name: "conv4_22/x1/bn"
3193
+ type: "BatchNorm"
3194
+ bottom: "concat_4_21"
3195
+ top: "conv4_22/x1/bn"
3196
+ batch_norm_param {
3197
+ eps: 1e-5
3198
+ }
3199
+ }
3200
+ layer {
3201
+ name: "conv4_22/x1/scale"
3202
+ type: "Scale"
3203
+ bottom: "conv4_22/x1/bn"
3204
+ top: "conv4_22/x1/bn"
3205
+ scale_param {
3206
+ bias_term: true
3207
+ }
3208
+ }
3209
+ layer {
3210
+ name: "relu4_22/x1"
3211
+ type: "ReLU"
3212
+ bottom: "conv4_22/x1/bn"
3213
+ top: "conv4_22/x1/bn"
3214
+ }
3215
+ layer {
3216
+ name: "conv4_22/x1"
3217
+ type: "Convolution"
3218
+ bottom: "conv4_22/x1/bn"
3219
+ top: "conv4_22/x1"
3220
+ convolution_param {
3221
+ num_output: 128
3222
+ bias_term: false
3223
+ kernel_size: 1
3224
+ }
3225
+ }
3226
+ layer {
3227
+ name: "conv4_22/x2/bn"
3228
+ type: "BatchNorm"
3229
+ bottom: "conv4_22/x1"
3230
+ top: "conv4_22/x2/bn"
3231
+ batch_norm_param {
3232
+ eps: 1e-5
3233
+ }
3234
+ }
3235
+ layer {
3236
+ name: "conv4_22/x2/scale"
3237
+ type: "Scale"
3238
+ bottom: "conv4_22/x2/bn"
3239
+ top: "conv4_22/x2/bn"
3240
+ scale_param {
3241
+ bias_term: true
3242
+ }
3243
+ }
3244
+ layer {
3245
+ name: "relu4_22/x2"
3246
+ type: "ReLU"
3247
+ bottom: "conv4_22/x2/bn"
3248
+ top: "conv4_22/x2/bn"
3249
+ }
3250
+ layer {
3251
+ name: "conv4_22/x2"
3252
+ type: "Convolution"
3253
+ bottom: "conv4_22/x2/bn"
3254
+ top: "conv4_22/x2"
3255
+ convolution_param {
3256
+ num_output: 32
3257
+ bias_term: false
3258
+ pad: 1
3259
+ kernel_size: 3
3260
+ }
3261
+ }
3262
+ layer {
3263
+ name: "concat_4_22"
3264
+ type: "Concat"
3265
+ bottom: "concat_4_21"
3266
+ bottom: "conv4_22/x2"
3267
+ top: "concat_4_22"
3268
+ }
3269
+ layer {
3270
+ name: "conv4_23/x1/bn"
3271
+ type: "BatchNorm"
3272
+ bottom: "concat_4_22"
3273
+ top: "conv4_23/x1/bn"
3274
+ batch_norm_param {
3275
+ eps: 1e-5
3276
+ }
3277
+ }
3278
+ layer {
3279
+ name: "conv4_23/x1/scale"
3280
+ type: "Scale"
3281
+ bottom: "conv4_23/x1/bn"
3282
+ top: "conv4_23/x1/bn"
3283
+ scale_param {
3284
+ bias_term: true
3285
+ }
3286
+ }
3287
+ layer {
3288
+ name: "relu4_23/x1"
3289
+ type: "ReLU"
3290
+ bottom: "conv4_23/x1/bn"
3291
+ top: "conv4_23/x1/bn"
3292
+ }
3293
+ layer {
3294
+ name: "conv4_23/x1"
3295
+ type: "Convolution"
3296
+ bottom: "conv4_23/x1/bn"
3297
+ top: "conv4_23/x1"
3298
+ convolution_param {
3299
+ num_output: 128
3300
+ bias_term: false
3301
+ kernel_size: 1
3302
+ }
3303
+ }
3304
+ layer {
3305
+ name: "conv4_23/x2/bn"
3306
+ type: "BatchNorm"
3307
+ bottom: "conv4_23/x1"
3308
+ top: "conv4_23/x2/bn"
3309
+ batch_norm_param {
3310
+ eps: 1e-5
3311
+ }
3312
+ }
3313
+ layer {
3314
+ name: "conv4_23/x2/scale"
3315
+ type: "Scale"
3316
+ bottom: "conv4_23/x2/bn"
3317
+ top: "conv4_23/x2/bn"
3318
+ scale_param {
3319
+ bias_term: true
3320
+ }
3321
+ }
3322
+ layer {
3323
+ name: "relu4_23/x2"
3324
+ type: "ReLU"
3325
+ bottom: "conv4_23/x2/bn"
3326
+ top: "conv4_23/x2/bn"
3327
+ }
3328
+ layer {
3329
+ name: "conv4_23/x2"
3330
+ type: "Convolution"
3331
+ bottom: "conv4_23/x2/bn"
3332
+ top: "conv4_23/x2"
3333
+ convolution_param {
3334
+ num_output: 32
3335
+ bias_term: false
3336
+ pad: 1
3337
+ kernel_size: 3
3338
+ }
3339
+ }
3340
+ layer {
3341
+ name: "concat_4_23"
3342
+ type: "Concat"
3343
+ bottom: "concat_4_22"
3344
+ bottom: "conv4_23/x2"
3345
+ top: "concat_4_23"
3346
+ }
3347
+ layer {
3348
+ name: "conv4_24/x1/bn"
3349
+ type: "BatchNorm"
3350
+ bottom: "concat_4_23"
3351
+ top: "conv4_24/x1/bn"
3352
+ batch_norm_param {
3353
+ eps: 1e-5
3354
+ }
3355
+ }
3356
+ layer {
3357
+ name: "conv4_24/x1/scale"
3358
+ type: "Scale"
3359
+ bottom: "conv4_24/x1/bn"
3360
+ top: "conv4_24/x1/bn"
3361
+ scale_param {
3362
+ bias_term: true
3363
+ }
3364
+ }
3365
+ layer {
3366
+ name: "relu4_24/x1"
3367
+ type: "ReLU"
3368
+ bottom: "conv4_24/x1/bn"
3369
+ top: "conv4_24/x1/bn"
3370
+ }
3371
+ layer {
3372
+ name: "conv4_24/x1"
3373
+ type: "Convolution"
3374
+ bottom: "conv4_24/x1/bn"
3375
+ top: "conv4_24/x1"
3376
+ convolution_param {
3377
+ num_output: 128
3378
+ bias_term: false
3379
+ kernel_size: 1
3380
+ }
3381
+ }
3382
+ layer {
3383
+ name: "conv4_24/x2/bn"
3384
+ type: "BatchNorm"
3385
+ bottom: "conv4_24/x1"
3386
+ top: "conv4_24/x2/bn"
3387
+ batch_norm_param {
3388
+ eps: 1e-5
3389
+ }
3390
+ }
3391
+ layer {
3392
+ name: "conv4_24/x2/scale"
3393
+ type: "Scale"
3394
+ bottom: "conv4_24/x2/bn"
3395
+ top: "conv4_24/x2/bn"
3396
+ scale_param {
3397
+ bias_term: true
3398
+ }
3399
+ }
3400
+ layer {
3401
+ name: "relu4_24/x2"
3402
+ type: "ReLU"
3403
+ bottom: "conv4_24/x2/bn"
3404
+ top: "conv4_24/x2/bn"
3405
+ }
3406
+ layer {
3407
+ name: "conv4_24/x2"
3408
+ type: "Convolution"
3409
+ bottom: "conv4_24/x2/bn"
3410
+ top: "conv4_24/x2"
3411
+ convolution_param {
3412
+ num_output: 32
3413
+ bias_term: false
3414
+ pad: 1
3415
+ kernel_size: 3
3416
+ }
3417
+ }
3418
+ layer {
3419
+ name: "concat_4_24"
3420
+ type: "Concat"
3421
+ bottom: "concat_4_23"
3422
+ bottom: "conv4_24/x2"
3423
+ top: "concat_4_24"
3424
+ }
3425
+ layer {
3426
+ name: "conv4_blk/bn"
3427
+ type: "BatchNorm"
3428
+ bottom: "concat_4_24"
3429
+ top: "conv4_blk/bn"
3430
+ batch_norm_param {
3431
+ eps: 1e-5
3432
+ }
3433
+ }
3434
+ layer {
3435
+ name: "conv4_blk/scale"
3436
+ type: "Scale"
3437
+ bottom: "conv4_blk/bn"
3438
+ top: "conv4_blk/bn"
3439
+ scale_param {
3440
+ bias_term: true
3441
+ }
3442
+ }
3443
+ layer {
3444
+ name: "relu4_blk"
3445
+ type: "ReLU"
3446
+ bottom: "conv4_blk/bn"
3447
+ top: "conv4_blk/bn"
3448
+ }
3449
+ layer {
3450
+ name: "conv4_blk"
3451
+ type: "Convolution"
3452
+ bottom: "conv4_blk/bn"
3453
+ top: "conv4_blk"
3454
+ convolution_param {
3455
+ num_output: 512
3456
+ bias_term: false
3457
+ kernel_size: 1
3458
+ }
3459
+ }
3460
+ layer {
3461
+ name: "pool4"
3462
+ type: "Pooling"
3463
+ bottom: "conv4_blk"
3464
+ top: "pool4"
3465
+ pooling_param {
3466
+ pool: AVE
3467
+ kernel_size: 2
3468
+ stride: 2
3469
+ }
3470
+ }
3471
+ layer {
3472
+ name: "conv5_1/x1/bn"
3473
+ type: "BatchNorm"
3474
+ bottom: "pool4"
3475
+ top: "conv5_1/x1/bn"
3476
+ batch_norm_param {
3477
+ eps: 1e-5
3478
+ }
3479
+ }
3480
+ layer {
3481
+ name: "conv5_1/x1/scale"
3482
+ type: "Scale"
3483
+ bottom: "conv5_1/x1/bn"
3484
+ top: "conv5_1/x1/bn"
3485
+ scale_param {
3486
+ bias_term: true
3487
+ }
3488
+ }
3489
+ layer {
3490
+ name: "relu5_1/x1"
3491
+ type: "ReLU"
3492
+ bottom: "conv5_1/x1/bn"
3493
+ top: "conv5_1/x1/bn"
3494
+ }
3495
+ layer {
3496
+ name: "conv5_1/x1"
3497
+ type: "Convolution"
3498
+ bottom: "conv5_1/x1/bn"
3499
+ top: "conv5_1/x1"
3500
+ convolution_param {
3501
+ num_output: 128
3502
+ bias_term: false
3503
+ kernel_size: 1
3504
+ }
3505
+ }
3506
+ layer {
3507
+ name: "conv5_1/x2/bn"
3508
+ type: "BatchNorm"
3509
+ bottom: "conv5_1/x1"
3510
+ top: "conv5_1/x2/bn"
3511
+ batch_norm_param {
3512
+ eps: 1e-5
3513
+ }
3514
+ }
3515
+ layer {
3516
+ name: "conv5_1/x2/scale"
3517
+ type: "Scale"
3518
+ bottom: "conv5_1/x2/bn"
3519
+ top: "conv5_1/x2/bn"
3520
+ scale_param {
3521
+ bias_term: true
3522
+ }
3523
+ }
3524
+ layer {
3525
+ name: "relu5_1/x2"
3526
+ type: "ReLU"
3527
+ bottom: "conv5_1/x2/bn"
3528
+ top: "conv5_1/x2/bn"
3529
+ }
3530
+ layer {
3531
+ name: "conv5_1/x2"
3532
+ type: "Convolution"
3533
+ bottom: "conv5_1/x2/bn"
3534
+ top: "conv5_1/x2"
3535
+ convolution_param {
3536
+ num_output: 32
3537
+ bias_term: false
3538
+ pad: 1
3539
+ kernel_size: 3
3540
+ }
3541
+ }
3542
+ layer {
3543
+ name: "concat_5_1"
3544
+ type: "Concat"
3545
+ bottom: "pool4"
3546
+ bottom: "conv5_1/x2"
3547
+ top: "concat_5_1"
3548
+ }
3549
+ layer {
3550
+ name: "conv5_2/x1/bn"
3551
+ type: "BatchNorm"
3552
+ bottom: "concat_5_1"
3553
+ top: "conv5_2/x1/bn"
3554
+ batch_norm_param {
3555
+ eps: 1e-5
3556
+ }
3557
+ }
3558
+ layer {
3559
+ name: "conv5_2/x1/scale"
3560
+ type: "Scale"
3561
+ bottom: "conv5_2/x1/bn"
3562
+ top: "conv5_2/x1/bn"
3563
+ scale_param {
3564
+ bias_term: true
3565
+ }
3566
+ }
3567
+ layer {
3568
+ name: "relu5_2/x1"
3569
+ type: "ReLU"
3570
+ bottom: "conv5_2/x1/bn"
3571
+ top: "conv5_2/x1/bn"
3572
+ }
3573
+ layer {
3574
+ name: "conv5_2/x1"
3575
+ type: "Convolution"
3576
+ bottom: "conv5_2/x1/bn"
3577
+ top: "conv5_2/x1"
3578
+ convolution_param {
3579
+ num_output: 128
3580
+ bias_term: false
3581
+ kernel_size: 1
3582
+ }
3583
+ }
3584
+ layer {
3585
+ name: "conv5_2/x2/bn"
3586
+ type: "BatchNorm"
3587
+ bottom: "conv5_2/x1"
3588
+ top: "conv5_2/x2/bn"
3589
+ batch_norm_param {
3590
+ eps: 1e-5
3591
+ }
3592
+ }
3593
+ layer {
3594
+ name: "conv5_2/x2/scale"
3595
+ type: "Scale"
3596
+ bottom: "conv5_2/x2/bn"
3597
+ top: "conv5_2/x2/bn"
3598
+ scale_param {
3599
+ bias_term: true
3600
+ }
3601
+ }
3602
+ layer {
3603
+ name: "relu5_2/x2"
3604
+ type: "ReLU"
3605
+ bottom: "conv5_2/x2/bn"
3606
+ top: "conv5_2/x2/bn"
3607
+ }
3608
+ layer {
3609
+ name: "conv5_2/x2"
3610
+ type: "Convolution"
3611
+ bottom: "conv5_2/x2/bn"
3612
+ top: "conv5_2/x2"
3613
+ convolution_param {
3614
+ num_output: 32
3615
+ bias_term: false
3616
+ pad: 1
3617
+ kernel_size: 3
3618
+ }
3619
+ }
3620
+ layer {
3621
+ name: "concat_5_2"
3622
+ type: "Concat"
3623
+ bottom: "concat_5_1"
3624
+ bottom: "conv5_2/x2"
3625
+ top: "concat_5_2"
3626
+ }
3627
+ layer {
3628
+ name: "conv5_3/x1/bn"
3629
+ type: "BatchNorm"
3630
+ bottom: "concat_5_2"
3631
+ top: "conv5_3/x1/bn"
3632
+ batch_norm_param {
3633
+ eps: 1e-5
3634
+ }
3635
+ }
3636
+ layer {
3637
+ name: "conv5_3/x1/scale"
3638
+ type: "Scale"
3639
+ bottom: "conv5_3/x1/bn"
3640
+ top: "conv5_3/x1/bn"
3641
+ scale_param {
3642
+ bias_term: true
3643
+ }
3644
+ }
3645
+ layer {
3646
+ name: "relu5_3/x1"
3647
+ type: "ReLU"
3648
+ bottom: "conv5_3/x1/bn"
3649
+ top: "conv5_3/x1/bn"
3650
+ }
3651
+ layer {
3652
+ name: "conv5_3/x1"
3653
+ type: "Convolution"
3654
+ bottom: "conv5_3/x1/bn"
3655
+ top: "conv5_3/x1"
3656
+ convolution_param {
3657
+ num_output: 128
3658
+ bias_term: false
3659
+ kernel_size: 1
3660
+ }
3661
+ }
3662
+ layer {
3663
+ name: "conv5_3/x2/bn"
3664
+ type: "BatchNorm"
3665
+ bottom: "conv5_3/x1"
3666
+ top: "conv5_3/x2/bn"
3667
+ batch_norm_param {
3668
+ eps: 1e-5
3669
+ }
3670
+ }
3671
+ layer {
3672
+ name: "conv5_3/x2/scale"
3673
+ type: "Scale"
3674
+ bottom: "conv5_3/x2/bn"
3675
+ top: "conv5_3/x2/bn"
3676
+ scale_param {
3677
+ bias_term: true
3678
+ }
3679
+ }
3680
+ layer {
3681
+ name: "relu5_3/x2"
3682
+ type: "ReLU"
3683
+ bottom: "conv5_3/x2/bn"
3684
+ top: "conv5_3/x2/bn"
3685
+ }
3686
+ layer {
3687
+ name: "conv5_3/x2"
3688
+ type: "Convolution"
3689
+ bottom: "conv5_3/x2/bn"
3690
+ top: "conv5_3/x2"
3691
+ convolution_param {
3692
+ num_output: 32
3693
+ bias_term: false
3694
+ pad: 1
3695
+ kernel_size: 3
3696
+ }
3697
+ }
3698
+ layer {
3699
+ name: "concat_5_3"
3700
+ type: "Concat"
3701
+ bottom: "concat_5_2"
3702
+ bottom: "conv5_3/x2"
3703
+ top: "concat_5_3"
3704
+ }
3705
+ layer {
3706
+ name: "conv5_4/x1/bn"
3707
+ type: "BatchNorm"
3708
+ bottom: "concat_5_3"
3709
+ top: "conv5_4/x1/bn"
3710
+ batch_norm_param {
3711
+ eps: 1e-5
3712
+ }
3713
+ }
3714
+ layer {
3715
+ name: "conv5_4/x1/scale"
3716
+ type: "Scale"
3717
+ bottom: "conv5_4/x1/bn"
3718
+ top: "conv5_4/x1/bn"
3719
+ scale_param {
3720
+ bias_term: true
3721
+ }
3722
+ }
3723
+ layer {
3724
+ name: "relu5_4/x1"
3725
+ type: "ReLU"
3726
+ bottom: "conv5_4/x1/bn"
3727
+ top: "conv5_4/x1/bn"
3728
+ }
3729
+ layer {
3730
+ name: "conv5_4/x1"
3731
+ type: "Convolution"
3732
+ bottom: "conv5_4/x1/bn"
3733
+ top: "conv5_4/x1"
3734
+ convolution_param {
3735
+ num_output: 128
3736
+ bias_term: false
3737
+ kernel_size: 1
3738
+ }
3739
+ }
3740
+ layer {
3741
+ name: "conv5_4/x2/bn"
3742
+ type: "BatchNorm"
3743
+ bottom: "conv5_4/x1"
3744
+ top: "conv5_4/x2/bn"
3745
+ batch_norm_param {
3746
+ eps: 1e-5
3747
+ }
3748
+ }
3749
+ layer {
3750
+ name: "conv5_4/x2/scale"
3751
+ type: "Scale"
3752
+ bottom: "conv5_4/x2/bn"
3753
+ top: "conv5_4/x2/bn"
3754
+ scale_param {
3755
+ bias_term: true
3756
+ }
3757
+ }
3758
+ layer {
3759
+ name: "relu5_4/x2"
3760
+ type: "ReLU"
3761
+ bottom: "conv5_4/x2/bn"
3762
+ top: "conv5_4/x2/bn"
3763
+ }
3764
+ layer {
3765
+ name: "conv5_4/x2"
3766
+ type: "Convolution"
3767
+ bottom: "conv5_4/x2/bn"
3768
+ top: "conv5_4/x2"
3769
+ convolution_param {
3770
+ num_output: 32
3771
+ bias_term: false
3772
+ pad: 1
3773
+ kernel_size: 3
3774
+ }
3775
+ }
3776
+ layer {
3777
+ name: "concat_5_4"
3778
+ type: "Concat"
3779
+ bottom: "concat_5_3"
3780
+ bottom: "conv5_4/x2"
3781
+ top: "concat_5_4"
3782
+ }
3783
+ layer {
3784
+ name: "conv5_5/x1/bn"
3785
+ type: "BatchNorm"
3786
+ bottom: "concat_5_4"
3787
+ top: "conv5_5/x1/bn"
3788
+ batch_norm_param {
3789
+ eps: 1e-5
3790
+ }
3791
+ }
3792
+ layer {
3793
+ name: "conv5_5/x1/scale"
3794
+ type: "Scale"
3795
+ bottom: "conv5_5/x1/bn"
3796
+ top: "conv5_5/x1/bn"
3797
+ scale_param {
3798
+ bias_term: true
3799
+ }
3800
+ }
3801
+ layer {
3802
+ name: "relu5_5/x1"
3803
+ type: "ReLU"
3804
+ bottom: "conv5_5/x1/bn"
3805
+ top: "conv5_5/x1/bn"
3806
+ }
3807
+ layer {
3808
+ name: "conv5_5/x1"
3809
+ type: "Convolution"
3810
+ bottom: "conv5_5/x1/bn"
3811
+ top: "conv5_5/x1"
3812
+ convolution_param {
3813
+ num_output: 128
3814
+ bias_term: false
3815
+ kernel_size: 1
3816
+ }
3817
+ }
3818
+ layer {
3819
+ name: "conv5_5/x2/bn"
3820
+ type: "BatchNorm"
3821
+ bottom: "conv5_5/x1"
3822
+ top: "conv5_5/x2/bn"
3823
+ batch_norm_param {
3824
+ eps: 1e-5
3825
+ }
3826
+ }
3827
+ layer {
3828
+ name: "conv5_5/x2/scale"
3829
+ type: "Scale"
3830
+ bottom: "conv5_5/x2/bn"
3831
+ top: "conv5_5/x2/bn"
3832
+ scale_param {
3833
+ bias_term: true
3834
+ }
3835
+ }
3836
+ layer {
3837
+ name: "relu5_5/x2"
3838
+ type: "ReLU"
3839
+ bottom: "conv5_5/x2/bn"
3840
+ top: "conv5_5/x2/bn"
3841
+ }
3842
+ layer {
3843
+ name: "conv5_5/x2"
3844
+ type: "Convolution"
3845
+ bottom: "conv5_5/x2/bn"
3846
+ top: "conv5_5/x2"
3847
+ convolution_param {
3848
+ num_output: 32
3849
+ bias_term: false
3850
+ pad: 1
3851
+ kernel_size: 3
3852
+ }
3853
+ }
3854
+ layer {
3855
+ name: "concat_5_5"
3856
+ type: "Concat"
3857
+ bottom: "concat_5_4"
3858
+ bottom: "conv5_5/x2"
3859
+ top: "concat_5_5"
3860
+ }
3861
+ layer {
3862
+ name: "conv5_6/x1/bn"
3863
+ type: "BatchNorm"
3864
+ bottom: "concat_5_5"
3865
+ top: "conv5_6/x1/bn"
3866
+ batch_norm_param {
3867
+ eps: 1e-5
3868
+ }
3869
+ }
3870
+ layer {
3871
+ name: "conv5_6/x1/scale"
3872
+ type: "Scale"
3873
+ bottom: "conv5_6/x1/bn"
3874
+ top: "conv5_6/x1/bn"
3875
+ scale_param {
3876
+ bias_term: true
3877
+ }
3878
+ }
3879
+ layer {
3880
+ name: "relu5_6/x1"
3881
+ type: "ReLU"
3882
+ bottom: "conv5_6/x1/bn"
3883
+ top: "conv5_6/x1/bn"
3884
+ }
3885
+ layer {
3886
+ name: "conv5_6/x1"
3887
+ type: "Convolution"
3888
+ bottom: "conv5_6/x1/bn"
3889
+ top: "conv5_6/x1"
3890
+ convolution_param {
3891
+ num_output: 128
3892
+ bias_term: false
3893
+ kernel_size: 1
3894
+ }
3895
+ }
3896
+ layer {
3897
+ name: "conv5_6/x2/bn"
3898
+ type: "BatchNorm"
3899
+ bottom: "conv5_6/x1"
3900
+ top: "conv5_6/x2/bn"
3901
+ batch_norm_param {
3902
+ eps: 1e-5
3903
+ }
3904
+ }
3905
+ layer {
3906
+ name: "conv5_6/x2/scale"
3907
+ type: "Scale"
3908
+ bottom: "conv5_6/x2/bn"
3909
+ top: "conv5_6/x2/bn"
3910
+ scale_param {
3911
+ bias_term: true
3912
+ }
3913
+ }
3914
+ layer {
3915
+ name: "relu5_6/x2"
3916
+ type: "ReLU"
3917
+ bottom: "conv5_6/x2/bn"
3918
+ top: "conv5_6/x2/bn"
3919
+ }
3920
+ layer {
3921
+ name: "conv5_6/x2"
3922
+ type: "Convolution"
3923
+ bottom: "conv5_6/x2/bn"
3924
+ top: "conv5_6/x2"
3925
+ convolution_param {
3926
+ num_output: 32
3927
+ bias_term: false
3928
+ pad: 1
3929
+ kernel_size: 3
3930
+ }
3931
+ }
3932
+ layer {
3933
+ name: "concat_5_6"
3934
+ type: "Concat"
3935
+ bottom: "concat_5_5"
3936
+ bottom: "conv5_6/x2"
3937
+ top: "concat_5_6"
3938
+ }
3939
+ layer {
3940
+ name: "conv5_7/x1/bn"
3941
+ type: "BatchNorm"
3942
+ bottom: "concat_5_6"
3943
+ top: "conv5_7/x1/bn"
3944
+ batch_norm_param {
3945
+ eps: 1e-5
3946
+ }
3947
+ }
3948
+ layer {
3949
+ name: "conv5_7/x1/scale"
3950
+ type: "Scale"
3951
+ bottom: "conv5_7/x1/bn"
3952
+ top: "conv5_7/x1/bn"
3953
+ scale_param {
3954
+ bias_term: true
3955
+ }
3956
+ }
3957
+ layer {
3958
+ name: "relu5_7/x1"
3959
+ type: "ReLU"
3960
+ bottom: "conv5_7/x1/bn"
3961
+ top: "conv5_7/x1/bn"
3962
+ }
3963
+ layer {
3964
+ name: "conv5_7/x1"
3965
+ type: "Convolution"
3966
+ bottom: "conv5_7/x1/bn"
3967
+ top: "conv5_7/x1"
3968
+ convolution_param {
3969
+ num_output: 128
3970
+ bias_term: false
3971
+ kernel_size: 1
3972
+ }
3973
+ }
3974
+ layer {
3975
+ name: "conv5_7/x2/bn"
3976
+ type: "BatchNorm"
3977
+ bottom: "conv5_7/x1"
3978
+ top: "conv5_7/x2/bn"
3979
+ batch_norm_param {
3980
+ eps: 1e-5
3981
+ }
3982
+ }
3983
+ layer {
3984
+ name: "conv5_7/x2/scale"
3985
+ type: "Scale"
3986
+ bottom: "conv5_7/x2/bn"
3987
+ top: "conv5_7/x2/bn"
3988
+ scale_param {
3989
+ bias_term: true
3990
+ }
3991
+ }
3992
+ layer {
3993
+ name: "relu5_7/x2"
3994
+ type: "ReLU"
3995
+ bottom: "conv5_7/x2/bn"
3996
+ top: "conv5_7/x2/bn"
3997
+ }
3998
+ layer {
3999
+ name: "conv5_7/x2"
4000
+ type: "Convolution"
4001
+ bottom: "conv5_7/x2/bn"
4002
+ top: "conv5_7/x2"
4003
+ convolution_param {
4004
+ num_output: 32
4005
+ bias_term: false
4006
+ pad: 1
4007
+ kernel_size: 3
4008
+ }
4009
+ }
4010
+ layer {
4011
+ name: "concat_5_7"
4012
+ type: "Concat"
4013
+ bottom: "concat_5_6"
4014
+ bottom: "conv5_7/x2"
4015
+ top: "concat_5_7"
4016
+ }
4017
+ layer {
4018
+ name: "conv5_8/x1/bn"
4019
+ type: "BatchNorm"
4020
+ bottom: "concat_5_7"
4021
+ top: "conv5_8/x1/bn"
4022
+ batch_norm_param {
4023
+ eps: 1e-5
4024
+ }
4025
+ }
4026
+ layer {
4027
+ name: "conv5_8/x1/scale"
4028
+ type: "Scale"
4029
+ bottom: "conv5_8/x1/bn"
4030
+ top: "conv5_8/x1/bn"
4031
+ scale_param {
4032
+ bias_term: true
4033
+ }
4034
+ }
4035
+ layer {
4036
+ name: "relu5_8/x1"
4037
+ type: "ReLU"
4038
+ bottom: "conv5_8/x1/bn"
4039
+ top: "conv5_8/x1/bn"
4040
+ }
4041
+ layer {
4042
+ name: "conv5_8/x1"
4043
+ type: "Convolution"
4044
+ bottom: "conv5_8/x1/bn"
4045
+ top: "conv5_8/x1"
4046
+ convolution_param {
4047
+ num_output: 128
4048
+ bias_term: false
4049
+ kernel_size: 1
4050
+ }
4051
+ }
4052
+ layer {
4053
+ name: "conv5_8/x2/bn"
4054
+ type: "BatchNorm"
4055
+ bottom: "conv5_8/x1"
4056
+ top: "conv5_8/x2/bn"
4057
+ batch_norm_param {
4058
+ eps: 1e-5
4059
+ }
4060
+ }
4061
+ layer {
4062
+ name: "conv5_8/x2/scale"
4063
+ type: "Scale"
4064
+ bottom: "conv5_8/x2/bn"
4065
+ top: "conv5_8/x2/bn"
4066
+ scale_param {
4067
+ bias_term: true
4068
+ }
4069
+ }
4070
+ layer {
4071
+ name: "relu5_8/x2"
4072
+ type: "ReLU"
4073
+ bottom: "conv5_8/x2/bn"
4074
+ top: "conv5_8/x2/bn"
4075
+ }
4076
+ layer {
4077
+ name: "conv5_8/x2"
4078
+ type: "Convolution"
4079
+ bottom: "conv5_8/x2/bn"
4080
+ top: "conv5_8/x2"
4081
+ convolution_param {
4082
+ num_output: 32
4083
+ bias_term: false
4084
+ pad: 1
4085
+ kernel_size: 3
4086
+ }
4087
+ }
4088
+ layer {
4089
+ name: "concat_5_8"
4090
+ type: "Concat"
4091
+ bottom: "concat_5_7"
4092
+ bottom: "conv5_8/x2"
4093
+ top: "concat_5_8"
4094
+ }
4095
+ layer {
4096
+ name: "conv5_9/x1/bn"
4097
+ type: "BatchNorm"
4098
+ bottom: "concat_5_8"
4099
+ top: "conv5_9/x1/bn"
4100
+ batch_norm_param {
4101
+ eps: 1e-5
4102
+ }
4103
+ }
4104
+ layer {
4105
+ name: "conv5_9/x1/scale"
4106
+ type: "Scale"
4107
+ bottom: "conv5_9/x1/bn"
4108
+ top: "conv5_9/x1/bn"
4109
+ scale_param {
4110
+ bias_term: true
4111
+ }
4112
+ }
4113
+ layer {
4114
+ name: "relu5_9/x1"
4115
+ type: "ReLU"
4116
+ bottom: "conv5_9/x1/bn"
4117
+ top: "conv5_9/x1/bn"
4118
+ }
4119
+ layer {
4120
+ name: "conv5_9/x1"
4121
+ type: "Convolution"
4122
+ bottom: "conv5_9/x1/bn"
4123
+ top: "conv5_9/x1"
4124
+ convolution_param {
4125
+ num_output: 128
4126
+ bias_term: false
4127
+ kernel_size: 1
4128
+ }
4129
+ }
4130
+ layer {
4131
+ name: "conv5_9/x2/bn"
4132
+ type: "BatchNorm"
4133
+ bottom: "conv5_9/x1"
4134
+ top: "conv5_9/x2/bn"
4135
+ batch_norm_param {
4136
+ eps: 1e-5
4137
+ }
4138
+ }
4139
+ layer {
4140
+ name: "conv5_9/x2/scale"
4141
+ type: "Scale"
4142
+ bottom: "conv5_9/x2/bn"
4143
+ top: "conv5_9/x2/bn"
4144
+ scale_param {
4145
+ bias_term: true
4146
+ }
4147
+ }
4148
+ layer {
4149
+ name: "relu5_9/x2"
4150
+ type: "ReLU"
4151
+ bottom: "conv5_9/x2/bn"
4152
+ top: "conv5_9/x2/bn"
4153
+ }
4154
+ layer {
4155
+ name: "conv5_9/x2"
4156
+ type: "Convolution"
4157
+ bottom: "conv5_9/x2/bn"
4158
+ top: "conv5_9/x2"
4159
+ convolution_param {
4160
+ num_output: 32
4161
+ bias_term: false
4162
+ pad: 1
4163
+ kernel_size: 3
4164
+ }
4165
+ }
4166
+ layer {
4167
+ name: "concat_5_9"
4168
+ type: "Concat"
4169
+ bottom: "concat_5_8"
4170
+ bottom: "conv5_9/x2"
4171
+ top: "concat_5_9"
4172
+ }
4173
+ layer {
4174
+ name: "conv5_10/x1/bn"
4175
+ type: "BatchNorm"
4176
+ bottom: "concat_5_9"
4177
+ top: "conv5_10/x1/bn"
4178
+ batch_norm_param {
4179
+ eps: 1e-5
4180
+ }
4181
+ }
4182
+ layer {
4183
+ name: "conv5_10/x1/scale"
4184
+ type: "Scale"
4185
+ bottom: "conv5_10/x1/bn"
4186
+ top: "conv5_10/x1/bn"
4187
+ scale_param {
4188
+ bias_term: true
4189
+ }
4190
+ }
4191
+ layer {
4192
+ name: "relu5_10/x1"
4193
+ type: "ReLU"
4194
+ bottom: "conv5_10/x1/bn"
4195
+ top: "conv5_10/x1/bn"
4196
+ }
4197
+ layer {
4198
+ name: "conv5_10/x1"
4199
+ type: "Convolution"
4200
+ bottom: "conv5_10/x1/bn"
4201
+ top: "conv5_10/x1"
4202
+ convolution_param {
4203
+ num_output: 128
4204
+ bias_term: false
4205
+ kernel_size: 1
4206
+ }
4207
+ }
4208
+ layer {
4209
+ name: "conv5_10/x2/bn"
4210
+ type: "BatchNorm"
4211
+ bottom: "conv5_10/x1"
4212
+ top: "conv5_10/x2/bn"
4213
+ batch_norm_param {
4214
+ eps: 1e-5
4215
+ }
4216
+ }
4217
+ layer {
4218
+ name: "conv5_10/x2/scale"
4219
+ type: "Scale"
4220
+ bottom: "conv5_10/x2/bn"
4221
+ top: "conv5_10/x2/bn"
4222
+ scale_param {
4223
+ bias_term: true
4224
+ }
4225
+ }
4226
+ layer {
4227
+ name: "relu5_10/x2"
4228
+ type: "ReLU"
4229
+ bottom: "conv5_10/x2/bn"
4230
+ top: "conv5_10/x2/bn"
4231
+ }
4232
+ layer {
4233
+ name: "conv5_10/x2"
4234
+ type: "Convolution"
4235
+ bottom: "conv5_10/x2/bn"
4236
+ top: "conv5_10/x2"
4237
+ convolution_param {
4238
+ num_output: 32
4239
+ bias_term: false
4240
+ pad: 1
4241
+ kernel_size: 3
4242
+ }
4243
+ }
4244
+ layer {
4245
+ name: "concat_5_10"
4246
+ type: "Concat"
4247
+ bottom: "concat_5_9"
4248
+ bottom: "conv5_10/x2"
4249
+ top: "concat_5_10"
4250
+ }
4251
+ layer {
4252
+ name: "conv5_11/x1/bn"
4253
+ type: "BatchNorm"
4254
+ bottom: "concat_5_10"
4255
+ top: "conv5_11/x1/bn"
4256
+ batch_norm_param {
4257
+ eps: 1e-5
4258
+ }
4259
+ }
4260
+ layer {
4261
+ name: "conv5_11/x1/scale"
4262
+ type: "Scale"
4263
+ bottom: "conv5_11/x1/bn"
4264
+ top: "conv5_11/x1/bn"
4265
+ scale_param {
4266
+ bias_term: true
4267
+ }
4268
+ }
4269
+ layer {
4270
+ name: "relu5_11/x1"
4271
+ type: "ReLU"
4272
+ bottom: "conv5_11/x1/bn"
4273
+ top: "conv5_11/x1/bn"
4274
+ }
4275
+ layer {
4276
+ name: "conv5_11/x1"
4277
+ type: "Convolution"
4278
+ bottom: "conv5_11/x1/bn"
4279
+ top: "conv5_11/x1"
4280
+ convolution_param {
4281
+ num_output: 128
4282
+ bias_term: false
4283
+ kernel_size: 1
4284
+ }
4285
+ }
4286
+ layer {
4287
+ name: "conv5_11/x2/bn"
4288
+ type: "BatchNorm"
4289
+ bottom: "conv5_11/x1"
4290
+ top: "conv5_11/x2/bn"
4291
+ batch_norm_param {
4292
+ eps: 1e-5
4293
+ }
4294
+ }
4295
+ layer {
4296
+ name: "conv5_11/x2/scale"
4297
+ type: "Scale"
4298
+ bottom: "conv5_11/x2/bn"
4299
+ top: "conv5_11/x2/bn"
4300
+ scale_param {
4301
+ bias_term: true
4302
+ }
4303
+ }
4304
+ layer {
4305
+ name: "relu5_11/x2"
4306
+ type: "ReLU"
4307
+ bottom: "conv5_11/x2/bn"
4308
+ top: "conv5_11/x2/bn"
4309
+ }
4310
+ layer {
4311
+ name: "conv5_11/x2"
4312
+ type: "Convolution"
4313
+ bottom: "conv5_11/x2/bn"
4314
+ top: "conv5_11/x2"
4315
+ convolution_param {
4316
+ num_output: 32
4317
+ bias_term: false
4318
+ pad: 1
4319
+ kernel_size: 3
4320
+ }
4321
+ }
4322
+ layer {
4323
+ name: "concat_5_11"
4324
+ type: "Concat"
4325
+ bottom: "concat_5_10"
4326
+ bottom: "conv5_11/x2"
4327
+ top: "concat_5_11"
4328
+ }
4329
+ layer {
4330
+ name: "conv5_12/x1/bn"
4331
+ type: "BatchNorm"
4332
+ bottom: "concat_5_11"
4333
+ top: "conv5_12/x1/bn"
4334
+ batch_norm_param {
4335
+ eps: 1e-5
4336
+ }
4337
+ }
4338
+ layer {
4339
+ name: "conv5_12/x1/scale"
4340
+ type: "Scale"
4341
+ bottom: "conv5_12/x1/bn"
4342
+ top: "conv5_12/x1/bn"
4343
+ scale_param {
4344
+ bias_term: true
4345
+ }
4346
+ }
4347
+ layer {
4348
+ name: "relu5_12/x1"
4349
+ type: "ReLU"
4350
+ bottom: "conv5_12/x1/bn"
4351
+ top: "conv5_12/x1/bn"
4352
+ }
4353
+ layer {
4354
+ name: "conv5_12/x1"
4355
+ type: "Convolution"
4356
+ bottom: "conv5_12/x1/bn"
4357
+ top: "conv5_12/x1"
4358
+ convolution_param {
4359
+ num_output: 128
4360
+ bias_term: false
4361
+ kernel_size: 1
4362
+ }
4363
+ }
4364
+ layer {
4365
+ name: "conv5_12/x2/bn"
4366
+ type: "BatchNorm"
4367
+ bottom: "conv5_12/x1"
4368
+ top: "conv5_12/x2/bn"
4369
+ batch_norm_param {
4370
+ eps: 1e-5
4371
+ }
4372
+ }
4373
+ layer {
4374
+ name: "conv5_12/x2/scale"
4375
+ type: "Scale"
4376
+ bottom: "conv5_12/x2/bn"
4377
+ top: "conv5_12/x2/bn"
4378
+ scale_param {
4379
+ bias_term: true
4380
+ }
4381
+ }
4382
+ layer {
4383
+ name: "relu5_12/x2"
4384
+ type: "ReLU"
4385
+ bottom: "conv5_12/x2/bn"
4386
+ top: "conv5_12/x2/bn"
4387
+ }
4388
+ layer {
4389
+ name: "conv5_12/x2"
4390
+ type: "Convolution"
4391
+ bottom: "conv5_12/x2/bn"
4392
+ top: "conv5_12/x2"
4393
+ convolution_param {
4394
+ num_output: 32
4395
+ bias_term: false
4396
+ pad: 1
4397
+ kernel_size: 3
4398
+ }
4399
+ }
4400
+ layer {
4401
+ name: "concat_5_12"
4402
+ type: "Concat"
4403
+ bottom: "concat_5_11"
4404
+ bottom: "conv5_12/x2"
4405
+ top: "concat_5_12"
4406
+ }
4407
+ layer {
4408
+ name: "conv5_13/x1/bn"
4409
+ type: "BatchNorm"
4410
+ bottom: "concat_5_12"
4411
+ top: "conv5_13/x1/bn"
4412
+ batch_norm_param {
4413
+ eps: 1e-5
4414
+ }
4415
+ }
4416
+ layer {
4417
+ name: "conv5_13/x1/scale"
4418
+ type: "Scale"
4419
+ bottom: "conv5_13/x1/bn"
4420
+ top: "conv5_13/x1/bn"
4421
+ scale_param {
4422
+ bias_term: true
4423
+ }
4424
+ }
4425
+ layer {
4426
+ name: "relu5_13/x1"
4427
+ type: "ReLU"
4428
+ bottom: "conv5_13/x1/bn"
4429
+ top: "conv5_13/x1/bn"
4430
+ }
4431
+ layer {
4432
+ name: "conv5_13/x1"
4433
+ type: "Convolution"
4434
+ bottom: "conv5_13/x1/bn"
4435
+ top: "conv5_13/x1"
4436
+ convolution_param {
4437
+ num_output: 128
4438
+ bias_term: false
4439
+ kernel_size: 1
4440
+ }
4441
+ }
4442
+ layer {
4443
+ name: "conv5_13/x2/bn"
4444
+ type: "BatchNorm"
4445
+ bottom: "conv5_13/x1"
4446
+ top: "conv5_13/x2/bn"
4447
+ batch_norm_param {
4448
+ eps: 1e-5
4449
+ }
4450
+ }
4451
+ layer {
4452
+ name: "conv5_13/x2/scale"
4453
+ type: "Scale"
4454
+ bottom: "conv5_13/x2/bn"
4455
+ top: "conv5_13/x2/bn"
4456
+ scale_param {
4457
+ bias_term: true
4458
+ }
4459
+ }
4460
+ layer {
4461
+ name: "relu5_13/x2"
4462
+ type: "ReLU"
4463
+ bottom: "conv5_13/x2/bn"
4464
+ top: "conv5_13/x2/bn"
4465
+ }
4466
+ layer {
4467
+ name: "conv5_13/x2"
4468
+ type: "Convolution"
4469
+ bottom: "conv5_13/x2/bn"
4470
+ top: "conv5_13/x2"
4471
+ convolution_param {
4472
+ num_output: 32
4473
+ bias_term: false
4474
+ pad: 1
4475
+ kernel_size: 3
4476
+ }
4477
+ }
4478
+ layer {
4479
+ name: "concat_5_13"
4480
+ type: "Concat"
4481
+ bottom: "concat_5_12"
4482
+ bottom: "conv5_13/x2"
4483
+ top: "concat_5_13"
4484
+ }
4485
+ layer {
4486
+ name: "conv5_14/x1/bn"
4487
+ type: "BatchNorm"
4488
+ bottom: "concat_5_13"
4489
+ top: "conv5_14/x1/bn"
4490
+ batch_norm_param {
4491
+ eps: 1e-5
4492
+ }
4493
+ }
4494
+ layer {
4495
+ name: "conv5_14/x1/scale"
4496
+ type: "Scale"
4497
+ bottom: "conv5_14/x1/bn"
4498
+ top: "conv5_14/x1/bn"
4499
+ scale_param {
4500
+ bias_term: true
4501
+ }
4502
+ }
4503
+ layer {
4504
+ name: "relu5_14/x1"
4505
+ type: "ReLU"
4506
+ bottom: "conv5_14/x1/bn"
4507
+ top: "conv5_14/x1/bn"
4508
+ }
4509
+ layer {
4510
+ name: "conv5_14/x1"
4511
+ type: "Convolution"
4512
+ bottom: "conv5_14/x1/bn"
4513
+ top: "conv5_14/x1"
4514
+ convolution_param {
4515
+ num_output: 128
4516
+ bias_term: false
4517
+ kernel_size: 1
4518
+ }
4519
+ }
4520
+ layer {
4521
+ name: "conv5_14/x2/bn"
4522
+ type: "BatchNorm"
4523
+ bottom: "conv5_14/x1"
4524
+ top: "conv5_14/x2/bn"
4525
+ batch_norm_param {
4526
+ eps: 1e-5
4527
+ }
4528
+ }
4529
+ layer {
4530
+ name: "conv5_14/x2/scale"
4531
+ type: "Scale"
4532
+ bottom: "conv5_14/x2/bn"
4533
+ top: "conv5_14/x2/bn"
4534
+ scale_param {
4535
+ bias_term: true
4536
+ }
4537
+ }
4538
+ layer {
4539
+ name: "relu5_14/x2"
4540
+ type: "ReLU"
4541
+ bottom: "conv5_14/x2/bn"
4542
+ top: "conv5_14/x2/bn"
4543
+ }
4544
+ layer {
4545
+ name: "conv5_14/x2"
4546
+ type: "Convolution"
4547
+ bottom: "conv5_14/x2/bn"
4548
+ top: "conv5_14/x2"
4549
+ convolution_param {
4550
+ num_output: 32
4551
+ bias_term: false
4552
+ pad: 1
4553
+ kernel_size: 3
4554
+ }
4555
+ }
4556
+ layer {
4557
+ name: "concat_5_14"
4558
+ type: "Concat"
4559
+ bottom: "concat_5_13"
4560
+ bottom: "conv5_14/x2"
4561
+ top: "concat_5_14"
4562
+ }
4563
+ layer {
4564
+ name: "conv5_15/x1/bn"
4565
+ type: "BatchNorm"
4566
+ bottom: "concat_5_14"
4567
+ top: "conv5_15/x1/bn"
4568
+ batch_norm_param {
4569
+ eps: 1e-5
4570
+ }
4571
+ }
4572
+ layer {
4573
+ name: "conv5_15/x1/scale"
4574
+ type: "Scale"
4575
+ bottom: "conv5_15/x1/bn"
4576
+ top: "conv5_15/x1/bn"
4577
+ scale_param {
4578
+ bias_term: true
4579
+ }
4580
+ }
4581
+ layer {
4582
+ name: "relu5_15/x1"
4583
+ type: "ReLU"
4584
+ bottom: "conv5_15/x1/bn"
4585
+ top: "conv5_15/x1/bn"
4586
+ }
4587
+ layer {
4588
+ name: "conv5_15/x1"
4589
+ type: "Convolution"
4590
+ bottom: "conv5_15/x1/bn"
4591
+ top: "conv5_15/x1"
4592
+ convolution_param {
4593
+ num_output: 128
4594
+ bias_term: false
4595
+ kernel_size: 1
4596
+ }
4597
+ }
4598
+ layer {
4599
+ name: "conv5_15/x2/bn"
4600
+ type: "BatchNorm"
4601
+ bottom: "conv5_15/x1"
4602
+ top: "conv5_15/x2/bn"
4603
+ batch_norm_param {
4604
+ eps: 1e-5
4605
+ }
4606
+ }
4607
+ layer {
4608
+ name: "conv5_15/x2/scale"
4609
+ type: "Scale"
4610
+ bottom: "conv5_15/x2/bn"
4611
+ top: "conv5_15/x2/bn"
4612
+ scale_param {
4613
+ bias_term: true
4614
+ }
4615
+ }
4616
+ layer {
4617
+ name: "relu5_15/x2"
4618
+ type: "ReLU"
4619
+ bottom: "conv5_15/x2/bn"
4620
+ top: "conv5_15/x2/bn"
4621
+ }
4622
+ layer {
4623
+ name: "conv5_15/x2"
4624
+ type: "Convolution"
4625
+ bottom: "conv5_15/x2/bn"
4626
+ top: "conv5_15/x2"
4627
+ convolution_param {
4628
+ num_output: 32
4629
+ bias_term: false
4630
+ pad: 1
4631
+ kernel_size: 3
4632
+ }
4633
+ }
4634
+ layer {
4635
+ name: "concat_5_15"
4636
+ type: "Concat"
4637
+ bottom: "concat_5_14"
4638
+ bottom: "conv5_15/x2"
4639
+ top: "concat_5_15"
4640
+ }
4641
+ layer {
4642
+ name: "conv5_16/x1/bn"
4643
+ type: "BatchNorm"
4644
+ bottom: "concat_5_15"
4645
+ top: "conv5_16/x1/bn"
4646
+ batch_norm_param {
4647
+ eps: 1e-5
4648
+ }
4649
+ }
4650
+ layer {
4651
+ name: "conv5_16/x1/scale"
4652
+ type: "Scale"
4653
+ bottom: "conv5_16/x1/bn"
4654
+ top: "conv5_16/x1/bn"
4655
+ scale_param {
4656
+ bias_term: true
4657
+ }
4658
+ }
4659
+ layer {
4660
+ name: "relu5_16/x1"
4661
+ type: "ReLU"
4662
+ bottom: "conv5_16/x1/bn"
4663
+ top: "conv5_16/x1/bn"
4664
+ }
4665
+ layer {
4666
+ name: "conv5_16/x1"
4667
+ type: "Convolution"
4668
+ bottom: "conv5_16/x1/bn"
4669
+ top: "conv5_16/x1"
4670
+ convolution_param {
4671
+ num_output: 128
4672
+ bias_term: false
4673
+ kernel_size: 1
4674
+ }
4675
+ }
4676
+ layer {
4677
+ name: "conv5_16/x2/bn"
4678
+ type: "BatchNorm"
4679
+ bottom: "conv5_16/x1"
4680
+ top: "conv5_16/x2/bn"
4681
+ batch_norm_param {
4682
+ eps: 1e-5
4683
+ }
4684
+ }
4685
+ layer {
4686
+ name: "conv5_16/x2/scale"
4687
+ type: "Scale"
4688
+ bottom: "conv5_16/x2/bn"
4689
+ top: "conv5_16/x2/bn"
4690
+ scale_param {
4691
+ bias_term: true
4692
+ }
4693
+ }
4694
+ layer {
4695
+ name: "relu5_16/x2"
4696
+ type: "ReLU"
4697
+ bottom: "conv5_16/x2/bn"
4698
+ top: "conv5_16/x2/bn"
4699
+ }
4700
+ layer {
4701
+ name: "conv5_16/x2"
4702
+ type: "Convolution"
4703
+ bottom: "conv5_16/x2/bn"
4704
+ top: "conv5_16/x2"
4705
+ convolution_param {
4706
+ num_output: 32
4707
+ bias_term: false
4708
+ pad: 1
4709
+ kernel_size: 3
4710
+ }
4711
+ }
4712
+ layer {
4713
+ name: "concat_5_16"
4714
+ type: "Concat"
4715
+ bottom: "concat_5_15"
4716
+ bottom: "conv5_16/x2"
4717
+ top: "concat_5_16"
4718
+ }
4719
+ layer {
4720
+ name: "conv5_blk/bn"
4721
+ type: "BatchNorm"
4722
+ bottom: "concat_5_16"
4723
+ top: "conv5_blk/bn"
4724
+ batch_norm_param {
4725
+ eps: 1e-5
4726
+ }
4727
+ }
4728
+ layer {
4729
+ name: "conv5_blk/scale"
4730
+ type: "Scale"
4731
+ bottom: "conv5_blk/bn"
4732
+ top: "conv5_blk/bn"
4733
+ scale_param {
4734
+ bias_term: true
4735
+ }
4736
+ }
4737
+ layer {
4738
+ name: "relu5_blk"
4739
+ type: "ReLU"
4740
+ bottom: "conv5_blk/bn"
4741
+ top: "conv5_blk/bn"
4742
+ }
4743
+ layer {
4744
+ name: "pool5"
4745
+ type: "Pooling"
4746
+ bottom: "conv5_blk/bn"
4747
+ top: "pool5"
4748
+ pooling_param {
4749
+ pool: AVE
4750
+ global_pooling: true
4751
+ }
4752
+ }
4753
+ layer {
4754
+ name: "fc6"
4755
+ type: "Convolution"
4756
+ bottom: "pool5"
4757
+ top: "fc6"
4758
+ convolution_param {
4759
+ num_output: 1000
4760
+ kernel_size: 1
4761
+ }
4762
+ }
app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from requests.models import MissingSchema
2
+ import streamlit as st
3
+ import cv2
4
+ import numpy as np
5
+ from PIL import Image, UnidentifiedImageError
6
+ import requests
7
+ from io import BytesIO
8
+
9
+ # Create application title and file uploader widget.
10
+ st.title("OpenCV Deep Learning based Image Classification")
11
+
12
+
13
+ # @st.cache(allow_output_mutation=True)
14
+ @st.cache_resource
15
+ def load_model():
16
+ """Loads the DNN model."""
17
+
18
+ # Read the ImageNet class names.
19
+ with open('classification_classes_ILSVRC2012.txt', 'r') as f:
20
+ image_net_names = f.read().split('\n')
21
+
22
+ # Final class names, picking just the first name if multiple in the class.
23
+ class_names = [name.split(',')[0] for name in image_net_names]
24
+
25
+ # Load the neural network model.
26
+ model = cv2.dnn.readNet(
27
+ model='DenseNet_121.caffemodel',
28
+ config='DenseNet_121.prototxt',
29
+ framework='Caffe')
30
+ return model, class_names
31
+
32
+
33
+ def classify(model, image, class_names):
34
+ """Performs inference and returns class name with highest confidence."""
35
+
36
+ # Remove alpha channel if found.
37
+ if image.shape[2] == 4:
38
+ image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
39
+
40
+ # Create blob from image using values specified by the model:
41
+ # https://github.com/shicai/DenseNet-Caffe
42
+ blob = cv2.dnn.blobFromImage(
43
+ image=image, scalefactor=0.017, size=(224, 224), mean=(104, 117, 123))
44
+
45
+ # Set the input blob for the neural network and pass through network.
46
+ model.setInput(blob)
47
+ outputs = model.forward()
48
+
49
+ final_outputs = outputs[0]
50
+ # Make all the outputs 1D.
51
+ final_outputs = final_outputs.reshape(1000, 1)
52
+ # get the class label
53
+ label_id = np.argmax(final_outputs)
54
+ # Convert the output scores to softmax probabilities.
55
+ probs = np.exp(final_outputs) / np.sum(np.exp(final_outputs))
56
+ # Get the final highest probability.
57
+ final_prob = np.max(probs) * 100.
58
+ # Map the max confidence to the class label names.
59
+ out_name = class_names[label_id]
60
+ out_text = f"Class: {out_name}, Confidence: {final_prob:.1f}%"
61
+ return out_text
62
+
63
+
64
+ def header(text):
65
+ st.markdown(
66
+ '<p style="background-color:#0066cc;color:#33ff33;font-size:24px;'
67
+ f'border-radius:2%;" align="center">{text}</p>',
68
+ unsafe_allow_html=True)
69
+
70
+
71
+ net, class_names = load_model()
72
+
73
+ img_file_buffer = st.file_uploader("Choose a file or Camera", type=['jpg', 'jpeg', 'png'])
74
+ st.text('OR')
75
+ url = st.text_input('Enter URL')
76
+
77
+ if img_file_buffer is not None:
78
+ # Read the file and convert it to opencv Image.
79
+ image = np.array(Image.open(img_file_buffer))
80
+ st.image(image)
81
+
82
+ # Call the classification model to detect faces in the image.
83
+ detections = classify(net, image, class_names)
84
+ header(detections)
85
+
86
+ elif url != '':
87
+ try:
88
+ response = requests.get(url)
89
+ image = np.array(Image.open(BytesIO(response.content)))
90
+ st.image(image)
91
+
92
+ # Call the classification model to detect faces in the image.
93
+ detections = classify(net, image, class_names)
94
+ header(detections)
95
+ except MissingSchema as err:
96
+ st.header('Invalid URL, Try Again!')
97
+ print(err)
98
+ except UnidentifiedImageError as err:
99
+ st.header('URL has no Image, Try Again!')
100
+ print(err)
classification_classes_ILSVRC2012.txt ADDED
@@ -0,0 +1,1000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ tench, Tinca tinca
2
+ goldfish, Carassius auratus
3
+ great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias
4
+ tiger shark, Galeocerdo cuvieri
5
+ hammerhead, hammerhead shark
6
+ electric ray, crampfish, numbfish, torpedo
7
+ stingray
8
+ cock
9
+ hen
10
+ ostrich, Struthio camelus
11
+ brambling, Fringilla montifringilla
12
+ goldfinch, Carduelis carduelis
13
+ house finch, linnet, Carpodacus mexicanus
14
+ junco, snowbird
15
+ indigo bunting, indigo finch, indigo bird, Passerina cyanea
16
+ robin, American robin, Turdus migratorius
17
+ bulbul
18
+ jay
19
+ magpie
20
+ chickadee
21
+ water ouzel, dipper
22
+ kite
23
+ bald eagle, American eagle, Haliaeetus leucocephalus
24
+ vulture
25
+ great grey owl, great gray owl, Strix nebulosa
26
+ European fire salamander, Salamandra salamandra
27
+ common newt, Triturus vulgaris
28
+ eft
29
+ spotted salamander, Ambystoma maculatum
30
+ axolotl, mud puppy, Ambystoma mexicanum
31
+ bullfrog, Rana catesbeiana
32
+ tree frog, tree-frog
33
+ tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui
34
+ loggerhead, loggerhead turtle, Caretta caretta
35
+ leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea
36
+ mud turtle
37
+ terrapin
38
+ box turtle, box tortoise
39
+ banded gecko
40
+ common iguana, iguana, Iguana iguana
41
+ American chameleon, anole, Anolis carolinensis
42
+ whiptail, whiptail lizard
43
+ agama
44
+ frilled lizard, Chlamydosaurus kingi
45
+ alligator lizard
46
+ Gila monster, Heloderma suspectum
47
+ green lizard, Lacerta viridis
48
+ African chameleon, Chamaeleo chamaeleon
49
+ Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis
50
+ African crocodile, Nile crocodile, Crocodylus niloticus
51
+ American alligator, Alligator mississipiensis
52
+ triceratops
53
+ thunder snake, worm snake, Carphophis amoenus
54
+ ringneck snake, ring-necked snake, ring snake
55
+ hognose snake, puff adder, sand viper
56
+ green snake, grass snake
57
+ king snake, kingsnake
58
+ garter snake, grass snake
59
+ water snake
60
+ vine snake
61
+ night snake, Hypsiglena torquata
62
+ boa constrictor, Constrictor constrictor
63
+ rock python, rock snake, Python sebae
64
+ Indian cobra, Naja naja
65
+ green mamba
66
+ sea snake
67
+ horned viper, cerastes, sand viper, horned asp, Cerastes cornutus
68
+ diamondback, diamondback rattlesnake, Crotalus adamanteus
69
+ sidewinder, horned rattlesnake, Crotalus cerastes
70
+ trilobite
71
+ harvestman, daddy longlegs, Phalangium opilio
72
+ scorpion
73
+ black and gold garden spider, Argiope aurantia
74
+ barn spider, Araneus cavaticus
75
+ garden spider, Aranea diademata
76
+ black widow, Latrodectus mactans
77
+ tarantula
78
+ wolf spider, hunting spider
79
+ tick
80
+ centipede
81
+ black grouse
82
+ ptarmigan
83
+ ruffed grouse, partridge, Bonasa umbellus
84
+ prairie chicken, prairie grouse, prairie fowl
85
+ peacock
86
+ quail
87
+ partridge
88
+ African grey, African gray, Psittacus erithacus
89
+ macaw
90
+ sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita
91
+ lorikeet
92
+ coucal
93
+ bee eater
94
+ hornbill
95
+ hummingbird
96
+ jacamar
97
+ toucan
98
+ drake
99
+ red-breasted merganser, Mergus serrator
100
+ goose
101
+ black swan, Cygnus atratus
102
+ tusker
103
+ echidna, spiny anteater, anteater
104
+ platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus
105
+ wallaby, brush kangaroo
106
+ koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus
107
+ wombat
108
+ jellyfish
109
+ sea anemone, anemone
110
+ brain coral
111
+ flatworm, platyhelminth
112
+ nematode, nematode worm, roundworm
113
+ conch
114
+ snail
115
+ slug
116
+ sea slug, nudibranch
117
+ chiton, coat-of-mail shell, sea cradle, polyplacophore
118
+ chambered nautilus, pearly nautilus, nautilus
119
+ Dungeness crab, Cancer magister
120
+ rock crab, Cancer irroratus
121
+ fiddler crab
122
+ king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica
123
+ American lobster, Northern lobster, Maine lobster, Homarus americanus
124
+ spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish
125
+ crayfish, crawfish, crawdad, crawdaddy
126
+ hermit crab
127
+ isopod
128
+ white stork, Ciconia ciconia
129
+ black stork, Ciconia nigra
130
+ spoonbill
131
+ flamingo
132
+ little blue heron, Egretta caerulea
133
+ American egret, great white heron, Egretta albus
134
+ bittern
135
+ crane
136
+ limpkin, Aramus pictus
137
+ European gallinule, Porphyrio porphyrio
138
+ American coot, marsh hen, mud hen, water hen, Fulica americana
139
+ bustard
140
+ ruddy turnstone, Arenaria interpres
141
+ red-backed sandpiper, dunlin, Erolia alpina
142
+ redshank, Tringa totanus
143
+ dowitcher
144
+ oystercatcher, oyster catcher
145
+ pelican
146
+ king penguin, Aptenodytes patagonica
147
+ albatross, mollymawk
148
+ grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus
149
+ killer whale, killer, orca, grampus, sea wolf, Orcinus orca
150
+ dugong, Dugong dugon
151
+ sea lion
152
+ Chihuahua
153
+ Japanese spaniel
154
+ Maltese dog, Maltese terrier, Maltese
155
+ Pekinese, Pekingese, Peke
156
+ Shih-Tzu
157
+ Blenheim spaniel
158
+ papillon
159
+ toy terrier
160
+ Rhodesian ridgeback
161
+ Afghan hound, Afghan
162
+ basset, basset hound
163
+ beagle
164
+ bloodhound, sleuthhound
165
+ bluetick
166
+ black-and-tan coonhound
167
+ Walker hound, Walker foxhound
168
+ English foxhound
169
+ redbone
170
+ borzoi, Russian wolfhound
171
+ Irish wolfhound
172
+ Italian greyhound
173
+ whippet
174
+ Ibizan hound, Ibizan Podenco
175
+ Norwegian elkhound, elkhound
176
+ otterhound, otter hound
177
+ Saluki, gazelle hound
178
+ Scottish deerhound, deerhound
179
+ Weimaraner
180
+ Staffordshire bullterrier, Staffordshire bull terrier
181
+ American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier
182
+ Bedlington terrier
183
+ Border terrier
184
+ Kerry blue terrier
185
+ Irish terrier
186
+ Norfolk terrier
187
+ Norwich terrier
188
+ Yorkshire terrier
189
+ wire-haired fox terrier
190
+ Lakeland terrier
191
+ Sealyham terrier, Sealyham
192
+ Airedale, Airedale terrier
193
+ cairn, cairn terrier
194
+ Australian terrier
195
+ Dandie Dinmont, Dandie Dinmont terrier
196
+ Boston bull, Boston terrier
197
+ miniature schnauzer
198
+ giant schnauzer
199
+ standard schnauzer
200
+ Scotch terrier, Scottish terrier, Scottie
201
+ Tibetan terrier, chrysanthemum dog
202
+ silky terrier, Sydney silky
203
+ soft-coated wheaten terrier
204
+ West Highland white terrier
205
+ Lhasa, Lhasa apso
206
+ flat-coated retriever
207
+ curly-coated retriever
208
+ golden retriever
209
+ Labrador retriever
210
+ Chesapeake Bay retriever
211
+ German short-haired pointer
212
+ vizsla, Hungarian pointer
213
+ English setter
214
+ Irish setter, red setter
215
+ Gordon setter
216
+ Brittany spaniel
217
+ clumber, clumber spaniel
218
+ English springer, English springer spaniel
219
+ Welsh springer spaniel
220
+ cocker spaniel, English cocker spaniel, cocker
221
+ Sussex spaniel
222
+ Irish water spaniel
223
+ kuvasz
224
+ schipperke
225
+ groenendael
226
+ malinois
227
+ briard
228
+ kelpie
229
+ komondor
230
+ Old English sheepdog, bobtail
231
+ Shetland sheepdog, Shetland sheep dog, Shetland
232
+ collie
233
+ Border collie
234
+ Bouvier des Flandres, Bouviers des Flandres
235
+ Rottweiler
236
+ German shepherd, German shepherd dog, German police dog, alsatian
237
+ Doberman, Doberman pinscher
238
+ miniature pinscher
239
+ Greater Swiss Mountain dog
240
+ Bernese mountain dog
241
+ Appenzeller
242
+ EntleBucher
243
+ boxer
244
+ bull mastiff
245
+ Tibetan mastiff
246
+ French bulldog
247
+ Great Dane
248
+ Saint Bernard, St Bernard
249
+ Eskimo dog, husky
250
+ malamute, malemute, Alaskan malamute
251
+ Siberian husky
252
+ dalmatian, coach dog, carriage dog
253
+ affenpinscher, monkey pinscher, monkey dog
254
+ basenji
255
+ pug, pug-dog
256
+ Leonberg
257
+ Newfoundland, Newfoundland dog
258
+ Great Pyrenees
259
+ Samoyed, Samoyede
260
+ Pomeranian
261
+ chow, chow chow
262
+ keeshond
263
+ Brabancon griffon
264
+ Pembroke, Pembroke Welsh corgi
265
+ Cardigan, Cardigan Welsh corgi
266
+ toy poodle
267
+ miniature poodle
268
+ standard poodle
269
+ Mexican hairless
270
+ timber wolf, grey wolf, gray wolf, Canis lupus
271
+ white wolf, Arctic wolf, Canis lupus tundrarum
272
+ red wolf, maned wolf, Canis rufus, Canis niger
273
+ coyote, prairie wolf, brush wolf, Canis latrans
274
+ dingo, warrigal, warragal, Canis dingo
275
+ dhole, Cuon alpinus
276
+ African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus
277
+ hyena, hyaena
278
+ red fox, Vulpes vulpes
279
+ kit fox, Vulpes macrotis
280
+ Arctic fox, white fox, Alopex lagopus
281
+ grey fox, gray fox, Urocyon cinereoargenteus
282
+ tabby, tabby cat
283
+ tiger cat
284
+ Persian cat
285
+ Siamese cat, Siamese
286
+ Egyptian cat
287
+ cougar, puma, catamount, mountain lion, painter, panther, Felis concolor
288
+ lynx, catamount
289
+ leopard, Panthera pardus
290
+ snow leopard, ounce, Panthera uncia
291
+ jaguar, panther, Panthera onca, Felis onca
292
+ lion, king of beasts, Panthera leo
293
+ tiger, Panthera tigris
294
+ cheetah, chetah, Acinonyx jubatus
295
+ brown bear, bruin, Ursus arctos
296
+ American black bear, black bear, Ursus americanus, Euarctos americanus
297
+ ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus
298
+ sloth bear, Melursus ursinus, Ursus ursinus
299
+ mongoose
300
+ meerkat, mierkat
301
+ tiger beetle
302
+ ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle
303
+ ground beetle, carabid beetle
304
+ long-horned beetle, longicorn, longicorn beetle
305
+ leaf beetle, chrysomelid
306
+ dung beetle
307
+ rhinoceros beetle
308
+ weevil
309
+ fly
310
+ bee
311
+ ant, emmet, pismire
312
+ grasshopper, hopper
313
+ cricket
314
+ walking stick, walkingstick, stick insect
315
+ cockroach, roach
316
+ mantis, mantid
317
+ cicada, cicala
318
+ leafhopper
319
+ lacewing, lacewing fly
320
+ dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk
321
+ damselfly
322
+ admiral
323
+ ringlet, ringlet butterfly
324
+ monarch, monarch butterfly, milkweed butterfly, Danaus plexippus
325
+ cabbage butterfly
326
+ sulphur butterfly, sulfur butterfly
327
+ lycaenid, lycaenid butterfly
328
+ starfish, sea star
329
+ sea urchin
330
+ sea cucumber, holothurian
331
+ wood rabbit, cottontail, cottontail rabbit
332
+ hare
333
+ Angora, Angora rabbit
334
+ hamster
335
+ porcupine, hedgehog
336
+ fox squirrel, eastern fox squirrel, Sciurus niger
337
+ marmot
338
+ beaver
339
+ guinea pig, Cavia cobaya
340
+ sorrel
341
+ zebra
342
+ hog, pig, grunter, squealer, Sus scrofa
343
+ wild boar, boar, Sus scrofa
344
+ warthog
345
+ hippopotamus, hippo, river horse, Hippopotamus amphibius
346
+ ox
347
+ water buffalo, water ox, Asiatic buffalo, Bubalus bubalis
348
+ bison
349
+ ram, tup
350
+ bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis
351
+ ibex, Capra ibex
352
+ hartebeest
353
+ impala, Aepyceros melampus
354
+ gazelle
355
+ Arabian camel, dromedary, Camelus dromedarius
356
+ llama
357
+ weasel
358
+ mink
359
+ polecat, fitch, foulmart, foumart, Mustela putorius
360
+ black-footed ferret, ferret, Mustela nigripes
361
+ otter
362
+ skunk, polecat, wood pussy
363
+ badger
364
+ armadillo
365
+ three-toed sloth, ai, Bradypus tridactylus
366
+ orangutan, orang, orangutang, Pongo pygmaeus
367
+ gorilla, Gorilla gorilla
368
+ chimpanzee, chimp, Pan troglodytes
369
+ gibbon, Hylobates lar
370
+ siamang, Hylobates syndactylus, Symphalangus syndactylus
371
+ guenon, guenon monkey
372
+ patas, hussar monkey, Erythrocebus patas
373
+ baboon
374
+ macaque
375
+ langur
376
+ colobus, colobus monkey
377
+ proboscis monkey, Nasalis larvatus
378
+ marmoset
379
+ capuchin, ringtail, Cebus capucinus
380
+ howler monkey, howler
381
+ titi, titi monkey
382
+ spider monkey, Ateles geoffroyi
383
+ squirrel monkey, Saimiri sciureus
384
+ Madagascar cat, ring-tailed lemur, Lemur catta
385
+ indri, indris, Indri indri, Indri brevicaudatus
386
+ Indian elephant, Elephas maximus
387
+ African elephant, Loxodonta africana
388
+ lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens
389
+ giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca
390
+ barracouta, snoek
391
+ eel
392
+ coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch
393
+ rock beauty, Holocanthus tricolor
394
+ anemone fish
395
+ sturgeon
396
+ gar, garfish, garpike, billfish, Lepisosteus osseus
397
+ lionfish
398
+ puffer, pufferfish, blowfish, globefish
399
+ abacus
400
+ abaya
401
+ academic gown, academic robe, judge's robe
402
+ accordion, piano accordion, squeeze box
403
+ acoustic guitar
404
+ aircraft carrier, carrier, flattop, attack aircraft carrier
405
+ airliner
406
+ airship, dirigible
407
+ altar
408
+ ambulance
409
+ amphibian, amphibious vehicle
410
+ analog clock
411
+ apiary, bee house
412
+ apron
413
+ ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin
414
+ assault rifle, assault gun
415
+ backpack, back pack, knapsack, packsack, rucksack, haversack
416
+ bakery, bakeshop, bakehouse
417
+ balance beam, beam
418
+ balloon
419
+ ballpoint, ballpoint pen, ballpen, Biro
420
+ Band Aid
421
+ banjo
422
+ bannister, banister, balustrade, balusters, handrail
423
+ barbell
424
+ barber chair
425
+ barbershop
426
+ barn
427
+ barometer
428
+ barrel, cask
429
+ barrow, garden cart, lawn cart, wheelbarrow
430
+ baseball
431
+ basketball
432
+ bassinet
433
+ bassoon
434
+ bathing cap, swimming cap
435
+ bath towel
436
+ bathtub, bathing tub, bath, tub
437
+ beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon
438
+ beacon, lighthouse, beacon light, pharos
439
+ beaker
440
+ bearskin, busby, shako
441
+ beer bottle
442
+ beer glass
443
+ bell cote, bell cot
444
+ bib
445
+ bicycle-built-for-two, tandem bicycle, tandem
446
+ bikini, two-piece
447
+ binder, ring-binder
448
+ binoculars, field glasses, opera glasses
449
+ birdhouse
450
+ boathouse
451
+ bobsled, bobsleigh, bob
452
+ bolo tie, bolo, bola tie, bola
453
+ bonnet, poke bonnet
454
+ bookcase
455
+ bookshop, bookstore, bookstall
456
+ bottlecap
457
+ bow
458
+ bow tie, bow-tie, bowtie
459
+ brass, memorial tablet, plaque
460
+ brassiere, bra, bandeau
461
+ breakwater, groin, groyne, mole, bulwark, seawall, jetty
462
+ breastplate, aegis, egis
463
+ broom
464
+ bucket, pail
465
+ buckle
466
+ bulletproof vest
467
+ bullet train, bullet
468
+ butcher shop, meat market
469
+ cab, hack, taxi, taxicab
470
+ caldron, cauldron
471
+ candle, taper, wax light
472
+ cannon
473
+ canoe
474
+ can opener, tin opener
475
+ cardigan
476
+ car mirror
477
+ carousel, carrousel, merry-go-round, roundabout, whirligig
478
+ carpenter's kit, tool kit
479
+ carton
480
+ car wheel
481
+ cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM
482
+ cassette
483
+ cassette player
484
+ castle
485
+ catamaran
486
+ CD player
487
+ cello, violoncello
488
+ cellular telephone, cellular phone, cellphone, cell, mobile phone
489
+ chain
490
+ chainlink fence
491
+ chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour
492
+ chain saw, chainsaw
493
+ chest
494
+ chiffonier, commode
495
+ chime, bell, gong
496
+ china cabinet, china closet
497
+ Christmas stocking
498
+ church, church building
499
+ cinema, movie theater, movie theatre, movie house, picture palace
500
+ cleaver, meat cleaver, chopper
501
+ cliff dwelling
502
+ cloak
503
+ clog, geta, patten, sabot
504
+ cocktail shaker
505
+ coffee mug
506
+ coffeepot
507
+ coil, spiral, volute, whorl, helix
508
+ combination lock
509
+ computer keyboard, keypad
510
+ confectionery, confectionary, candy store
511
+ container ship, containership, container vessel
512
+ convertible
513
+ corkscrew, bottle screw
514
+ cornet, horn, trumpet, trump
515
+ cowboy boot
516
+ cowboy hat, ten-gallon hat
517
+ cradle
518
+ crane
519
+ crash helmet
520
+ crate
521
+ crib, cot
522
+ Crock Pot
523
+ croquet ball
524
+ crutch
525
+ cuirass
526
+ dam, dike, dyke
527
+ desk
528
+ desktop computer
529
+ dial telephone, dial phone
530
+ diaper, nappy, napkin
531
+ digital clock
532
+ digital watch
533
+ dining table, board
534
+ dishrag, dishcloth
535
+ dishwasher, dish washer, dishwashing machine
536
+ disk brake, disc brake
537
+ dock, dockage, docking facility
538
+ dogsled, dog sled, dog sleigh
539
+ dome
540
+ doormat, welcome mat
541
+ drilling platform, offshore rig
542
+ drum, membranophone, tympan
543
+ drumstick
544
+ dumbbell
545
+ Dutch oven
546
+ electric fan, blower
547
+ electric guitar
548
+ electric locomotive
549
+ entertainment center
550
+ envelope
551
+ espresso maker
552
+ face powder
553
+ feather boa, boa
554
+ file, file cabinet, filing cabinet
555
+ fireboat
556
+ fire engine, fire truck
557
+ fire screen, fireguard
558
+ flagpole, flagstaff
559
+ flute, transverse flute
560
+ folding chair
561
+ football helmet
562
+ forklift
563
+ fountain
564
+ fountain pen
565
+ four-poster
566
+ freight car
567
+ French horn, horn
568
+ frying pan, frypan, skillet
569
+ fur coat
570
+ garbage truck, dustcart
571
+ gasmask, respirator, gas helmet
572
+ gas pump, gasoline pump, petrol pump, island dispenser
573
+ goblet
574
+ go-kart
575
+ golf ball
576
+ golfcart, golf cart
577
+ gondola
578
+ gong, tam-tam
579
+ gown
580
+ grand piano, grand
581
+ greenhouse, nursery, glasshouse
582
+ grille, radiator grille
583
+ grocery store, grocery, food market, market
584
+ guillotine
585
+ hair slide
586
+ hair spray
587
+ half track
588
+ hammer
589
+ hamper
590
+ hand blower, blow dryer, blow drier, hair dryer, hair drier
591
+ hand-held computer, hand-held microcomputer
592
+ handkerchief, hankie, hanky, hankey
593
+ hard disc, hard disk, fixed disk
594
+ harmonica, mouth organ, harp, mouth harp
595
+ harp
596
+ harvester, reaper
597
+ hatchet
598
+ holster
599
+ home theater, home theatre
600
+ honeycomb
601
+ hook, claw
602
+ hoopskirt, crinoline
603
+ horizontal bar, high bar
604
+ horse cart, horse-cart
605
+ hourglass
606
+ iPod
607
+ iron, smoothing iron
608
+ jack-o'-lantern
609
+ jean, blue jean, denim
610
+ jeep, landrover
611
+ jersey, T-shirt, tee shirt
612
+ jigsaw puzzle
613
+ jinrikisha, ricksha, rickshaw
614
+ joystick
615
+ kimono
616
+ knee pad
617
+ knot
618
+ lab coat, laboratory coat
619
+ ladle
620
+ lampshade, lamp shade
621
+ laptop, laptop computer
622
+ lawn mower, mower
623
+ lens cap, lens cover
624
+ letter opener, paper knife, paperknife
625
+ library
626
+ lifeboat
627
+ lighter, light, igniter, ignitor
628
+ limousine, limo
629
+ liner, ocean liner
630
+ lipstick, lip rouge
631
+ Loafer
632
+ lotion
633
+ loudspeaker, speaker, speaker unit, loudspeaker system, speaker system
634
+ loupe, jeweler's loupe
635
+ lumbermill, sawmill
636
+ magnetic compass
637
+ mailbag, postbag
638
+ mailbox, letter box
639
+ maillot
640
+ maillot, tank suit
641
+ manhole cover
642
+ maraca
643
+ marimba, xylophone
644
+ mask
645
+ matchstick
646
+ maypole
647
+ maze, labyrinth
648
+ measuring cup
649
+ medicine chest, medicine cabinet
650
+ megalith, megalithic structure
651
+ microphone, mike
652
+ microwave, microwave oven
653
+ military uniform
654
+ milk can
655
+ minibus
656
+ miniskirt, mini
657
+ minivan
658
+ missile
659
+ mitten
660
+ mixing bowl
661
+ mobile home, manufactured home
662
+ Model T
663
+ modem
664
+ monastery
665
+ monitor
666
+ moped
667
+ mortar
668
+ mortarboard
669
+ mosque
670
+ mosquito net
671
+ motor scooter, scooter
672
+ mountain bike, all-terrain bike, off-roader
673
+ mountain tent
674
+ mouse, computer mouse
675
+ mousetrap
676
+ moving van
677
+ muzzle
678
+ nail
679
+ neck brace
680
+ necklace
681
+ nipple
682
+ notebook, notebook computer
683
+ obelisk
684
+ oboe, hautboy, hautbois
685
+ ocarina, sweet potato
686
+ odometer, hodometer, mileometer, milometer
687
+ oil filter
688
+ organ, pipe organ
689
+ oscilloscope, scope, cathode-ray oscilloscope, CRO
690
+ overskirt
691
+ oxcart
692
+ oxygen mask
693
+ packet
694
+ paddle, boat paddle
695
+ paddlewheel, paddle wheel
696
+ padlock
697
+ paintbrush
698
+ pajama, pyjama, pj's, jammies
699
+ palace
700
+ panpipe, pandean pipe, syrinx
701
+ paper towel
702
+ parachute, chute
703
+ parallel bars, bars
704
+ park bench
705
+ parking meter
706
+ passenger car, coach, carriage
707
+ patio, terrace
708
+ pay-phone, pay-station
709
+ pedestal, plinth, footstall
710
+ pencil box, pencil case
711
+ pencil sharpener
712
+ perfume, essence
713
+ Petri dish
714
+ photocopier
715
+ pick, plectrum, plectron
716
+ pickelhaube
717
+ picket fence, paling
718
+ pickup, pickup truck
719
+ pier
720
+ piggy bank, penny bank
721
+ pill bottle
722
+ pillow
723
+ ping-pong ball
724
+ pinwheel
725
+ pirate, pirate ship
726
+ pitcher, ewer
727
+ plane, carpenter's plane, woodworking plane
728
+ planetarium
729
+ plastic bag
730
+ plate rack
731
+ plow, plough
732
+ plunger, plumber's helper
733
+ Polaroid camera, Polaroid Land camera
734
+ pole
735
+ police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria
736
+ poncho
737
+ pool table, billiard table, snooker table
738
+ pop bottle, soda bottle
739
+ pot, flowerpot
740
+ potter's wheel
741
+ power drill
742
+ prayer rug, prayer mat
743
+ printer
744
+ prison, prison house
745
+ projectile, missile
746
+ projector
747
+ puck, hockey puck
748
+ punching bag, punch bag, punching ball, punchball
749
+ purse
750
+ quill, quill pen
751
+ quilt, comforter, comfort, puff
752
+ racer, race car, racing car
753
+ racket, racquet
754
+ radiator
755
+ radio, wireless
756
+ radio telescope, radio reflector
757
+ rain barrel
758
+ recreational vehicle, RV, R.V.
759
+ reel
760
+ reflex camera
761
+ refrigerator, icebox
762
+ remote control, remote
763
+ restaurant, eating house, eating place, eatery
764
+ revolver, six-gun, six-shooter
765
+ rifle
766
+ rocking chair, rocker
767
+ rotisserie
768
+ rubber eraser, rubber, pencil eraser
769
+ rugby ball
770
+ rule, ruler
771
+ running shoe
772
+ safe
773
+ safety pin
774
+ saltshaker, salt shaker
775
+ sandal
776
+ sarong
777
+ sax, saxophone
778
+ scabbard
779
+ scale, weighing machine
780
+ school bus
781
+ schooner
782
+ scoreboard
783
+ screen, CRT screen
784
+ screw
785
+ screwdriver
786
+ seat belt, seatbelt
787
+ sewing machine
788
+ shield, buckler
789
+ shoe shop, shoe-shop, shoe store
790
+ shoji
791
+ shopping basket
792
+ shopping cart
793
+ shovel
794
+ shower cap
795
+ shower curtain
796
+ ski
797
+ ski mask
798
+ sleeping bag
799
+ slide rule, slipstick
800
+ sliding door
801
+ slot, one-armed bandit
802
+ snorkel
803
+ snowmobile
804
+ snowplow, snowplough
805
+ soap dispenser
806
+ soccer ball
807
+ sock
808
+ solar dish, solar collector, solar furnace
809
+ sombrero
810
+ soup bowl
811
+ space bar
812
+ space heater
813
+ space shuttle
814
+ spatula
815
+ speedboat
816
+ spider web, spider's web
817
+ spindle
818
+ sports car, sport car
819
+ spotlight, spot
820
+ stage
821
+ steam locomotive
822
+ steel arch bridge
823
+ steel drum
824
+ stethoscope
825
+ stole
826
+ stone wall
827
+ stopwatch, stop watch
828
+ stove
829
+ strainer
830
+ streetcar, tram, tramcar, trolley, trolley car
831
+ stretcher
832
+ studio couch, day bed
833
+ stupa, tope
834
+ submarine, pigboat, sub, U-boat
835
+ suit, suit of clothes
836
+ sundial
837
+ sunglass
838
+ sunglasses, dark glasses, shades
839
+ sunscreen, sunblock, sun blocker
840
+ suspension bridge
841
+ swab, swob, mop
842
+ sweatshirt
843
+ swimming trunks, bathing trunks
844
+ swing
845
+ switch, electric switch, electrical switch
846
+ syringe
847
+ table lamp
848
+ tank, army tank, armored combat vehicle, armoured combat vehicle
849
+ tape player
850
+ teapot
851
+ teddy, teddy bear
852
+ television, television system
853
+ tennis ball
854
+ thatch, thatched roof
855
+ theater curtain, theatre curtain
856
+ thimble
857
+ thresher, thrasher, threshing machine
858
+ throne
859
+ tile roof
860
+ toaster
861
+ tobacco shop, tobacconist shop, tobacconist
862
+ toilet seat
863
+ torch
864
+ totem pole
865
+ tow truck, tow car, wrecker
866
+ toyshop
867
+ tractor
868
+ trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi
869
+ tray
870
+ trench coat
871
+ tricycle, trike, velocipede
872
+ trimaran
873
+ tripod
874
+ triumphal arch
875
+ trolleybus, trolley coach, trackless trolley
876
+ trombone
877
+ tub, vat
878
+ turnstile
879
+ typewriter keyboard
880
+ umbrella
881
+ unicycle, monocycle
882
+ upright, upright piano
883
+ vacuum, vacuum cleaner
884
+ vase
885
+ vault
886
+ velvet
887
+ vending machine
888
+ vestment
889
+ viaduct
890
+ violin, fiddle
891
+ volleyball
892
+ waffle iron
893
+ wall clock
894
+ wallet, billfold, notecase, pocketbook
895
+ wardrobe, closet, press
896
+ warplane, military plane
897
+ washbasin, handbasin, washbowl, lavabo, wash-hand basin
898
+ washer, automatic washer, washing machine
899
+ water bottle
900
+ water jug
901
+ water tower
902
+ whiskey jug
903
+ whistle
904
+ wig
905
+ window screen
906
+ window shade
907
+ Windsor tie
908
+ wine bottle
909
+ wing
910
+ wok
911
+ wooden spoon
912
+ wool, woolen, woollen
913
+ worm fence, snake fence, snake-rail fence, Virginia fence
914
+ wreck
915
+ yawl
916
+ yurt
917
+ web site, website, internet site, site
918
+ comic book
919
+ crossword puzzle, crossword
920
+ street sign
921
+ traffic light, traffic signal, stoplight
922
+ book jacket, dust cover, dust jacket, dust wrapper
923
+ menu
924
+ plate
925
+ guacamole
926
+ consomme
927
+ hot pot, hotpot
928
+ trifle
929
+ ice cream, icecream
930
+ ice lolly, lolly, lollipop, popsicle
931
+ French loaf
932
+ bagel, beigel
933
+ pretzel
934
+ cheeseburger
935
+ hotdog, hot dog, red hot
936
+ mashed potato
937
+ head cabbage
938
+ broccoli
939
+ cauliflower
940
+ zucchini, courgette
941
+ spaghetti squash
942
+ acorn squash
943
+ butternut squash
944
+ cucumber, cuke
945
+ artichoke, globe artichoke
946
+ bell pepper
947
+ cardoon
948
+ mushroom
949
+ Granny Smith
950
+ strawberry
951
+ orange
952
+ lemon
953
+ fig
954
+ pineapple, ananas
955
+ banana
956
+ jackfruit, jak, jack
957
+ custard apple
958
+ pomegranate
959
+ hay
960
+ carbonara
961
+ chocolate sauce, chocolate syrup
962
+ dough
963
+ meat loaf, meatloaf
964
+ pizza, pizza pie
965
+ potpie
966
+ burrito
967
+ red wine
968
+ espresso
969
+ cup
970
+ eggnog
971
+ alp
972
+ bubble
973
+ cliff, drop, drop-off
974
+ coral reef
975
+ geyser
976
+ lakeside, lakeshore
977
+ promontory, headland, head, foreland
978
+ sandbar, sand bar
979
+ seashore, coast, seacoast, sea-coast
980
+ valley, vale
981
+ volcano
982
+ ballplayer, baseball player
983
+ groom, bridegroom
984
+ scuba diver
985
+ rapeseed
986
+ daisy
987
+ yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum
988
+ corn
989
+ acorn
990
+ hip, rose hip, rosehip
991
+ buckeye, horse chestnut, conker
992
+ coral fungus
993
+ agaric
994
+ gyromitra
995
+ stinkhorn, carrion fungus
996
+ earthstar
997
+ hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa
998
+ bolete
999
+ ear, spike, capitulum
1000
+ toilet tissue, toilet paper, bathroom tissue
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ libgl1
requirements.txt ADDED
Binary file (148 Bytes). View file