Ankan Ghosh
commited on
Upload 6 files
Browse files- .gitattributes +1 -0
- DenseNet_121.caffemodel +3 -0
- DenseNet_121.prototxt +4762 -0
- app.py +100 -0
- classification_classes_ILSVRC2012.txt +1000 -0
- packages.txt +1 -0
- requirements.txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
DenseNet_121.caffemodel filter=lfs diff=lfs merge=lfs -text
|
DenseNet_121.caffemodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6a6ec988d76c468c3f67501a23a39ec7bf6ebe6729fd99496a15d0e845478b2
|
3 |
+
size 32303870
|
DenseNet_121.prototxt
ADDED
@@ -0,0 +1,4762 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "DENSENET_121"
|
2 |
+
input: "data"
|
3 |
+
input_dim: 1
|
4 |
+
input_dim: 3
|
5 |
+
input_dim: 224
|
6 |
+
input_dim: 224
|
7 |
+
layer {
|
8 |
+
name: "conv1"
|
9 |
+
type: "Convolution"
|
10 |
+
bottom: "data"
|
11 |
+
top: "conv1"
|
12 |
+
convolution_param {
|
13 |
+
num_output: 64
|
14 |
+
bias_term: false
|
15 |
+
pad: 3
|
16 |
+
kernel_size: 7
|
17 |
+
stride: 2
|
18 |
+
}
|
19 |
+
}
|
20 |
+
layer {
|
21 |
+
name: "conv1/bn"
|
22 |
+
type: "BatchNorm"
|
23 |
+
bottom: "conv1"
|
24 |
+
top: "conv1/bn"
|
25 |
+
batch_norm_param {
|
26 |
+
eps: 1e-5
|
27 |
+
}
|
28 |
+
}
|
29 |
+
layer {
|
30 |
+
name: "conv1/scale"
|
31 |
+
type: "Scale"
|
32 |
+
bottom: "conv1/bn"
|
33 |
+
top: "conv1/bn"
|
34 |
+
scale_param {
|
35 |
+
bias_term: true
|
36 |
+
}
|
37 |
+
}
|
38 |
+
layer {
|
39 |
+
name: "relu1"
|
40 |
+
type: "ReLU"
|
41 |
+
bottom: "conv1/bn"
|
42 |
+
top: "conv1/bn"
|
43 |
+
}
|
44 |
+
layer {
|
45 |
+
name: "pool1"
|
46 |
+
type: "Pooling"
|
47 |
+
bottom: "conv1/bn"
|
48 |
+
top: "pool1"
|
49 |
+
pooling_param {
|
50 |
+
pool: MAX
|
51 |
+
kernel_size: 3
|
52 |
+
stride: 2
|
53 |
+
pad: 1
|
54 |
+
ceil_mode: false
|
55 |
+
}
|
56 |
+
}
|
57 |
+
layer {
|
58 |
+
name: "conv2_1/x1/bn"
|
59 |
+
type: "BatchNorm"
|
60 |
+
bottom: "pool1"
|
61 |
+
top: "conv2_1/x1/bn"
|
62 |
+
batch_norm_param {
|
63 |
+
eps: 1e-5
|
64 |
+
}
|
65 |
+
}
|
66 |
+
layer {
|
67 |
+
name: "conv2_1/x1/scale"
|
68 |
+
type: "Scale"
|
69 |
+
bottom: "conv2_1/x1/bn"
|
70 |
+
top: "conv2_1/x1/bn"
|
71 |
+
scale_param {
|
72 |
+
bias_term: true
|
73 |
+
}
|
74 |
+
}
|
75 |
+
layer {
|
76 |
+
name: "relu2_1/x1"
|
77 |
+
type: "ReLU"
|
78 |
+
bottom: "conv2_1/x1/bn"
|
79 |
+
top: "conv2_1/x1/bn"
|
80 |
+
}
|
81 |
+
layer {
|
82 |
+
name: "conv2_1/x1"
|
83 |
+
type: "Convolution"
|
84 |
+
bottom: "conv2_1/x1/bn"
|
85 |
+
top: "conv2_1/x1"
|
86 |
+
convolution_param {
|
87 |
+
num_output: 128
|
88 |
+
bias_term: false
|
89 |
+
kernel_size: 1
|
90 |
+
}
|
91 |
+
}
|
92 |
+
layer {
|
93 |
+
name: "conv2_1/x2/bn"
|
94 |
+
type: "BatchNorm"
|
95 |
+
bottom: "conv2_1/x1"
|
96 |
+
top: "conv2_1/x2/bn"
|
97 |
+
batch_norm_param {
|
98 |
+
eps: 1e-5
|
99 |
+
}
|
100 |
+
}
|
101 |
+
layer {
|
102 |
+
name: "conv2_1/x2/scale"
|
103 |
+
type: "Scale"
|
104 |
+
bottom: "conv2_1/x2/bn"
|
105 |
+
top: "conv2_1/x2/bn"
|
106 |
+
scale_param {
|
107 |
+
bias_term: true
|
108 |
+
}
|
109 |
+
}
|
110 |
+
layer {
|
111 |
+
name: "relu2_1/x2"
|
112 |
+
type: "ReLU"
|
113 |
+
bottom: "conv2_1/x2/bn"
|
114 |
+
top: "conv2_1/x2/bn"
|
115 |
+
}
|
116 |
+
layer {
|
117 |
+
name: "conv2_1/x2"
|
118 |
+
type: "Convolution"
|
119 |
+
bottom: "conv2_1/x2/bn"
|
120 |
+
top: "conv2_1/x2"
|
121 |
+
convolution_param {
|
122 |
+
num_output: 32
|
123 |
+
bias_term: false
|
124 |
+
pad: 1
|
125 |
+
kernel_size: 3
|
126 |
+
}
|
127 |
+
}
|
128 |
+
layer {
|
129 |
+
name: "concat_2_1"
|
130 |
+
type: "Concat"
|
131 |
+
bottom: "pool1"
|
132 |
+
bottom: "conv2_1/x2"
|
133 |
+
top: "concat_2_1"
|
134 |
+
}
|
135 |
+
layer {
|
136 |
+
name: "conv2_2/x1/bn"
|
137 |
+
type: "BatchNorm"
|
138 |
+
bottom: "concat_2_1"
|
139 |
+
top: "conv2_2/x1/bn"
|
140 |
+
batch_norm_param {
|
141 |
+
eps: 1e-5
|
142 |
+
}
|
143 |
+
}
|
144 |
+
layer {
|
145 |
+
name: "conv2_2/x1/scale"
|
146 |
+
type: "Scale"
|
147 |
+
bottom: "conv2_2/x1/bn"
|
148 |
+
top: "conv2_2/x1/bn"
|
149 |
+
scale_param {
|
150 |
+
bias_term: true
|
151 |
+
}
|
152 |
+
}
|
153 |
+
layer {
|
154 |
+
name: "relu2_2/x1"
|
155 |
+
type: "ReLU"
|
156 |
+
bottom: "conv2_2/x1/bn"
|
157 |
+
top: "conv2_2/x1/bn"
|
158 |
+
}
|
159 |
+
layer {
|
160 |
+
name: "conv2_2/x1"
|
161 |
+
type: "Convolution"
|
162 |
+
bottom: "conv2_2/x1/bn"
|
163 |
+
top: "conv2_2/x1"
|
164 |
+
convolution_param {
|
165 |
+
num_output: 128
|
166 |
+
bias_term: false
|
167 |
+
kernel_size: 1
|
168 |
+
}
|
169 |
+
}
|
170 |
+
layer {
|
171 |
+
name: "conv2_2/x2/bn"
|
172 |
+
type: "BatchNorm"
|
173 |
+
bottom: "conv2_2/x1"
|
174 |
+
top: "conv2_2/x2/bn"
|
175 |
+
batch_norm_param {
|
176 |
+
eps: 1e-5
|
177 |
+
}
|
178 |
+
}
|
179 |
+
layer {
|
180 |
+
name: "conv2_2/x2/scale"
|
181 |
+
type: "Scale"
|
182 |
+
bottom: "conv2_2/x2/bn"
|
183 |
+
top: "conv2_2/x2/bn"
|
184 |
+
scale_param {
|
185 |
+
bias_term: true
|
186 |
+
}
|
187 |
+
}
|
188 |
+
layer {
|
189 |
+
name: "relu2_2/x2"
|
190 |
+
type: "ReLU"
|
191 |
+
bottom: "conv2_2/x2/bn"
|
192 |
+
top: "conv2_2/x2/bn"
|
193 |
+
}
|
194 |
+
layer {
|
195 |
+
name: "conv2_2/x2"
|
196 |
+
type: "Convolution"
|
197 |
+
bottom: "conv2_2/x2/bn"
|
198 |
+
top: "conv2_2/x2"
|
199 |
+
convolution_param {
|
200 |
+
num_output: 32
|
201 |
+
bias_term: false
|
202 |
+
pad: 1
|
203 |
+
kernel_size: 3
|
204 |
+
}
|
205 |
+
}
|
206 |
+
layer {
|
207 |
+
name: "concat_2_2"
|
208 |
+
type: "Concat"
|
209 |
+
bottom: "concat_2_1"
|
210 |
+
bottom: "conv2_2/x2"
|
211 |
+
top: "concat_2_2"
|
212 |
+
}
|
213 |
+
layer {
|
214 |
+
name: "conv2_3/x1/bn"
|
215 |
+
type: "BatchNorm"
|
216 |
+
bottom: "concat_2_2"
|
217 |
+
top: "conv2_3/x1/bn"
|
218 |
+
batch_norm_param {
|
219 |
+
eps: 1e-5
|
220 |
+
}
|
221 |
+
}
|
222 |
+
layer {
|
223 |
+
name: "conv2_3/x1/scale"
|
224 |
+
type: "Scale"
|
225 |
+
bottom: "conv2_3/x1/bn"
|
226 |
+
top: "conv2_3/x1/bn"
|
227 |
+
scale_param {
|
228 |
+
bias_term: true
|
229 |
+
}
|
230 |
+
}
|
231 |
+
layer {
|
232 |
+
name: "relu2_3/x1"
|
233 |
+
type: "ReLU"
|
234 |
+
bottom: "conv2_3/x1/bn"
|
235 |
+
top: "conv2_3/x1/bn"
|
236 |
+
}
|
237 |
+
layer {
|
238 |
+
name: "conv2_3/x1"
|
239 |
+
type: "Convolution"
|
240 |
+
bottom: "conv2_3/x1/bn"
|
241 |
+
top: "conv2_3/x1"
|
242 |
+
convolution_param {
|
243 |
+
num_output: 128
|
244 |
+
bias_term: false
|
245 |
+
kernel_size: 1
|
246 |
+
}
|
247 |
+
}
|
248 |
+
layer {
|
249 |
+
name: "conv2_3/x2/bn"
|
250 |
+
type: "BatchNorm"
|
251 |
+
bottom: "conv2_3/x1"
|
252 |
+
top: "conv2_3/x2/bn"
|
253 |
+
batch_norm_param {
|
254 |
+
eps: 1e-5
|
255 |
+
}
|
256 |
+
}
|
257 |
+
layer {
|
258 |
+
name: "conv2_3/x2/scale"
|
259 |
+
type: "Scale"
|
260 |
+
bottom: "conv2_3/x2/bn"
|
261 |
+
top: "conv2_3/x2/bn"
|
262 |
+
scale_param {
|
263 |
+
bias_term: true
|
264 |
+
}
|
265 |
+
}
|
266 |
+
layer {
|
267 |
+
name: "relu2_3/x2"
|
268 |
+
type: "ReLU"
|
269 |
+
bottom: "conv2_3/x2/bn"
|
270 |
+
top: "conv2_3/x2/bn"
|
271 |
+
}
|
272 |
+
layer {
|
273 |
+
name: "conv2_3/x2"
|
274 |
+
type: "Convolution"
|
275 |
+
bottom: "conv2_3/x2/bn"
|
276 |
+
top: "conv2_3/x2"
|
277 |
+
convolution_param {
|
278 |
+
num_output: 32
|
279 |
+
bias_term: false
|
280 |
+
pad: 1
|
281 |
+
kernel_size: 3
|
282 |
+
}
|
283 |
+
}
|
284 |
+
layer {
|
285 |
+
name: "concat_2_3"
|
286 |
+
type: "Concat"
|
287 |
+
bottom: "concat_2_2"
|
288 |
+
bottom: "conv2_3/x2"
|
289 |
+
top: "concat_2_3"
|
290 |
+
}
|
291 |
+
layer {
|
292 |
+
name: "conv2_4/x1/bn"
|
293 |
+
type: "BatchNorm"
|
294 |
+
bottom: "concat_2_3"
|
295 |
+
top: "conv2_4/x1/bn"
|
296 |
+
batch_norm_param {
|
297 |
+
eps: 1e-5
|
298 |
+
}
|
299 |
+
}
|
300 |
+
layer {
|
301 |
+
name: "conv2_4/x1/scale"
|
302 |
+
type: "Scale"
|
303 |
+
bottom: "conv2_4/x1/bn"
|
304 |
+
top: "conv2_4/x1/bn"
|
305 |
+
scale_param {
|
306 |
+
bias_term: true
|
307 |
+
}
|
308 |
+
}
|
309 |
+
layer {
|
310 |
+
name: "relu2_4/x1"
|
311 |
+
type: "ReLU"
|
312 |
+
bottom: "conv2_4/x1/bn"
|
313 |
+
top: "conv2_4/x1/bn"
|
314 |
+
}
|
315 |
+
layer {
|
316 |
+
name: "conv2_4/x1"
|
317 |
+
type: "Convolution"
|
318 |
+
bottom: "conv2_4/x1/bn"
|
319 |
+
top: "conv2_4/x1"
|
320 |
+
convolution_param {
|
321 |
+
num_output: 128
|
322 |
+
bias_term: false
|
323 |
+
kernel_size: 1
|
324 |
+
}
|
325 |
+
}
|
326 |
+
layer {
|
327 |
+
name: "conv2_4/x2/bn"
|
328 |
+
type: "BatchNorm"
|
329 |
+
bottom: "conv2_4/x1"
|
330 |
+
top: "conv2_4/x2/bn"
|
331 |
+
batch_norm_param {
|
332 |
+
eps: 1e-5
|
333 |
+
}
|
334 |
+
}
|
335 |
+
layer {
|
336 |
+
name: "conv2_4/x2/scale"
|
337 |
+
type: "Scale"
|
338 |
+
bottom: "conv2_4/x2/bn"
|
339 |
+
top: "conv2_4/x2/bn"
|
340 |
+
scale_param {
|
341 |
+
bias_term: true
|
342 |
+
}
|
343 |
+
}
|
344 |
+
layer {
|
345 |
+
name: "relu2_4/x2"
|
346 |
+
type: "ReLU"
|
347 |
+
bottom: "conv2_4/x2/bn"
|
348 |
+
top: "conv2_4/x2/bn"
|
349 |
+
}
|
350 |
+
layer {
|
351 |
+
name: "conv2_4/x2"
|
352 |
+
type: "Convolution"
|
353 |
+
bottom: "conv2_4/x2/bn"
|
354 |
+
top: "conv2_4/x2"
|
355 |
+
convolution_param {
|
356 |
+
num_output: 32
|
357 |
+
bias_term: false
|
358 |
+
pad: 1
|
359 |
+
kernel_size: 3
|
360 |
+
}
|
361 |
+
}
|
362 |
+
layer {
|
363 |
+
name: "concat_2_4"
|
364 |
+
type: "Concat"
|
365 |
+
bottom: "concat_2_3"
|
366 |
+
bottom: "conv2_4/x2"
|
367 |
+
top: "concat_2_4"
|
368 |
+
}
|
369 |
+
layer {
|
370 |
+
name: "conv2_5/x1/bn"
|
371 |
+
type: "BatchNorm"
|
372 |
+
bottom: "concat_2_4"
|
373 |
+
top: "conv2_5/x1/bn"
|
374 |
+
batch_norm_param {
|
375 |
+
eps: 1e-5
|
376 |
+
}
|
377 |
+
}
|
378 |
+
layer {
|
379 |
+
name: "conv2_5/x1/scale"
|
380 |
+
type: "Scale"
|
381 |
+
bottom: "conv2_5/x1/bn"
|
382 |
+
top: "conv2_5/x1/bn"
|
383 |
+
scale_param {
|
384 |
+
bias_term: true
|
385 |
+
}
|
386 |
+
}
|
387 |
+
layer {
|
388 |
+
name: "relu2_5/x1"
|
389 |
+
type: "ReLU"
|
390 |
+
bottom: "conv2_5/x1/bn"
|
391 |
+
top: "conv2_5/x1/bn"
|
392 |
+
}
|
393 |
+
layer {
|
394 |
+
name: "conv2_5/x1"
|
395 |
+
type: "Convolution"
|
396 |
+
bottom: "conv2_5/x1/bn"
|
397 |
+
top: "conv2_5/x1"
|
398 |
+
convolution_param {
|
399 |
+
num_output: 128
|
400 |
+
bias_term: false
|
401 |
+
kernel_size: 1
|
402 |
+
}
|
403 |
+
}
|
404 |
+
layer {
|
405 |
+
name: "conv2_5/x2/bn"
|
406 |
+
type: "BatchNorm"
|
407 |
+
bottom: "conv2_5/x1"
|
408 |
+
top: "conv2_5/x2/bn"
|
409 |
+
batch_norm_param {
|
410 |
+
eps: 1e-5
|
411 |
+
}
|
412 |
+
}
|
413 |
+
layer {
|
414 |
+
name: "conv2_5/x2/scale"
|
415 |
+
type: "Scale"
|
416 |
+
bottom: "conv2_5/x2/bn"
|
417 |
+
top: "conv2_5/x2/bn"
|
418 |
+
scale_param {
|
419 |
+
bias_term: true
|
420 |
+
}
|
421 |
+
}
|
422 |
+
layer {
|
423 |
+
name: "relu2_5/x2"
|
424 |
+
type: "ReLU"
|
425 |
+
bottom: "conv2_5/x2/bn"
|
426 |
+
top: "conv2_5/x2/bn"
|
427 |
+
}
|
428 |
+
layer {
|
429 |
+
name: "conv2_5/x2"
|
430 |
+
type: "Convolution"
|
431 |
+
bottom: "conv2_5/x2/bn"
|
432 |
+
top: "conv2_5/x2"
|
433 |
+
convolution_param {
|
434 |
+
num_output: 32
|
435 |
+
bias_term: false
|
436 |
+
pad: 1
|
437 |
+
kernel_size: 3
|
438 |
+
}
|
439 |
+
}
|
440 |
+
layer {
|
441 |
+
name: "concat_2_5"
|
442 |
+
type: "Concat"
|
443 |
+
bottom: "concat_2_4"
|
444 |
+
bottom: "conv2_5/x2"
|
445 |
+
top: "concat_2_5"
|
446 |
+
}
|
447 |
+
layer {
|
448 |
+
name: "conv2_6/x1/bn"
|
449 |
+
type: "BatchNorm"
|
450 |
+
bottom: "concat_2_5"
|
451 |
+
top: "conv2_6/x1/bn"
|
452 |
+
batch_norm_param {
|
453 |
+
eps: 1e-5
|
454 |
+
}
|
455 |
+
}
|
456 |
+
layer {
|
457 |
+
name: "conv2_6/x1/scale"
|
458 |
+
type: "Scale"
|
459 |
+
bottom: "conv2_6/x1/bn"
|
460 |
+
top: "conv2_6/x1/bn"
|
461 |
+
scale_param {
|
462 |
+
bias_term: true
|
463 |
+
}
|
464 |
+
}
|
465 |
+
layer {
|
466 |
+
name: "relu2_6/x1"
|
467 |
+
type: "ReLU"
|
468 |
+
bottom: "conv2_6/x1/bn"
|
469 |
+
top: "conv2_6/x1/bn"
|
470 |
+
}
|
471 |
+
layer {
|
472 |
+
name: "conv2_6/x1"
|
473 |
+
type: "Convolution"
|
474 |
+
bottom: "conv2_6/x1/bn"
|
475 |
+
top: "conv2_6/x1"
|
476 |
+
convolution_param {
|
477 |
+
num_output: 128
|
478 |
+
bias_term: false
|
479 |
+
kernel_size: 1
|
480 |
+
}
|
481 |
+
}
|
482 |
+
layer {
|
483 |
+
name: "conv2_6/x2/bn"
|
484 |
+
type: "BatchNorm"
|
485 |
+
bottom: "conv2_6/x1"
|
486 |
+
top: "conv2_6/x2/bn"
|
487 |
+
batch_norm_param {
|
488 |
+
eps: 1e-5
|
489 |
+
}
|
490 |
+
}
|
491 |
+
layer {
|
492 |
+
name: "conv2_6/x2/scale"
|
493 |
+
type: "Scale"
|
494 |
+
bottom: "conv2_6/x2/bn"
|
495 |
+
top: "conv2_6/x2/bn"
|
496 |
+
scale_param {
|
497 |
+
bias_term: true
|
498 |
+
}
|
499 |
+
}
|
500 |
+
layer {
|
501 |
+
name: "relu2_6/x2"
|
502 |
+
type: "ReLU"
|
503 |
+
bottom: "conv2_6/x2/bn"
|
504 |
+
top: "conv2_6/x2/bn"
|
505 |
+
}
|
506 |
+
layer {
|
507 |
+
name: "conv2_6/x2"
|
508 |
+
type: "Convolution"
|
509 |
+
bottom: "conv2_6/x2/bn"
|
510 |
+
top: "conv2_6/x2"
|
511 |
+
convolution_param {
|
512 |
+
num_output: 32
|
513 |
+
bias_term: false
|
514 |
+
pad: 1
|
515 |
+
kernel_size: 3
|
516 |
+
}
|
517 |
+
}
|
518 |
+
layer {
|
519 |
+
name: "concat_2_6"
|
520 |
+
type: "Concat"
|
521 |
+
bottom: "concat_2_5"
|
522 |
+
bottom: "conv2_6/x2"
|
523 |
+
top: "concat_2_6"
|
524 |
+
}
|
525 |
+
layer {
|
526 |
+
name: "conv2_blk/bn"
|
527 |
+
type: "BatchNorm"
|
528 |
+
bottom: "concat_2_6"
|
529 |
+
top: "conv2_blk/bn"
|
530 |
+
batch_norm_param {
|
531 |
+
eps: 1e-5
|
532 |
+
}
|
533 |
+
}
|
534 |
+
layer {
|
535 |
+
name: "conv2_blk/scale"
|
536 |
+
type: "Scale"
|
537 |
+
bottom: "conv2_blk/bn"
|
538 |
+
top: "conv2_blk/bn"
|
539 |
+
scale_param {
|
540 |
+
bias_term: true
|
541 |
+
}
|
542 |
+
}
|
543 |
+
layer {
|
544 |
+
name: "relu2_blk"
|
545 |
+
type: "ReLU"
|
546 |
+
bottom: "conv2_blk/bn"
|
547 |
+
top: "conv2_blk/bn"
|
548 |
+
}
|
549 |
+
layer {
|
550 |
+
name: "conv2_blk"
|
551 |
+
type: "Convolution"
|
552 |
+
bottom: "conv2_blk/bn"
|
553 |
+
top: "conv2_blk"
|
554 |
+
convolution_param {
|
555 |
+
num_output: 128
|
556 |
+
bias_term: false
|
557 |
+
kernel_size: 1
|
558 |
+
}
|
559 |
+
}
|
560 |
+
layer {
|
561 |
+
name: "pool2"
|
562 |
+
type: "Pooling"
|
563 |
+
bottom: "conv2_blk"
|
564 |
+
top: "pool2"
|
565 |
+
pooling_param {
|
566 |
+
pool: AVE
|
567 |
+
kernel_size: 2
|
568 |
+
stride: 2
|
569 |
+
}
|
570 |
+
}
|
571 |
+
layer {
|
572 |
+
name: "conv3_1/x1/bn"
|
573 |
+
type: "BatchNorm"
|
574 |
+
bottom: "pool2"
|
575 |
+
top: "conv3_1/x1/bn"
|
576 |
+
batch_norm_param {
|
577 |
+
eps: 1e-5
|
578 |
+
}
|
579 |
+
}
|
580 |
+
layer {
|
581 |
+
name: "conv3_1/x1/scale"
|
582 |
+
type: "Scale"
|
583 |
+
bottom: "conv3_1/x1/bn"
|
584 |
+
top: "conv3_1/x1/bn"
|
585 |
+
scale_param {
|
586 |
+
bias_term: true
|
587 |
+
}
|
588 |
+
}
|
589 |
+
layer {
|
590 |
+
name: "relu3_1/x1"
|
591 |
+
type: "ReLU"
|
592 |
+
bottom: "conv3_1/x1/bn"
|
593 |
+
top: "conv3_1/x1/bn"
|
594 |
+
}
|
595 |
+
layer {
|
596 |
+
name: "conv3_1/x1"
|
597 |
+
type: "Convolution"
|
598 |
+
bottom: "conv3_1/x1/bn"
|
599 |
+
top: "conv3_1/x1"
|
600 |
+
convolution_param {
|
601 |
+
num_output: 128
|
602 |
+
bias_term: false
|
603 |
+
kernel_size: 1
|
604 |
+
}
|
605 |
+
}
|
606 |
+
layer {
|
607 |
+
name: "conv3_1/x2/bn"
|
608 |
+
type: "BatchNorm"
|
609 |
+
bottom: "conv3_1/x1"
|
610 |
+
top: "conv3_1/x2/bn"
|
611 |
+
batch_norm_param {
|
612 |
+
eps: 1e-5
|
613 |
+
}
|
614 |
+
}
|
615 |
+
layer {
|
616 |
+
name: "conv3_1/x2/scale"
|
617 |
+
type: "Scale"
|
618 |
+
bottom: "conv3_1/x2/bn"
|
619 |
+
top: "conv3_1/x2/bn"
|
620 |
+
scale_param {
|
621 |
+
bias_term: true
|
622 |
+
}
|
623 |
+
}
|
624 |
+
layer {
|
625 |
+
name: "relu3_1/x2"
|
626 |
+
type: "ReLU"
|
627 |
+
bottom: "conv3_1/x2/bn"
|
628 |
+
top: "conv3_1/x2/bn"
|
629 |
+
}
|
630 |
+
layer {
|
631 |
+
name: "conv3_1/x2"
|
632 |
+
type: "Convolution"
|
633 |
+
bottom: "conv3_1/x2/bn"
|
634 |
+
top: "conv3_1/x2"
|
635 |
+
convolution_param {
|
636 |
+
num_output: 32
|
637 |
+
bias_term: false
|
638 |
+
pad: 1
|
639 |
+
kernel_size: 3
|
640 |
+
}
|
641 |
+
}
|
642 |
+
layer {
|
643 |
+
name: "concat_3_1"
|
644 |
+
type: "Concat"
|
645 |
+
bottom: "pool2"
|
646 |
+
bottom: "conv3_1/x2"
|
647 |
+
top: "concat_3_1"
|
648 |
+
}
|
649 |
+
layer {
|
650 |
+
name: "conv3_2/x1/bn"
|
651 |
+
type: "BatchNorm"
|
652 |
+
bottom: "concat_3_1"
|
653 |
+
top: "conv3_2/x1/bn"
|
654 |
+
batch_norm_param {
|
655 |
+
eps: 1e-5
|
656 |
+
}
|
657 |
+
}
|
658 |
+
layer {
|
659 |
+
name: "conv3_2/x1/scale"
|
660 |
+
type: "Scale"
|
661 |
+
bottom: "conv3_2/x1/bn"
|
662 |
+
top: "conv3_2/x1/bn"
|
663 |
+
scale_param {
|
664 |
+
bias_term: true
|
665 |
+
}
|
666 |
+
}
|
667 |
+
layer {
|
668 |
+
name: "relu3_2/x1"
|
669 |
+
type: "ReLU"
|
670 |
+
bottom: "conv3_2/x1/bn"
|
671 |
+
top: "conv3_2/x1/bn"
|
672 |
+
}
|
673 |
+
layer {
|
674 |
+
name: "conv3_2/x1"
|
675 |
+
type: "Convolution"
|
676 |
+
bottom: "conv3_2/x1/bn"
|
677 |
+
top: "conv3_2/x1"
|
678 |
+
convolution_param {
|
679 |
+
num_output: 128
|
680 |
+
bias_term: false
|
681 |
+
kernel_size: 1
|
682 |
+
}
|
683 |
+
}
|
684 |
+
layer {
|
685 |
+
name: "conv3_2/x2/bn"
|
686 |
+
type: "BatchNorm"
|
687 |
+
bottom: "conv3_2/x1"
|
688 |
+
top: "conv3_2/x2/bn"
|
689 |
+
batch_norm_param {
|
690 |
+
eps: 1e-5
|
691 |
+
}
|
692 |
+
}
|
693 |
+
layer {
|
694 |
+
name: "conv3_2/x2/scale"
|
695 |
+
type: "Scale"
|
696 |
+
bottom: "conv3_2/x2/bn"
|
697 |
+
top: "conv3_2/x2/bn"
|
698 |
+
scale_param {
|
699 |
+
bias_term: true
|
700 |
+
}
|
701 |
+
}
|
702 |
+
layer {
|
703 |
+
name: "relu3_2/x2"
|
704 |
+
type: "ReLU"
|
705 |
+
bottom: "conv3_2/x2/bn"
|
706 |
+
top: "conv3_2/x2/bn"
|
707 |
+
}
|
708 |
+
layer {
|
709 |
+
name: "conv3_2/x2"
|
710 |
+
type: "Convolution"
|
711 |
+
bottom: "conv3_2/x2/bn"
|
712 |
+
top: "conv3_2/x2"
|
713 |
+
convolution_param {
|
714 |
+
num_output: 32
|
715 |
+
bias_term: false
|
716 |
+
pad: 1
|
717 |
+
kernel_size: 3
|
718 |
+
}
|
719 |
+
}
|
720 |
+
layer {
|
721 |
+
name: "concat_3_2"
|
722 |
+
type: "Concat"
|
723 |
+
bottom: "concat_3_1"
|
724 |
+
bottom: "conv3_2/x2"
|
725 |
+
top: "concat_3_2"
|
726 |
+
}
|
727 |
+
layer {
|
728 |
+
name: "conv3_3/x1/bn"
|
729 |
+
type: "BatchNorm"
|
730 |
+
bottom: "concat_3_2"
|
731 |
+
top: "conv3_3/x1/bn"
|
732 |
+
batch_norm_param {
|
733 |
+
eps: 1e-5
|
734 |
+
}
|
735 |
+
}
|
736 |
+
layer {
|
737 |
+
name: "conv3_3/x1/scale"
|
738 |
+
type: "Scale"
|
739 |
+
bottom: "conv3_3/x1/bn"
|
740 |
+
top: "conv3_3/x1/bn"
|
741 |
+
scale_param {
|
742 |
+
bias_term: true
|
743 |
+
}
|
744 |
+
}
|
745 |
+
layer {
|
746 |
+
name: "relu3_3/x1"
|
747 |
+
type: "ReLU"
|
748 |
+
bottom: "conv3_3/x1/bn"
|
749 |
+
top: "conv3_3/x1/bn"
|
750 |
+
}
|
751 |
+
layer {
|
752 |
+
name: "conv3_3/x1"
|
753 |
+
type: "Convolution"
|
754 |
+
bottom: "conv3_3/x1/bn"
|
755 |
+
top: "conv3_3/x1"
|
756 |
+
convolution_param {
|
757 |
+
num_output: 128
|
758 |
+
bias_term: false
|
759 |
+
kernel_size: 1
|
760 |
+
}
|
761 |
+
}
|
762 |
+
layer {
|
763 |
+
name: "conv3_3/x2/bn"
|
764 |
+
type: "BatchNorm"
|
765 |
+
bottom: "conv3_3/x1"
|
766 |
+
top: "conv3_3/x2/bn"
|
767 |
+
batch_norm_param {
|
768 |
+
eps: 1e-5
|
769 |
+
}
|
770 |
+
}
|
771 |
+
layer {
|
772 |
+
name: "conv3_3/x2/scale"
|
773 |
+
type: "Scale"
|
774 |
+
bottom: "conv3_3/x2/bn"
|
775 |
+
top: "conv3_3/x2/bn"
|
776 |
+
scale_param {
|
777 |
+
bias_term: true
|
778 |
+
}
|
779 |
+
}
|
780 |
+
layer {
|
781 |
+
name: "relu3_3/x2"
|
782 |
+
type: "ReLU"
|
783 |
+
bottom: "conv3_3/x2/bn"
|
784 |
+
top: "conv3_3/x2/bn"
|
785 |
+
}
|
786 |
+
layer {
|
787 |
+
name: "conv3_3/x2"
|
788 |
+
type: "Convolution"
|
789 |
+
bottom: "conv3_3/x2/bn"
|
790 |
+
top: "conv3_3/x2"
|
791 |
+
convolution_param {
|
792 |
+
num_output: 32
|
793 |
+
bias_term: false
|
794 |
+
pad: 1
|
795 |
+
kernel_size: 3
|
796 |
+
}
|
797 |
+
}
|
798 |
+
layer {
|
799 |
+
name: "concat_3_3"
|
800 |
+
type: "Concat"
|
801 |
+
bottom: "concat_3_2"
|
802 |
+
bottom: "conv3_3/x2"
|
803 |
+
top: "concat_3_3"
|
804 |
+
}
|
805 |
+
layer {
|
806 |
+
name: "conv3_4/x1/bn"
|
807 |
+
type: "BatchNorm"
|
808 |
+
bottom: "concat_3_3"
|
809 |
+
top: "conv3_4/x1/bn"
|
810 |
+
batch_norm_param {
|
811 |
+
eps: 1e-5
|
812 |
+
}
|
813 |
+
}
|
814 |
+
layer {
|
815 |
+
name: "conv3_4/x1/scale"
|
816 |
+
type: "Scale"
|
817 |
+
bottom: "conv3_4/x1/bn"
|
818 |
+
top: "conv3_4/x1/bn"
|
819 |
+
scale_param {
|
820 |
+
bias_term: true
|
821 |
+
}
|
822 |
+
}
|
823 |
+
layer {
|
824 |
+
name: "relu3_4/x1"
|
825 |
+
type: "ReLU"
|
826 |
+
bottom: "conv3_4/x1/bn"
|
827 |
+
top: "conv3_4/x1/bn"
|
828 |
+
}
|
829 |
+
layer {
|
830 |
+
name: "conv3_4/x1"
|
831 |
+
type: "Convolution"
|
832 |
+
bottom: "conv3_4/x1/bn"
|
833 |
+
top: "conv3_4/x1"
|
834 |
+
convolution_param {
|
835 |
+
num_output: 128
|
836 |
+
bias_term: false
|
837 |
+
kernel_size: 1
|
838 |
+
}
|
839 |
+
}
|
840 |
+
layer {
|
841 |
+
name: "conv3_4/x2/bn"
|
842 |
+
type: "BatchNorm"
|
843 |
+
bottom: "conv3_4/x1"
|
844 |
+
top: "conv3_4/x2/bn"
|
845 |
+
batch_norm_param {
|
846 |
+
eps: 1e-5
|
847 |
+
}
|
848 |
+
}
|
849 |
+
layer {
|
850 |
+
name: "conv3_4/x2/scale"
|
851 |
+
type: "Scale"
|
852 |
+
bottom: "conv3_4/x2/bn"
|
853 |
+
top: "conv3_4/x2/bn"
|
854 |
+
scale_param {
|
855 |
+
bias_term: true
|
856 |
+
}
|
857 |
+
}
|
858 |
+
layer {
|
859 |
+
name: "relu3_4/x2"
|
860 |
+
type: "ReLU"
|
861 |
+
bottom: "conv3_4/x2/bn"
|
862 |
+
top: "conv3_4/x2/bn"
|
863 |
+
}
|
864 |
+
layer {
|
865 |
+
name: "conv3_4/x2"
|
866 |
+
type: "Convolution"
|
867 |
+
bottom: "conv3_4/x2/bn"
|
868 |
+
top: "conv3_4/x2"
|
869 |
+
convolution_param {
|
870 |
+
num_output: 32
|
871 |
+
bias_term: false
|
872 |
+
pad: 1
|
873 |
+
kernel_size: 3
|
874 |
+
}
|
875 |
+
}
|
876 |
+
layer {
|
877 |
+
name: "concat_3_4"
|
878 |
+
type: "Concat"
|
879 |
+
bottom: "concat_3_3"
|
880 |
+
bottom: "conv3_4/x2"
|
881 |
+
top: "concat_3_4"
|
882 |
+
}
|
883 |
+
layer {
|
884 |
+
name: "conv3_5/x1/bn"
|
885 |
+
type: "BatchNorm"
|
886 |
+
bottom: "concat_3_4"
|
887 |
+
top: "conv3_5/x1/bn"
|
888 |
+
batch_norm_param {
|
889 |
+
eps: 1e-5
|
890 |
+
}
|
891 |
+
}
|
892 |
+
layer {
|
893 |
+
name: "conv3_5/x1/scale"
|
894 |
+
type: "Scale"
|
895 |
+
bottom: "conv3_5/x1/bn"
|
896 |
+
top: "conv3_5/x1/bn"
|
897 |
+
scale_param {
|
898 |
+
bias_term: true
|
899 |
+
}
|
900 |
+
}
|
901 |
+
layer {
|
902 |
+
name: "relu3_5/x1"
|
903 |
+
type: "ReLU"
|
904 |
+
bottom: "conv3_5/x1/bn"
|
905 |
+
top: "conv3_5/x1/bn"
|
906 |
+
}
|
907 |
+
layer {
|
908 |
+
name: "conv3_5/x1"
|
909 |
+
type: "Convolution"
|
910 |
+
bottom: "conv3_5/x1/bn"
|
911 |
+
top: "conv3_5/x1"
|
912 |
+
convolution_param {
|
913 |
+
num_output: 128
|
914 |
+
bias_term: false
|
915 |
+
kernel_size: 1
|
916 |
+
}
|
917 |
+
}
|
918 |
+
layer {
|
919 |
+
name: "conv3_5/x2/bn"
|
920 |
+
type: "BatchNorm"
|
921 |
+
bottom: "conv3_5/x1"
|
922 |
+
top: "conv3_5/x2/bn"
|
923 |
+
batch_norm_param {
|
924 |
+
eps: 1e-5
|
925 |
+
}
|
926 |
+
}
|
927 |
+
layer {
|
928 |
+
name: "conv3_5/x2/scale"
|
929 |
+
type: "Scale"
|
930 |
+
bottom: "conv3_5/x2/bn"
|
931 |
+
top: "conv3_5/x2/bn"
|
932 |
+
scale_param {
|
933 |
+
bias_term: true
|
934 |
+
}
|
935 |
+
}
|
936 |
+
layer {
|
937 |
+
name: "relu3_5/x2"
|
938 |
+
type: "ReLU"
|
939 |
+
bottom: "conv3_5/x2/bn"
|
940 |
+
top: "conv3_5/x2/bn"
|
941 |
+
}
|
942 |
+
layer {
|
943 |
+
name: "conv3_5/x2"
|
944 |
+
type: "Convolution"
|
945 |
+
bottom: "conv3_5/x2/bn"
|
946 |
+
top: "conv3_5/x2"
|
947 |
+
convolution_param {
|
948 |
+
num_output: 32
|
949 |
+
bias_term: false
|
950 |
+
pad: 1
|
951 |
+
kernel_size: 3
|
952 |
+
}
|
953 |
+
}
|
954 |
+
layer {
|
955 |
+
name: "concat_3_5"
|
956 |
+
type: "Concat"
|
957 |
+
bottom: "concat_3_4"
|
958 |
+
bottom: "conv3_5/x2"
|
959 |
+
top: "concat_3_5"
|
960 |
+
}
|
961 |
+
layer {
|
962 |
+
name: "conv3_6/x1/bn"
|
963 |
+
type: "BatchNorm"
|
964 |
+
bottom: "concat_3_5"
|
965 |
+
top: "conv3_6/x1/bn"
|
966 |
+
batch_norm_param {
|
967 |
+
eps: 1e-5
|
968 |
+
}
|
969 |
+
}
|
970 |
+
layer {
|
971 |
+
name: "conv3_6/x1/scale"
|
972 |
+
type: "Scale"
|
973 |
+
bottom: "conv3_6/x1/bn"
|
974 |
+
top: "conv3_6/x1/bn"
|
975 |
+
scale_param {
|
976 |
+
bias_term: true
|
977 |
+
}
|
978 |
+
}
|
979 |
+
layer {
|
980 |
+
name: "relu3_6/x1"
|
981 |
+
type: "ReLU"
|
982 |
+
bottom: "conv3_6/x1/bn"
|
983 |
+
top: "conv3_6/x1/bn"
|
984 |
+
}
|
985 |
+
layer {
|
986 |
+
name: "conv3_6/x1"
|
987 |
+
type: "Convolution"
|
988 |
+
bottom: "conv3_6/x1/bn"
|
989 |
+
top: "conv3_6/x1"
|
990 |
+
convolution_param {
|
991 |
+
num_output: 128
|
992 |
+
bias_term: false
|
993 |
+
kernel_size: 1
|
994 |
+
}
|
995 |
+
}
|
996 |
+
layer {
|
997 |
+
name: "conv3_6/x2/bn"
|
998 |
+
type: "BatchNorm"
|
999 |
+
bottom: "conv3_6/x1"
|
1000 |
+
top: "conv3_6/x2/bn"
|
1001 |
+
batch_norm_param {
|
1002 |
+
eps: 1e-5
|
1003 |
+
}
|
1004 |
+
}
|
1005 |
+
layer {
|
1006 |
+
name: "conv3_6/x2/scale"
|
1007 |
+
type: "Scale"
|
1008 |
+
bottom: "conv3_6/x2/bn"
|
1009 |
+
top: "conv3_6/x2/bn"
|
1010 |
+
scale_param {
|
1011 |
+
bias_term: true
|
1012 |
+
}
|
1013 |
+
}
|
1014 |
+
layer {
|
1015 |
+
name: "relu3_6/x2"
|
1016 |
+
type: "ReLU"
|
1017 |
+
bottom: "conv3_6/x2/bn"
|
1018 |
+
top: "conv3_6/x2/bn"
|
1019 |
+
}
|
1020 |
+
layer {
|
1021 |
+
name: "conv3_6/x2"
|
1022 |
+
type: "Convolution"
|
1023 |
+
bottom: "conv3_6/x2/bn"
|
1024 |
+
top: "conv3_6/x2"
|
1025 |
+
convolution_param {
|
1026 |
+
num_output: 32
|
1027 |
+
bias_term: false
|
1028 |
+
pad: 1
|
1029 |
+
kernel_size: 3
|
1030 |
+
}
|
1031 |
+
}
|
1032 |
+
layer {
|
1033 |
+
name: "concat_3_6"
|
1034 |
+
type: "Concat"
|
1035 |
+
bottom: "concat_3_5"
|
1036 |
+
bottom: "conv3_6/x2"
|
1037 |
+
top: "concat_3_6"
|
1038 |
+
}
|
1039 |
+
layer {
|
1040 |
+
name: "conv3_7/x1/bn"
|
1041 |
+
type: "BatchNorm"
|
1042 |
+
bottom: "concat_3_6"
|
1043 |
+
top: "conv3_7/x1/bn"
|
1044 |
+
batch_norm_param {
|
1045 |
+
eps: 1e-5
|
1046 |
+
}
|
1047 |
+
}
|
1048 |
+
layer {
|
1049 |
+
name: "conv3_7/x1/scale"
|
1050 |
+
type: "Scale"
|
1051 |
+
bottom: "conv3_7/x1/bn"
|
1052 |
+
top: "conv3_7/x1/bn"
|
1053 |
+
scale_param {
|
1054 |
+
bias_term: true
|
1055 |
+
}
|
1056 |
+
}
|
1057 |
+
layer {
|
1058 |
+
name: "relu3_7/x1"
|
1059 |
+
type: "ReLU"
|
1060 |
+
bottom: "conv3_7/x1/bn"
|
1061 |
+
top: "conv3_7/x1/bn"
|
1062 |
+
}
|
1063 |
+
layer {
|
1064 |
+
name: "conv3_7/x1"
|
1065 |
+
type: "Convolution"
|
1066 |
+
bottom: "conv3_7/x1/bn"
|
1067 |
+
top: "conv3_7/x1"
|
1068 |
+
convolution_param {
|
1069 |
+
num_output: 128
|
1070 |
+
bias_term: false
|
1071 |
+
kernel_size: 1
|
1072 |
+
}
|
1073 |
+
}
|
1074 |
+
layer {
|
1075 |
+
name: "conv3_7/x2/bn"
|
1076 |
+
type: "BatchNorm"
|
1077 |
+
bottom: "conv3_7/x1"
|
1078 |
+
top: "conv3_7/x2/bn"
|
1079 |
+
batch_norm_param {
|
1080 |
+
eps: 1e-5
|
1081 |
+
}
|
1082 |
+
}
|
1083 |
+
layer {
|
1084 |
+
name: "conv3_7/x2/scale"
|
1085 |
+
type: "Scale"
|
1086 |
+
bottom: "conv3_7/x2/bn"
|
1087 |
+
top: "conv3_7/x2/bn"
|
1088 |
+
scale_param {
|
1089 |
+
bias_term: true
|
1090 |
+
}
|
1091 |
+
}
|
1092 |
+
layer {
|
1093 |
+
name: "relu3_7/x2"
|
1094 |
+
type: "ReLU"
|
1095 |
+
bottom: "conv3_7/x2/bn"
|
1096 |
+
top: "conv3_7/x2/bn"
|
1097 |
+
}
|
1098 |
+
layer {
|
1099 |
+
name: "conv3_7/x2"
|
1100 |
+
type: "Convolution"
|
1101 |
+
bottom: "conv3_7/x2/bn"
|
1102 |
+
top: "conv3_7/x2"
|
1103 |
+
convolution_param {
|
1104 |
+
num_output: 32
|
1105 |
+
bias_term: false
|
1106 |
+
pad: 1
|
1107 |
+
kernel_size: 3
|
1108 |
+
}
|
1109 |
+
}
|
1110 |
+
layer {
|
1111 |
+
name: "concat_3_7"
|
1112 |
+
type: "Concat"
|
1113 |
+
bottom: "concat_3_6"
|
1114 |
+
bottom: "conv3_7/x2"
|
1115 |
+
top: "concat_3_7"
|
1116 |
+
}
|
1117 |
+
layer {
|
1118 |
+
name: "conv3_8/x1/bn"
|
1119 |
+
type: "BatchNorm"
|
1120 |
+
bottom: "concat_3_7"
|
1121 |
+
top: "conv3_8/x1/bn"
|
1122 |
+
batch_norm_param {
|
1123 |
+
eps: 1e-5
|
1124 |
+
}
|
1125 |
+
}
|
1126 |
+
layer {
|
1127 |
+
name: "conv3_8/x1/scale"
|
1128 |
+
type: "Scale"
|
1129 |
+
bottom: "conv3_8/x1/bn"
|
1130 |
+
top: "conv3_8/x1/bn"
|
1131 |
+
scale_param {
|
1132 |
+
bias_term: true
|
1133 |
+
}
|
1134 |
+
}
|
1135 |
+
layer {
|
1136 |
+
name: "relu3_8/x1"
|
1137 |
+
type: "ReLU"
|
1138 |
+
bottom: "conv3_8/x1/bn"
|
1139 |
+
top: "conv3_8/x1/bn"
|
1140 |
+
}
|
1141 |
+
layer {
|
1142 |
+
name: "conv3_8/x1"
|
1143 |
+
type: "Convolution"
|
1144 |
+
bottom: "conv3_8/x1/bn"
|
1145 |
+
top: "conv3_8/x1"
|
1146 |
+
convolution_param {
|
1147 |
+
num_output: 128
|
1148 |
+
bias_term: false
|
1149 |
+
kernel_size: 1
|
1150 |
+
}
|
1151 |
+
}
|
1152 |
+
layer {
|
1153 |
+
name: "conv3_8/x2/bn"
|
1154 |
+
type: "BatchNorm"
|
1155 |
+
bottom: "conv3_8/x1"
|
1156 |
+
top: "conv3_8/x2/bn"
|
1157 |
+
batch_norm_param {
|
1158 |
+
eps: 1e-5
|
1159 |
+
}
|
1160 |
+
}
|
1161 |
+
layer {
|
1162 |
+
name: "conv3_8/x2/scale"
|
1163 |
+
type: "Scale"
|
1164 |
+
bottom: "conv3_8/x2/bn"
|
1165 |
+
top: "conv3_8/x2/bn"
|
1166 |
+
scale_param {
|
1167 |
+
bias_term: true
|
1168 |
+
}
|
1169 |
+
}
|
1170 |
+
layer {
|
1171 |
+
name: "relu3_8/x2"
|
1172 |
+
type: "ReLU"
|
1173 |
+
bottom: "conv3_8/x2/bn"
|
1174 |
+
top: "conv3_8/x2/bn"
|
1175 |
+
}
|
1176 |
+
layer {
|
1177 |
+
name: "conv3_8/x2"
|
1178 |
+
type: "Convolution"
|
1179 |
+
bottom: "conv3_8/x2/bn"
|
1180 |
+
top: "conv3_8/x2"
|
1181 |
+
convolution_param {
|
1182 |
+
num_output: 32
|
1183 |
+
bias_term: false
|
1184 |
+
pad: 1
|
1185 |
+
kernel_size: 3
|
1186 |
+
}
|
1187 |
+
}
|
1188 |
+
layer {
|
1189 |
+
name: "concat_3_8"
|
1190 |
+
type: "Concat"
|
1191 |
+
bottom: "concat_3_7"
|
1192 |
+
bottom: "conv3_8/x2"
|
1193 |
+
top: "concat_3_8"
|
1194 |
+
}
|
1195 |
+
layer {
|
1196 |
+
name: "conv3_9/x1/bn"
|
1197 |
+
type: "BatchNorm"
|
1198 |
+
bottom: "concat_3_8"
|
1199 |
+
top: "conv3_9/x1/bn"
|
1200 |
+
batch_norm_param {
|
1201 |
+
eps: 1e-5
|
1202 |
+
}
|
1203 |
+
}
|
1204 |
+
layer {
|
1205 |
+
name: "conv3_9/x1/scale"
|
1206 |
+
type: "Scale"
|
1207 |
+
bottom: "conv3_9/x1/bn"
|
1208 |
+
top: "conv3_9/x1/bn"
|
1209 |
+
scale_param {
|
1210 |
+
bias_term: true
|
1211 |
+
}
|
1212 |
+
}
|
1213 |
+
layer {
|
1214 |
+
name: "relu3_9/x1"
|
1215 |
+
type: "ReLU"
|
1216 |
+
bottom: "conv3_9/x1/bn"
|
1217 |
+
top: "conv3_9/x1/bn"
|
1218 |
+
}
|
1219 |
+
layer {
|
1220 |
+
name: "conv3_9/x1"
|
1221 |
+
type: "Convolution"
|
1222 |
+
bottom: "conv3_9/x1/bn"
|
1223 |
+
top: "conv3_9/x1"
|
1224 |
+
convolution_param {
|
1225 |
+
num_output: 128
|
1226 |
+
bias_term: false
|
1227 |
+
kernel_size: 1
|
1228 |
+
}
|
1229 |
+
}
|
1230 |
+
layer {
|
1231 |
+
name: "conv3_9/x2/bn"
|
1232 |
+
type: "BatchNorm"
|
1233 |
+
bottom: "conv3_9/x1"
|
1234 |
+
top: "conv3_9/x2/bn"
|
1235 |
+
batch_norm_param {
|
1236 |
+
eps: 1e-5
|
1237 |
+
}
|
1238 |
+
}
|
1239 |
+
layer {
|
1240 |
+
name: "conv3_9/x2/scale"
|
1241 |
+
type: "Scale"
|
1242 |
+
bottom: "conv3_9/x2/bn"
|
1243 |
+
top: "conv3_9/x2/bn"
|
1244 |
+
scale_param {
|
1245 |
+
bias_term: true
|
1246 |
+
}
|
1247 |
+
}
|
1248 |
+
layer {
|
1249 |
+
name: "relu3_9/x2"
|
1250 |
+
type: "ReLU"
|
1251 |
+
bottom: "conv3_9/x2/bn"
|
1252 |
+
top: "conv3_9/x2/bn"
|
1253 |
+
}
|
1254 |
+
layer {
|
1255 |
+
name: "conv3_9/x2"
|
1256 |
+
type: "Convolution"
|
1257 |
+
bottom: "conv3_9/x2/bn"
|
1258 |
+
top: "conv3_9/x2"
|
1259 |
+
convolution_param {
|
1260 |
+
num_output: 32
|
1261 |
+
bias_term: false
|
1262 |
+
pad: 1
|
1263 |
+
kernel_size: 3
|
1264 |
+
}
|
1265 |
+
}
|
1266 |
+
layer {
|
1267 |
+
name: "concat_3_9"
|
1268 |
+
type: "Concat"
|
1269 |
+
bottom: "concat_3_8"
|
1270 |
+
bottom: "conv3_9/x2"
|
1271 |
+
top: "concat_3_9"
|
1272 |
+
}
|
1273 |
+
layer {
|
1274 |
+
name: "conv3_10/x1/bn"
|
1275 |
+
type: "BatchNorm"
|
1276 |
+
bottom: "concat_3_9"
|
1277 |
+
top: "conv3_10/x1/bn"
|
1278 |
+
batch_norm_param {
|
1279 |
+
eps: 1e-5
|
1280 |
+
}
|
1281 |
+
}
|
1282 |
+
layer {
|
1283 |
+
name: "conv3_10/x1/scale"
|
1284 |
+
type: "Scale"
|
1285 |
+
bottom: "conv3_10/x1/bn"
|
1286 |
+
top: "conv3_10/x1/bn"
|
1287 |
+
scale_param {
|
1288 |
+
bias_term: true
|
1289 |
+
}
|
1290 |
+
}
|
1291 |
+
layer {
|
1292 |
+
name: "relu3_10/x1"
|
1293 |
+
type: "ReLU"
|
1294 |
+
bottom: "conv3_10/x1/bn"
|
1295 |
+
top: "conv3_10/x1/bn"
|
1296 |
+
}
|
1297 |
+
layer {
|
1298 |
+
name: "conv3_10/x1"
|
1299 |
+
type: "Convolution"
|
1300 |
+
bottom: "conv3_10/x1/bn"
|
1301 |
+
top: "conv3_10/x1"
|
1302 |
+
convolution_param {
|
1303 |
+
num_output: 128
|
1304 |
+
bias_term: false
|
1305 |
+
kernel_size: 1
|
1306 |
+
}
|
1307 |
+
}
|
1308 |
+
layer {
|
1309 |
+
name: "conv3_10/x2/bn"
|
1310 |
+
type: "BatchNorm"
|
1311 |
+
bottom: "conv3_10/x1"
|
1312 |
+
top: "conv3_10/x2/bn"
|
1313 |
+
batch_norm_param {
|
1314 |
+
eps: 1e-5
|
1315 |
+
}
|
1316 |
+
}
|
1317 |
+
layer {
|
1318 |
+
name: "conv3_10/x2/scale"
|
1319 |
+
type: "Scale"
|
1320 |
+
bottom: "conv3_10/x2/bn"
|
1321 |
+
top: "conv3_10/x2/bn"
|
1322 |
+
scale_param {
|
1323 |
+
bias_term: true
|
1324 |
+
}
|
1325 |
+
}
|
1326 |
+
layer {
|
1327 |
+
name: "relu3_10/x2"
|
1328 |
+
type: "ReLU"
|
1329 |
+
bottom: "conv3_10/x2/bn"
|
1330 |
+
top: "conv3_10/x2/bn"
|
1331 |
+
}
|
1332 |
+
layer {
|
1333 |
+
name: "conv3_10/x2"
|
1334 |
+
type: "Convolution"
|
1335 |
+
bottom: "conv3_10/x2/bn"
|
1336 |
+
top: "conv3_10/x2"
|
1337 |
+
convolution_param {
|
1338 |
+
num_output: 32
|
1339 |
+
bias_term: false
|
1340 |
+
pad: 1
|
1341 |
+
kernel_size: 3
|
1342 |
+
}
|
1343 |
+
}
|
1344 |
+
layer {
|
1345 |
+
name: "concat_3_10"
|
1346 |
+
type: "Concat"
|
1347 |
+
bottom: "concat_3_9"
|
1348 |
+
bottom: "conv3_10/x2"
|
1349 |
+
top: "concat_3_10"
|
1350 |
+
}
|
1351 |
+
layer {
|
1352 |
+
name: "conv3_11/x1/bn"
|
1353 |
+
type: "BatchNorm"
|
1354 |
+
bottom: "concat_3_10"
|
1355 |
+
top: "conv3_11/x1/bn"
|
1356 |
+
batch_norm_param {
|
1357 |
+
eps: 1e-5
|
1358 |
+
}
|
1359 |
+
}
|
1360 |
+
layer {
|
1361 |
+
name: "conv3_11/x1/scale"
|
1362 |
+
type: "Scale"
|
1363 |
+
bottom: "conv3_11/x1/bn"
|
1364 |
+
top: "conv3_11/x1/bn"
|
1365 |
+
scale_param {
|
1366 |
+
bias_term: true
|
1367 |
+
}
|
1368 |
+
}
|
1369 |
+
layer {
|
1370 |
+
name: "relu3_11/x1"
|
1371 |
+
type: "ReLU"
|
1372 |
+
bottom: "conv3_11/x1/bn"
|
1373 |
+
top: "conv3_11/x1/bn"
|
1374 |
+
}
|
1375 |
+
layer {
|
1376 |
+
name: "conv3_11/x1"
|
1377 |
+
type: "Convolution"
|
1378 |
+
bottom: "conv3_11/x1/bn"
|
1379 |
+
top: "conv3_11/x1"
|
1380 |
+
convolution_param {
|
1381 |
+
num_output: 128
|
1382 |
+
bias_term: false
|
1383 |
+
kernel_size: 1
|
1384 |
+
}
|
1385 |
+
}
|
1386 |
+
layer {
|
1387 |
+
name: "conv3_11/x2/bn"
|
1388 |
+
type: "BatchNorm"
|
1389 |
+
bottom: "conv3_11/x1"
|
1390 |
+
top: "conv3_11/x2/bn"
|
1391 |
+
batch_norm_param {
|
1392 |
+
eps: 1e-5
|
1393 |
+
}
|
1394 |
+
}
|
1395 |
+
layer {
|
1396 |
+
name: "conv3_11/x2/scale"
|
1397 |
+
type: "Scale"
|
1398 |
+
bottom: "conv3_11/x2/bn"
|
1399 |
+
top: "conv3_11/x2/bn"
|
1400 |
+
scale_param {
|
1401 |
+
bias_term: true
|
1402 |
+
}
|
1403 |
+
}
|
1404 |
+
layer {
|
1405 |
+
name: "relu3_11/x2"
|
1406 |
+
type: "ReLU"
|
1407 |
+
bottom: "conv3_11/x2/bn"
|
1408 |
+
top: "conv3_11/x2/bn"
|
1409 |
+
}
|
1410 |
+
layer {
|
1411 |
+
name: "conv3_11/x2"
|
1412 |
+
type: "Convolution"
|
1413 |
+
bottom: "conv3_11/x2/bn"
|
1414 |
+
top: "conv3_11/x2"
|
1415 |
+
convolution_param {
|
1416 |
+
num_output: 32
|
1417 |
+
bias_term: false
|
1418 |
+
pad: 1
|
1419 |
+
kernel_size: 3
|
1420 |
+
}
|
1421 |
+
}
|
1422 |
+
layer {
|
1423 |
+
name: "concat_3_11"
|
1424 |
+
type: "Concat"
|
1425 |
+
bottom: "concat_3_10"
|
1426 |
+
bottom: "conv3_11/x2"
|
1427 |
+
top: "concat_3_11"
|
1428 |
+
}
|
1429 |
+
layer {
|
1430 |
+
name: "conv3_12/x1/bn"
|
1431 |
+
type: "BatchNorm"
|
1432 |
+
bottom: "concat_3_11"
|
1433 |
+
top: "conv3_12/x1/bn"
|
1434 |
+
batch_norm_param {
|
1435 |
+
eps: 1e-5
|
1436 |
+
}
|
1437 |
+
}
|
1438 |
+
layer {
|
1439 |
+
name: "conv3_12/x1/scale"
|
1440 |
+
type: "Scale"
|
1441 |
+
bottom: "conv3_12/x1/bn"
|
1442 |
+
top: "conv3_12/x1/bn"
|
1443 |
+
scale_param {
|
1444 |
+
bias_term: true
|
1445 |
+
}
|
1446 |
+
}
|
1447 |
+
layer {
|
1448 |
+
name: "relu3_12/x1"
|
1449 |
+
type: "ReLU"
|
1450 |
+
bottom: "conv3_12/x1/bn"
|
1451 |
+
top: "conv3_12/x1/bn"
|
1452 |
+
}
|
1453 |
+
layer {
|
1454 |
+
name: "conv3_12/x1"
|
1455 |
+
type: "Convolution"
|
1456 |
+
bottom: "conv3_12/x1/bn"
|
1457 |
+
top: "conv3_12/x1"
|
1458 |
+
convolution_param {
|
1459 |
+
num_output: 128
|
1460 |
+
bias_term: false
|
1461 |
+
kernel_size: 1
|
1462 |
+
}
|
1463 |
+
}
|
1464 |
+
layer {
|
1465 |
+
name: "conv3_12/x2/bn"
|
1466 |
+
type: "BatchNorm"
|
1467 |
+
bottom: "conv3_12/x1"
|
1468 |
+
top: "conv3_12/x2/bn"
|
1469 |
+
batch_norm_param {
|
1470 |
+
eps: 1e-5
|
1471 |
+
}
|
1472 |
+
}
|
1473 |
+
layer {
|
1474 |
+
name: "conv3_12/x2/scale"
|
1475 |
+
type: "Scale"
|
1476 |
+
bottom: "conv3_12/x2/bn"
|
1477 |
+
top: "conv3_12/x2/bn"
|
1478 |
+
scale_param {
|
1479 |
+
bias_term: true
|
1480 |
+
}
|
1481 |
+
}
|
1482 |
+
layer {
|
1483 |
+
name: "relu3_12/x2"
|
1484 |
+
type: "ReLU"
|
1485 |
+
bottom: "conv3_12/x2/bn"
|
1486 |
+
top: "conv3_12/x2/bn"
|
1487 |
+
}
|
1488 |
+
layer {
|
1489 |
+
name: "conv3_12/x2"
|
1490 |
+
type: "Convolution"
|
1491 |
+
bottom: "conv3_12/x2/bn"
|
1492 |
+
top: "conv3_12/x2"
|
1493 |
+
convolution_param {
|
1494 |
+
num_output: 32
|
1495 |
+
bias_term: false
|
1496 |
+
pad: 1
|
1497 |
+
kernel_size: 3
|
1498 |
+
}
|
1499 |
+
}
|
1500 |
+
layer {
|
1501 |
+
name: "concat_3_12"
|
1502 |
+
type: "Concat"
|
1503 |
+
bottom: "concat_3_11"
|
1504 |
+
bottom: "conv3_12/x2"
|
1505 |
+
top: "concat_3_12"
|
1506 |
+
}
|
1507 |
+
layer {
|
1508 |
+
name: "conv3_blk/bn"
|
1509 |
+
type: "BatchNorm"
|
1510 |
+
bottom: "concat_3_12"
|
1511 |
+
top: "conv3_blk/bn"
|
1512 |
+
batch_norm_param {
|
1513 |
+
eps: 1e-5
|
1514 |
+
}
|
1515 |
+
}
|
1516 |
+
layer {
|
1517 |
+
name: "conv3_blk/scale"
|
1518 |
+
type: "Scale"
|
1519 |
+
bottom: "conv3_blk/bn"
|
1520 |
+
top: "conv3_blk/bn"
|
1521 |
+
scale_param {
|
1522 |
+
bias_term: true
|
1523 |
+
}
|
1524 |
+
}
|
1525 |
+
layer {
|
1526 |
+
name: "relu3_blk"
|
1527 |
+
type: "ReLU"
|
1528 |
+
bottom: "conv3_blk/bn"
|
1529 |
+
top: "conv3_blk/bn"
|
1530 |
+
}
|
1531 |
+
layer {
|
1532 |
+
name: "conv3_blk"
|
1533 |
+
type: "Convolution"
|
1534 |
+
bottom: "conv3_blk/bn"
|
1535 |
+
top: "conv3_blk"
|
1536 |
+
convolution_param {
|
1537 |
+
num_output: 256
|
1538 |
+
bias_term: false
|
1539 |
+
kernel_size: 1
|
1540 |
+
}
|
1541 |
+
}
|
1542 |
+
layer {
|
1543 |
+
name: "pool3"
|
1544 |
+
type: "Pooling"
|
1545 |
+
bottom: "conv3_blk"
|
1546 |
+
top: "pool3"
|
1547 |
+
pooling_param {
|
1548 |
+
pool: AVE
|
1549 |
+
kernel_size: 2
|
1550 |
+
stride: 2
|
1551 |
+
}
|
1552 |
+
}
|
1553 |
+
layer {
|
1554 |
+
name: "conv4_1/x1/bn"
|
1555 |
+
type: "BatchNorm"
|
1556 |
+
bottom: "pool3"
|
1557 |
+
top: "conv4_1/x1/bn"
|
1558 |
+
batch_norm_param {
|
1559 |
+
eps: 1e-5
|
1560 |
+
}
|
1561 |
+
}
|
1562 |
+
layer {
|
1563 |
+
name: "conv4_1/x1/scale"
|
1564 |
+
type: "Scale"
|
1565 |
+
bottom: "conv4_1/x1/bn"
|
1566 |
+
top: "conv4_1/x1/bn"
|
1567 |
+
scale_param {
|
1568 |
+
bias_term: true
|
1569 |
+
}
|
1570 |
+
}
|
1571 |
+
layer {
|
1572 |
+
name: "relu4_1/x1"
|
1573 |
+
type: "ReLU"
|
1574 |
+
bottom: "conv4_1/x1/bn"
|
1575 |
+
top: "conv4_1/x1/bn"
|
1576 |
+
}
|
1577 |
+
layer {
|
1578 |
+
name: "conv4_1/x1"
|
1579 |
+
type: "Convolution"
|
1580 |
+
bottom: "conv4_1/x1/bn"
|
1581 |
+
top: "conv4_1/x1"
|
1582 |
+
convolution_param {
|
1583 |
+
num_output: 128
|
1584 |
+
bias_term: false
|
1585 |
+
kernel_size: 1
|
1586 |
+
}
|
1587 |
+
}
|
1588 |
+
layer {
|
1589 |
+
name: "conv4_1/x2/bn"
|
1590 |
+
type: "BatchNorm"
|
1591 |
+
bottom: "conv4_1/x1"
|
1592 |
+
top: "conv4_1/x2/bn"
|
1593 |
+
batch_norm_param {
|
1594 |
+
eps: 1e-5
|
1595 |
+
}
|
1596 |
+
}
|
1597 |
+
layer {
|
1598 |
+
name: "conv4_1/x2/scale"
|
1599 |
+
type: "Scale"
|
1600 |
+
bottom: "conv4_1/x2/bn"
|
1601 |
+
top: "conv4_1/x2/bn"
|
1602 |
+
scale_param {
|
1603 |
+
bias_term: true
|
1604 |
+
}
|
1605 |
+
}
|
1606 |
+
layer {
|
1607 |
+
name: "relu4_1/x2"
|
1608 |
+
type: "ReLU"
|
1609 |
+
bottom: "conv4_1/x2/bn"
|
1610 |
+
top: "conv4_1/x2/bn"
|
1611 |
+
}
|
1612 |
+
layer {
|
1613 |
+
name: "conv4_1/x2"
|
1614 |
+
type: "Convolution"
|
1615 |
+
bottom: "conv4_1/x2/bn"
|
1616 |
+
top: "conv4_1/x2"
|
1617 |
+
convolution_param {
|
1618 |
+
num_output: 32
|
1619 |
+
bias_term: false
|
1620 |
+
pad: 1
|
1621 |
+
kernel_size: 3
|
1622 |
+
}
|
1623 |
+
}
|
1624 |
+
layer {
|
1625 |
+
name: "concat_4_1"
|
1626 |
+
type: "Concat"
|
1627 |
+
bottom: "pool3"
|
1628 |
+
bottom: "conv4_1/x2"
|
1629 |
+
top: "concat_4_1"
|
1630 |
+
}
|
1631 |
+
layer {
|
1632 |
+
name: "conv4_2/x1/bn"
|
1633 |
+
type: "BatchNorm"
|
1634 |
+
bottom: "concat_4_1"
|
1635 |
+
top: "conv4_2/x1/bn"
|
1636 |
+
batch_norm_param {
|
1637 |
+
eps: 1e-5
|
1638 |
+
}
|
1639 |
+
}
|
1640 |
+
layer {
|
1641 |
+
name: "conv4_2/x1/scale"
|
1642 |
+
type: "Scale"
|
1643 |
+
bottom: "conv4_2/x1/bn"
|
1644 |
+
top: "conv4_2/x1/bn"
|
1645 |
+
scale_param {
|
1646 |
+
bias_term: true
|
1647 |
+
}
|
1648 |
+
}
|
1649 |
+
layer {
|
1650 |
+
name: "relu4_2/x1"
|
1651 |
+
type: "ReLU"
|
1652 |
+
bottom: "conv4_2/x1/bn"
|
1653 |
+
top: "conv4_2/x1/bn"
|
1654 |
+
}
|
1655 |
+
layer {
|
1656 |
+
name: "conv4_2/x1"
|
1657 |
+
type: "Convolution"
|
1658 |
+
bottom: "conv4_2/x1/bn"
|
1659 |
+
top: "conv4_2/x1"
|
1660 |
+
convolution_param {
|
1661 |
+
num_output: 128
|
1662 |
+
bias_term: false
|
1663 |
+
kernel_size: 1
|
1664 |
+
}
|
1665 |
+
}
|
1666 |
+
layer {
|
1667 |
+
name: "conv4_2/x2/bn"
|
1668 |
+
type: "BatchNorm"
|
1669 |
+
bottom: "conv4_2/x1"
|
1670 |
+
top: "conv4_2/x2/bn"
|
1671 |
+
batch_norm_param {
|
1672 |
+
eps: 1e-5
|
1673 |
+
}
|
1674 |
+
}
|
1675 |
+
layer {
|
1676 |
+
name: "conv4_2/x2/scale"
|
1677 |
+
type: "Scale"
|
1678 |
+
bottom: "conv4_2/x2/bn"
|
1679 |
+
top: "conv4_2/x2/bn"
|
1680 |
+
scale_param {
|
1681 |
+
bias_term: true
|
1682 |
+
}
|
1683 |
+
}
|
1684 |
+
layer {
|
1685 |
+
name: "relu4_2/x2"
|
1686 |
+
type: "ReLU"
|
1687 |
+
bottom: "conv4_2/x2/bn"
|
1688 |
+
top: "conv4_2/x2/bn"
|
1689 |
+
}
|
1690 |
+
layer {
|
1691 |
+
name: "conv4_2/x2"
|
1692 |
+
type: "Convolution"
|
1693 |
+
bottom: "conv4_2/x2/bn"
|
1694 |
+
top: "conv4_2/x2"
|
1695 |
+
convolution_param {
|
1696 |
+
num_output: 32
|
1697 |
+
bias_term: false
|
1698 |
+
pad: 1
|
1699 |
+
kernel_size: 3
|
1700 |
+
}
|
1701 |
+
}
|
1702 |
+
layer {
|
1703 |
+
name: "concat_4_2"
|
1704 |
+
type: "Concat"
|
1705 |
+
bottom: "concat_4_1"
|
1706 |
+
bottom: "conv4_2/x2"
|
1707 |
+
top: "concat_4_2"
|
1708 |
+
}
|
1709 |
+
layer {
|
1710 |
+
name: "conv4_3/x1/bn"
|
1711 |
+
type: "BatchNorm"
|
1712 |
+
bottom: "concat_4_2"
|
1713 |
+
top: "conv4_3/x1/bn"
|
1714 |
+
batch_norm_param {
|
1715 |
+
eps: 1e-5
|
1716 |
+
}
|
1717 |
+
}
|
1718 |
+
layer {
|
1719 |
+
name: "conv4_3/x1/scale"
|
1720 |
+
type: "Scale"
|
1721 |
+
bottom: "conv4_3/x1/bn"
|
1722 |
+
top: "conv4_3/x1/bn"
|
1723 |
+
scale_param {
|
1724 |
+
bias_term: true
|
1725 |
+
}
|
1726 |
+
}
|
1727 |
+
layer {
|
1728 |
+
name: "relu4_3/x1"
|
1729 |
+
type: "ReLU"
|
1730 |
+
bottom: "conv4_3/x1/bn"
|
1731 |
+
top: "conv4_3/x1/bn"
|
1732 |
+
}
|
1733 |
+
layer {
|
1734 |
+
name: "conv4_3/x1"
|
1735 |
+
type: "Convolution"
|
1736 |
+
bottom: "conv4_3/x1/bn"
|
1737 |
+
top: "conv4_3/x1"
|
1738 |
+
convolution_param {
|
1739 |
+
num_output: 128
|
1740 |
+
bias_term: false
|
1741 |
+
kernel_size: 1
|
1742 |
+
}
|
1743 |
+
}
|
1744 |
+
layer {
|
1745 |
+
name: "conv4_3/x2/bn"
|
1746 |
+
type: "BatchNorm"
|
1747 |
+
bottom: "conv4_3/x1"
|
1748 |
+
top: "conv4_3/x2/bn"
|
1749 |
+
batch_norm_param {
|
1750 |
+
eps: 1e-5
|
1751 |
+
}
|
1752 |
+
}
|
1753 |
+
layer {
|
1754 |
+
name: "conv4_3/x2/scale"
|
1755 |
+
type: "Scale"
|
1756 |
+
bottom: "conv4_3/x2/bn"
|
1757 |
+
top: "conv4_3/x2/bn"
|
1758 |
+
scale_param {
|
1759 |
+
bias_term: true
|
1760 |
+
}
|
1761 |
+
}
|
1762 |
+
layer {
|
1763 |
+
name: "relu4_3/x2"
|
1764 |
+
type: "ReLU"
|
1765 |
+
bottom: "conv4_3/x2/bn"
|
1766 |
+
top: "conv4_3/x2/bn"
|
1767 |
+
}
|
1768 |
+
layer {
|
1769 |
+
name: "conv4_3/x2"
|
1770 |
+
type: "Convolution"
|
1771 |
+
bottom: "conv4_3/x2/bn"
|
1772 |
+
top: "conv4_3/x2"
|
1773 |
+
convolution_param {
|
1774 |
+
num_output: 32
|
1775 |
+
bias_term: false
|
1776 |
+
pad: 1
|
1777 |
+
kernel_size: 3
|
1778 |
+
}
|
1779 |
+
}
|
1780 |
+
layer {
|
1781 |
+
name: "concat_4_3"
|
1782 |
+
type: "Concat"
|
1783 |
+
bottom: "concat_4_2"
|
1784 |
+
bottom: "conv4_3/x2"
|
1785 |
+
top: "concat_4_3"
|
1786 |
+
}
|
1787 |
+
layer {
|
1788 |
+
name: "conv4_4/x1/bn"
|
1789 |
+
type: "BatchNorm"
|
1790 |
+
bottom: "concat_4_3"
|
1791 |
+
top: "conv4_4/x1/bn"
|
1792 |
+
batch_norm_param {
|
1793 |
+
eps: 1e-5
|
1794 |
+
}
|
1795 |
+
}
|
1796 |
+
layer {
|
1797 |
+
name: "conv4_4/x1/scale"
|
1798 |
+
type: "Scale"
|
1799 |
+
bottom: "conv4_4/x1/bn"
|
1800 |
+
top: "conv4_4/x1/bn"
|
1801 |
+
scale_param {
|
1802 |
+
bias_term: true
|
1803 |
+
}
|
1804 |
+
}
|
1805 |
+
layer {
|
1806 |
+
name: "relu4_4/x1"
|
1807 |
+
type: "ReLU"
|
1808 |
+
bottom: "conv4_4/x1/bn"
|
1809 |
+
top: "conv4_4/x1/bn"
|
1810 |
+
}
|
1811 |
+
layer {
|
1812 |
+
name: "conv4_4/x1"
|
1813 |
+
type: "Convolution"
|
1814 |
+
bottom: "conv4_4/x1/bn"
|
1815 |
+
top: "conv4_4/x1"
|
1816 |
+
convolution_param {
|
1817 |
+
num_output: 128
|
1818 |
+
bias_term: false
|
1819 |
+
kernel_size: 1
|
1820 |
+
}
|
1821 |
+
}
|
1822 |
+
layer {
|
1823 |
+
name: "conv4_4/x2/bn"
|
1824 |
+
type: "BatchNorm"
|
1825 |
+
bottom: "conv4_4/x1"
|
1826 |
+
top: "conv4_4/x2/bn"
|
1827 |
+
batch_norm_param {
|
1828 |
+
eps: 1e-5
|
1829 |
+
}
|
1830 |
+
}
|
1831 |
+
layer {
|
1832 |
+
name: "conv4_4/x2/scale"
|
1833 |
+
type: "Scale"
|
1834 |
+
bottom: "conv4_4/x2/bn"
|
1835 |
+
top: "conv4_4/x2/bn"
|
1836 |
+
scale_param {
|
1837 |
+
bias_term: true
|
1838 |
+
}
|
1839 |
+
}
|
1840 |
+
layer {
|
1841 |
+
name: "relu4_4/x2"
|
1842 |
+
type: "ReLU"
|
1843 |
+
bottom: "conv4_4/x2/bn"
|
1844 |
+
top: "conv4_4/x2/bn"
|
1845 |
+
}
|
1846 |
+
layer {
|
1847 |
+
name: "conv4_4/x2"
|
1848 |
+
type: "Convolution"
|
1849 |
+
bottom: "conv4_4/x2/bn"
|
1850 |
+
top: "conv4_4/x2"
|
1851 |
+
convolution_param {
|
1852 |
+
num_output: 32
|
1853 |
+
bias_term: false
|
1854 |
+
pad: 1
|
1855 |
+
kernel_size: 3
|
1856 |
+
}
|
1857 |
+
}
|
1858 |
+
layer {
|
1859 |
+
name: "concat_4_4"
|
1860 |
+
type: "Concat"
|
1861 |
+
bottom: "concat_4_3"
|
1862 |
+
bottom: "conv4_4/x2"
|
1863 |
+
top: "concat_4_4"
|
1864 |
+
}
|
1865 |
+
layer {
|
1866 |
+
name: "conv4_5/x1/bn"
|
1867 |
+
type: "BatchNorm"
|
1868 |
+
bottom: "concat_4_4"
|
1869 |
+
top: "conv4_5/x1/bn"
|
1870 |
+
batch_norm_param {
|
1871 |
+
eps: 1e-5
|
1872 |
+
}
|
1873 |
+
}
|
1874 |
+
layer {
|
1875 |
+
name: "conv4_5/x1/scale"
|
1876 |
+
type: "Scale"
|
1877 |
+
bottom: "conv4_5/x1/bn"
|
1878 |
+
top: "conv4_5/x1/bn"
|
1879 |
+
scale_param {
|
1880 |
+
bias_term: true
|
1881 |
+
}
|
1882 |
+
}
|
1883 |
+
layer {
|
1884 |
+
name: "relu4_5/x1"
|
1885 |
+
type: "ReLU"
|
1886 |
+
bottom: "conv4_5/x1/bn"
|
1887 |
+
top: "conv4_5/x1/bn"
|
1888 |
+
}
|
1889 |
+
layer {
|
1890 |
+
name: "conv4_5/x1"
|
1891 |
+
type: "Convolution"
|
1892 |
+
bottom: "conv4_5/x1/bn"
|
1893 |
+
top: "conv4_5/x1"
|
1894 |
+
convolution_param {
|
1895 |
+
num_output: 128
|
1896 |
+
bias_term: false
|
1897 |
+
kernel_size: 1
|
1898 |
+
}
|
1899 |
+
}
|
1900 |
+
layer {
|
1901 |
+
name: "conv4_5/x2/bn"
|
1902 |
+
type: "BatchNorm"
|
1903 |
+
bottom: "conv4_5/x1"
|
1904 |
+
top: "conv4_5/x2/bn"
|
1905 |
+
batch_norm_param {
|
1906 |
+
eps: 1e-5
|
1907 |
+
}
|
1908 |
+
}
|
1909 |
+
layer {
|
1910 |
+
name: "conv4_5/x2/scale"
|
1911 |
+
type: "Scale"
|
1912 |
+
bottom: "conv4_5/x2/bn"
|
1913 |
+
top: "conv4_5/x2/bn"
|
1914 |
+
scale_param {
|
1915 |
+
bias_term: true
|
1916 |
+
}
|
1917 |
+
}
|
1918 |
+
layer {
|
1919 |
+
name: "relu4_5/x2"
|
1920 |
+
type: "ReLU"
|
1921 |
+
bottom: "conv4_5/x2/bn"
|
1922 |
+
top: "conv4_5/x2/bn"
|
1923 |
+
}
|
1924 |
+
layer {
|
1925 |
+
name: "conv4_5/x2"
|
1926 |
+
type: "Convolution"
|
1927 |
+
bottom: "conv4_5/x2/bn"
|
1928 |
+
top: "conv4_5/x2"
|
1929 |
+
convolution_param {
|
1930 |
+
num_output: 32
|
1931 |
+
bias_term: false
|
1932 |
+
pad: 1
|
1933 |
+
kernel_size: 3
|
1934 |
+
}
|
1935 |
+
}
|
1936 |
+
layer {
|
1937 |
+
name: "concat_4_5"
|
1938 |
+
type: "Concat"
|
1939 |
+
bottom: "concat_4_4"
|
1940 |
+
bottom: "conv4_5/x2"
|
1941 |
+
top: "concat_4_5"
|
1942 |
+
}
|
1943 |
+
layer {
|
1944 |
+
name: "conv4_6/x1/bn"
|
1945 |
+
type: "BatchNorm"
|
1946 |
+
bottom: "concat_4_5"
|
1947 |
+
top: "conv4_6/x1/bn"
|
1948 |
+
batch_norm_param {
|
1949 |
+
eps: 1e-5
|
1950 |
+
}
|
1951 |
+
}
|
1952 |
+
layer {
|
1953 |
+
name: "conv4_6/x1/scale"
|
1954 |
+
type: "Scale"
|
1955 |
+
bottom: "conv4_6/x1/bn"
|
1956 |
+
top: "conv4_6/x1/bn"
|
1957 |
+
scale_param {
|
1958 |
+
bias_term: true
|
1959 |
+
}
|
1960 |
+
}
|
1961 |
+
layer {
|
1962 |
+
name: "relu4_6/x1"
|
1963 |
+
type: "ReLU"
|
1964 |
+
bottom: "conv4_6/x1/bn"
|
1965 |
+
top: "conv4_6/x1/bn"
|
1966 |
+
}
|
1967 |
+
layer {
|
1968 |
+
name: "conv4_6/x1"
|
1969 |
+
type: "Convolution"
|
1970 |
+
bottom: "conv4_6/x1/bn"
|
1971 |
+
top: "conv4_6/x1"
|
1972 |
+
convolution_param {
|
1973 |
+
num_output: 128
|
1974 |
+
bias_term: false
|
1975 |
+
kernel_size: 1
|
1976 |
+
}
|
1977 |
+
}
|
1978 |
+
layer {
|
1979 |
+
name: "conv4_6/x2/bn"
|
1980 |
+
type: "BatchNorm"
|
1981 |
+
bottom: "conv4_6/x1"
|
1982 |
+
top: "conv4_6/x2/bn"
|
1983 |
+
batch_norm_param {
|
1984 |
+
eps: 1e-5
|
1985 |
+
}
|
1986 |
+
}
|
1987 |
+
layer {
|
1988 |
+
name: "conv4_6/x2/scale"
|
1989 |
+
type: "Scale"
|
1990 |
+
bottom: "conv4_6/x2/bn"
|
1991 |
+
top: "conv4_6/x2/bn"
|
1992 |
+
scale_param {
|
1993 |
+
bias_term: true
|
1994 |
+
}
|
1995 |
+
}
|
1996 |
+
layer {
|
1997 |
+
name: "relu4_6/x2"
|
1998 |
+
type: "ReLU"
|
1999 |
+
bottom: "conv4_6/x2/bn"
|
2000 |
+
top: "conv4_6/x2/bn"
|
2001 |
+
}
|
2002 |
+
layer {
|
2003 |
+
name: "conv4_6/x2"
|
2004 |
+
type: "Convolution"
|
2005 |
+
bottom: "conv4_6/x2/bn"
|
2006 |
+
top: "conv4_6/x2"
|
2007 |
+
convolution_param {
|
2008 |
+
num_output: 32
|
2009 |
+
bias_term: false
|
2010 |
+
pad: 1
|
2011 |
+
kernel_size: 3
|
2012 |
+
}
|
2013 |
+
}
|
2014 |
+
layer {
|
2015 |
+
name: "concat_4_6"
|
2016 |
+
type: "Concat"
|
2017 |
+
bottom: "concat_4_5"
|
2018 |
+
bottom: "conv4_6/x2"
|
2019 |
+
top: "concat_4_6"
|
2020 |
+
}
|
2021 |
+
layer {
|
2022 |
+
name: "conv4_7/x1/bn"
|
2023 |
+
type: "BatchNorm"
|
2024 |
+
bottom: "concat_4_6"
|
2025 |
+
top: "conv4_7/x1/bn"
|
2026 |
+
batch_norm_param {
|
2027 |
+
eps: 1e-5
|
2028 |
+
}
|
2029 |
+
}
|
2030 |
+
layer {
|
2031 |
+
name: "conv4_7/x1/scale"
|
2032 |
+
type: "Scale"
|
2033 |
+
bottom: "conv4_7/x1/bn"
|
2034 |
+
top: "conv4_7/x1/bn"
|
2035 |
+
scale_param {
|
2036 |
+
bias_term: true
|
2037 |
+
}
|
2038 |
+
}
|
2039 |
+
layer {
|
2040 |
+
name: "relu4_7/x1"
|
2041 |
+
type: "ReLU"
|
2042 |
+
bottom: "conv4_7/x1/bn"
|
2043 |
+
top: "conv4_7/x1/bn"
|
2044 |
+
}
|
2045 |
+
layer {
|
2046 |
+
name: "conv4_7/x1"
|
2047 |
+
type: "Convolution"
|
2048 |
+
bottom: "conv4_7/x1/bn"
|
2049 |
+
top: "conv4_7/x1"
|
2050 |
+
convolution_param {
|
2051 |
+
num_output: 128
|
2052 |
+
bias_term: false
|
2053 |
+
kernel_size: 1
|
2054 |
+
}
|
2055 |
+
}
|
2056 |
+
layer {
|
2057 |
+
name: "conv4_7/x2/bn"
|
2058 |
+
type: "BatchNorm"
|
2059 |
+
bottom: "conv4_7/x1"
|
2060 |
+
top: "conv4_7/x2/bn"
|
2061 |
+
batch_norm_param {
|
2062 |
+
eps: 1e-5
|
2063 |
+
}
|
2064 |
+
}
|
2065 |
+
layer {
|
2066 |
+
name: "conv4_7/x2/scale"
|
2067 |
+
type: "Scale"
|
2068 |
+
bottom: "conv4_7/x2/bn"
|
2069 |
+
top: "conv4_7/x2/bn"
|
2070 |
+
scale_param {
|
2071 |
+
bias_term: true
|
2072 |
+
}
|
2073 |
+
}
|
2074 |
+
layer {
|
2075 |
+
name: "relu4_7/x2"
|
2076 |
+
type: "ReLU"
|
2077 |
+
bottom: "conv4_7/x2/bn"
|
2078 |
+
top: "conv4_7/x2/bn"
|
2079 |
+
}
|
2080 |
+
layer {
|
2081 |
+
name: "conv4_7/x2"
|
2082 |
+
type: "Convolution"
|
2083 |
+
bottom: "conv4_7/x2/bn"
|
2084 |
+
top: "conv4_7/x2"
|
2085 |
+
convolution_param {
|
2086 |
+
num_output: 32
|
2087 |
+
bias_term: false
|
2088 |
+
pad: 1
|
2089 |
+
kernel_size: 3
|
2090 |
+
}
|
2091 |
+
}
|
2092 |
+
layer {
|
2093 |
+
name: "concat_4_7"
|
2094 |
+
type: "Concat"
|
2095 |
+
bottom: "concat_4_6"
|
2096 |
+
bottom: "conv4_7/x2"
|
2097 |
+
top: "concat_4_7"
|
2098 |
+
}
|
2099 |
+
layer {
|
2100 |
+
name: "conv4_8/x1/bn"
|
2101 |
+
type: "BatchNorm"
|
2102 |
+
bottom: "concat_4_7"
|
2103 |
+
top: "conv4_8/x1/bn"
|
2104 |
+
batch_norm_param {
|
2105 |
+
eps: 1e-5
|
2106 |
+
}
|
2107 |
+
}
|
2108 |
+
layer {
|
2109 |
+
name: "conv4_8/x1/scale"
|
2110 |
+
type: "Scale"
|
2111 |
+
bottom: "conv4_8/x1/bn"
|
2112 |
+
top: "conv4_8/x1/bn"
|
2113 |
+
scale_param {
|
2114 |
+
bias_term: true
|
2115 |
+
}
|
2116 |
+
}
|
2117 |
+
layer {
|
2118 |
+
name: "relu4_8/x1"
|
2119 |
+
type: "ReLU"
|
2120 |
+
bottom: "conv4_8/x1/bn"
|
2121 |
+
top: "conv4_8/x1/bn"
|
2122 |
+
}
|
2123 |
+
layer {
|
2124 |
+
name: "conv4_8/x1"
|
2125 |
+
type: "Convolution"
|
2126 |
+
bottom: "conv4_8/x1/bn"
|
2127 |
+
top: "conv4_8/x1"
|
2128 |
+
convolution_param {
|
2129 |
+
num_output: 128
|
2130 |
+
bias_term: false
|
2131 |
+
kernel_size: 1
|
2132 |
+
}
|
2133 |
+
}
|
2134 |
+
layer {
|
2135 |
+
name: "conv4_8/x2/bn"
|
2136 |
+
type: "BatchNorm"
|
2137 |
+
bottom: "conv4_8/x1"
|
2138 |
+
top: "conv4_8/x2/bn"
|
2139 |
+
batch_norm_param {
|
2140 |
+
eps: 1e-5
|
2141 |
+
}
|
2142 |
+
}
|
2143 |
+
layer {
|
2144 |
+
name: "conv4_8/x2/scale"
|
2145 |
+
type: "Scale"
|
2146 |
+
bottom: "conv4_8/x2/bn"
|
2147 |
+
top: "conv4_8/x2/bn"
|
2148 |
+
scale_param {
|
2149 |
+
bias_term: true
|
2150 |
+
}
|
2151 |
+
}
|
2152 |
+
layer {
|
2153 |
+
name: "relu4_8/x2"
|
2154 |
+
type: "ReLU"
|
2155 |
+
bottom: "conv4_8/x2/bn"
|
2156 |
+
top: "conv4_8/x2/bn"
|
2157 |
+
}
|
2158 |
+
layer {
|
2159 |
+
name: "conv4_8/x2"
|
2160 |
+
type: "Convolution"
|
2161 |
+
bottom: "conv4_8/x2/bn"
|
2162 |
+
top: "conv4_8/x2"
|
2163 |
+
convolution_param {
|
2164 |
+
num_output: 32
|
2165 |
+
bias_term: false
|
2166 |
+
pad: 1
|
2167 |
+
kernel_size: 3
|
2168 |
+
}
|
2169 |
+
}
|
2170 |
+
layer {
|
2171 |
+
name: "concat_4_8"
|
2172 |
+
type: "Concat"
|
2173 |
+
bottom: "concat_4_7"
|
2174 |
+
bottom: "conv4_8/x2"
|
2175 |
+
top: "concat_4_8"
|
2176 |
+
}
|
2177 |
+
layer {
|
2178 |
+
name: "conv4_9/x1/bn"
|
2179 |
+
type: "BatchNorm"
|
2180 |
+
bottom: "concat_4_8"
|
2181 |
+
top: "conv4_9/x1/bn"
|
2182 |
+
batch_norm_param {
|
2183 |
+
eps: 1e-5
|
2184 |
+
}
|
2185 |
+
}
|
2186 |
+
layer {
|
2187 |
+
name: "conv4_9/x1/scale"
|
2188 |
+
type: "Scale"
|
2189 |
+
bottom: "conv4_9/x1/bn"
|
2190 |
+
top: "conv4_9/x1/bn"
|
2191 |
+
scale_param {
|
2192 |
+
bias_term: true
|
2193 |
+
}
|
2194 |
+
}
|
2195 |
+
layer {
|
2196 |
+
name: "relu4_9/x1"
|
2197 |
+
type: "ReLU"
|
2198 |
+
bottom: "conv4_9/x1/bn"
|
2199 |
+
top: "conv4_9/x1/bn"
|
2200 |
+
}
|
2201 |
+
layer {
|
2202 |
+
name: "conv4_9/x1"
|
2203 |
+
type: "Convolution"
|
2204 |
+
bottom: "conv4_9/x1/bn"
|
2205 |
+
top: "conv4_9/x1"
|
2206 |
+
convolution_param {
|
2207 |
+
num_output: 128
|
2208 |
+
bias_term: false
|
2209 |
+
kernel_size: 1
|
2210 |
+
}
|
2211 |
+
}
|
2212 |
+
layer {
|
2213 |
+
name: "conv4_9/x2/bn"
|
2214 |
+
type: "BatchNorm"
|
2215 |
+
bottom: "conv4_9/x1"
|
2216 |
+
top: "conv4_9/x2/bn"
|
2217 |
+
batch_norm_param {
|
2218 |
+
eps: 1e-5
|
2219 |
+
}
|
2220 |
+
}
|
2221 |
+
layer {
|
2222 |
+
name: "conv4_9/x2/scale"
|
2223 |
+
type: "Scale"
|
2224 |
+
bottom: "conv4_9/x2/bn"
|
2225 |
+
top: "conv4_9/x2/bn"
|
2226 |
+
scale_param {
|
2227 |
+
bias_term: true
|
2228 |
+
}
|
2229 |
+
}
|
2230 |
+
layer {
|
2231 |
+
name: "relu4_9/x2"
|
2232 |
+
type: "ReLU"
|
2233 |
+
bottom: "conv4_9/x2/bn"
|
2234 |
+
top: "conv4_9/x2/bn"
|
2235 |
+
}
|
2236 |
+
layer {
|
2237 |
+
name: "conv4_9/x2"
|
2238 |
+
type: "Convolution"
|
2239 |
+
bottom: "conv4_9/x2/bn"
|
2240 |
+
top: "conv4_9/x2"
|
2241 |
+
convolution_param {
|
2242 |
+
num_output: 32
|
2243 |
+
bias_term: false
|
2244 |
+
pad: 1
|
2245 |
+
kernel_size: 3
|
2246 |
+
}
|
2247 |
+
}
|
2248 |
+
layer {
|
2249 |
+
name: "concat_4_9"
|
2250 |
+
type: "Concat"
|
2251 |
+
bottom: "concat_4_8"
|
2252 |
+
bottom: "conv4_9/x2"
|
2253 |
+
top: "concat_4_9"
|
2254 |
+
}
|
2255 |
+
layer {
|
2256 |
+
name: "conv4_10/x1/bn"
|
2257 |
+
type: "BatchNorm"
|
2258 |
+
bottom: "concat_4_9"
|
2259 |
+
top: "conv4_10/x1/bn"
|
2260 |
+
batch_norm_param {
|
2261 |
+
eps: 1e-5
|
2262 |
+
}
|
2263 |
+
}
|
2264 |
+
layer {
|
2265 |
+
name: "conv4_10/x1/scale"
|
2266 |
+
type: "Scale"
|
2267 |
+
bottom: "conv4_10/x1/bn"
|
2268 |
+
top: "conv4_10/x1/bn"
|
2269 |
+
scale_param {
|
2270 |
+
bias_term: true
|
2271 |
+
}
|
2272 |
+
}
|
2273 |
+
layer {
|
2274 |
+
name: "relu4_10/x1"
|
2275 |
+
type: "ReLU"
|
2276 |
+
bottom: "conv4_10/x1/bn"
|
2277 |
+
top: "conv4_10/x1/bn"
|
2278 |
+
}
|
2279 |
+
layer {
|
2280 |
+
name: "conv4_10/x1"
|
2281 |
+
type: "Convolution"
|
2282 |
+
bottom: "conv4_10/x1/bn"
|
2283 |
+
top: "conv4_10/x1"
|
2284 |
+
convolution_param {
|
2285 |
+
num_output: 128
|
2286 |
+
bias_term: false
|
2287 |
+
kernel_size: 1
|
2288 |
+
}
|
2289 |
+
}
|
2290 |
+
layer {
|
2291 |
+
name: "conv4_10/x2/bn"
|
2292 |
+
type: "BatchNorm"
|
2293 |
+
bottom: "conv4_10/x1"
|
2294 |
+
top: "conv4_10/x2/bn"
|
2295 |
+
batch_norm_param {
|
2296 |
+
eps: 1e-5
|
2297 |
+
}
|
2298 |
+
}
|
2299 |
+
layer {
|
2300 |
+
name: "conv4_10/x2/scale"
|
2301 |
+
type: "Scale"
|
2302 |
+
bottom: "conv4_10/x2/bn"
|
2303 |
+
top: "conv4_10/x2/bn"
|
2304 |
+
scale_param {
|
2305 |
+
bias_term: true
|
2306 |
+
}
|
2307 |
+
}
|
2308 |
+
layer {
|
2309 |
+
name: "relu4_10/x2"
|
2310 |
+
type: "ReLU"
|
2311 |
+
bottom: "conv4_10/x2/bn"
|
2312 |
+
top: "conv4_10/x2/bn"
|
2313 |
+
}
|
2314 |
+
layer {
|
2315 |
+
name: "conv4_10/x2"
|
2316 |
+
type: "Convolution"
|
2317 |
+
bottom: "conv4_10/x2/bn"
|
2318 |
+
top: "conv4_10/x2"
|
2319 |
+
convolution_param {
|
2320 |
+
num_output: 32
|
2321 |
+
bias_term: false
|
2322 |
+
pad: 1
|
2323 |
+
kernel_size: 3
|
2324 |
+
}
|
2325 |
+
}
|
2326 |
+
layer {
|
2327 |
+
name: "concat_4_10"
|
2328 |
+
type: "Concat"
|
2329 |
+
bottom: "concat_4_9"
|
2330 |
+
bottom: "conv4_10/x2"
|
2331 |
+
top: "concat_4_10"
|
2332 |
+
}
|
2333 |
+
layer {
|
2334 |
+
name: "conv4_11/x1/bn"
|
2335 |
+
type: "BatchNorm"
|
2336 |
+
bottom: "concat_4_10"
|
2337 |
+
top: "conv4_11/x1/bn"
|
2338 |
+
batch_norm_param {
|
2339 |
+
eps: 1e-5
|
2340 |
+
}
|
2341 |
+
}
|
2342 |
+
layer {
|
2343 |
+
name: "conv4_11/x1/scale"
|
2344 |
+
type: "Scale"
|
2345 |
+
bottom: "conv4_11/x1/bn"
|
2346 |
+
top: "conv4_11/x1/bn"
|
2347 |
+
scale_param {
|
2348 |
+
bias_term: true
|
2349 |
+
}
|
2350 |
+
}
|
2351 |
+
layer {
|
2352 |
+
name: "relu4_11/x1"
|
2353 |
+
type: "ReLU"
|
2354 |
+
bottom: "conv4_11/x1/bn"
|
2355 |
+
top: "conv4_11/x1/bn"
|
2356 |
+
}
|
2357 |
+
layer {
|
2358 |
+
name: "conv4_11/x1"
|
2359 |
+
type: "Convolution"
|
2360 |
+
bottom: "conv4_11/x1/bn"
|
2361 |
+
top: "conv4_11/x1"
|
2362 |
+
convolution_param {
|
2363 |
+
num_output: 128
|
2364 |
+
bias_term: false
|
2365 |
+
kernel_size: 1
|
2366 |
+
}
|
2367 |
+
}
|
2368 |
+
layer {
|
2369 |
+
name: "conv4_11/x2/bn"
|
2370 |
+
type: "BatchNorm"
|
2371 |
+
bottom: "conv4_11/x1"
|
2372 |
+
top: "conv4_11/x2/bn"
|
2373 |
+
batch_norm_param {
|
2374 |
+
eps: 1e-5
|
2375 |
+
}
|
2376 |
+
}
|
2377 |
+
layer {
|
2378 |
+
name: "conv4_11/x2/scale"
|
2379 |
+
type: "Scale"
|
2380 |
+
bottom: "conv4_11/x2/bn"
|
2381 |
+
top: "conv4_11/x2/bn"
|
2382 |
+
scale_param {
|
2383 |
+
bias_term: true
|
2384 |
+
}
|
2385 |
+
}
|
2386 |
+
layer {
|
2387 |
+
name: "relu4_11/x2"
|
2388 |
+
type: "ReLU"
|
2389 |
+
bottom: "conv4_11/x2/bn"
|
2390 |
+
top: "conv4_11/x2/bn"
|
2391 |
+
}
|
2392 |
+
layer {
|
2393 |
+
name: "conv4_11/x2"
|
2394 |
+
type: "Convolution"
|
2395 |
+
bottom: "conv4_11/x2/bn"
|
2396 |
+
top: "conv4_11/x2"
|
2397 |
+
convolution_param {
|
2398 |
+
num_output: 32
|
2399 |
+
bias_term: false
|
2400 |
+
pad: 1
|
2401 |
+
kernel_size: 3
|
2402 |
+
}
|
2403 |
+
}
|
2404 |
+
layer {
|
2405 |
+
name: "concat_4_11"
|
2406 |
+
type: "Concat"
|
2407 |
+
bottom: "concat_4_10"
|
2408 |
+
bottom: "conv4_11/x2"
|
2409 |
+
top: "concat_4_11"
|
2410 |
+
}
|
2411 |
+
layer {
|
2412 |
+
name: "conv4_12/x1/bn"
|
2413 |
+
type: "BatchNorm"
|
2414 |
+
bottom: "concat_4_11"
|
2415 |
+
top: "conv4_12/x1/bn"
|
2416 |
+
batch_norm_param {
|
2417 |
+
eps: 1e-5
|
2418 |
+
}
|
2419 |
+
}
|
2420 |
+
layer {
|
2421 |
+
name: "conv4_12/x1/scale"
|
2422 |
+
type: "Scale"
|
2423 |
+
bottom: "conv4_12/x1/bn"
|
2424 |
+
top: "conv4_12/x1/bn"
|
2425 |
+
scale_param {
|
2426 |
+
bias_term: true
|
2427 |
+
}
|
2428 |
+
}
|
2429 |
+
layer {
|
2430 |
+
name: "relu4_12/x1"
|
2431 |
+
type: "ReLU"
|
2432 |
+
bottom: "conv4_12/x1/bn"
|
2433 |
+
top: "conv4_12/x1/bn"
|
2434 |
+
}
|
2435 |
+
layer {
|
2436 |
+
name: "conv4_12/x1"
|
2437 |
+
type: "Convolution"
|
2438 |
+
bottom: "conv4_12/x1/bn"
|
2439 |
+
top: "conv4_12/x1"
|
2440 |
+
convolution_param {
|
2441 |
+
num_output: 128
|
2442 |
+
bias_term: false
|
2443 |
+
kernel_size: 1
|
2444 |
+
}
|
2445 |
+
}
|
2446 |
+
layer {
|
2447 |
+
name: "conv4_12/x2/bn"
|
2448 |
+
type: "BatchNorm"
|
2449 |
+
bottom: "conv4_12/x1"
|
2450 |
+
top: "conv4_12/x2/bn"
|
2451 |
+
batch_norm_param {
|
2452 |
+
eps: 1e-5
|
2453 |
+
}
|
2454 |
+
}
|
2455 |
+
layer {
|
2456 |
+
name: "conv4_12/x2/scale"
|
2457 |
+
type: "Scale"
|
2458 |
+
bottom: "conv4_12/x2/bn"
|
2459 |
+
top: "conv4_12/x2/bn"
|
2460 |
+
scale_param {
|
2461 |
+
bias_term: true
|
2462 |
+
}
|
2463 |
+
}
|
2464 |
+
layer {
|
2465 |
+
name: "relu4_12/x2"
|
2466 |
+
type: "ReLU"
|
2467 |
+
bottom: "conv4_12/x2/bn"
|
2468 |
+
top: "conv4_12/x2/bn"
|
2469 |
+
}
|
2470 |
+
layer {
|
2471 |
+
name: "conv4_12/x2"
|
2472 |
+
type: "Convolution"
|
2473 |
+
bottom: "conv4_12/x2/bn"
|
2474 |
+
top: "conv4_12/x2"
|
2475 |
+
convolution_param {
|
2476 |
+
num_output: 32
|
2477 |
+
bias_term: false
|
2478 |
+
pad: 1
|
2479 |
+
kernel_size: 3
|
2480 |
+
}
|
2481 |
+
}
|
2482 |
+
layer {
|
2483 |
+
name: "concat_4_12"
|
2484 |
+
type: "Concat"
|
2485 |
+
bottom: "concat_4_11"
|
2486 |
+
bottom: "conv4_12/x2"
|
2487 |
+
top: "concat_4_12"
|
2488 |
+
}
|
2489 |
+
layer {
|
2490 |
+
name: "conv4_13/x1/bn"
|
2491 |
+
type: "BatchNorm"
|
2492 |
+
bottom: "concat_4_12"
|
2493 |
+
top: "conv4_13/x1/bn"
|
2494 |
+
batch_norm_param {
|
2495 |
+
eps: 1e-5
|
2496 |
+
}
|
2497 |
+
}
|
2498 |
+
layer {
|
2499 |
+
name: "conv4_13/x1/scale"
|
2500 |
+
type: "Scale"
|
2501 |
+
bottom: "conv4_13/x1/bn"
|
2502 |
+
top: "conv4_13/x1/bn"
|
2503 |
+
scale_param {
|
2504 |
+
bias_term: true
|
2505 |
+
}
|
2506 |
+
}
|
2507 |
+
layer {
|
2508 |
+
name: "relu4_13/x1"
|
2509 |
+
type: "ReLU"
|
2510 |
+
bottom: "conv4_13/x1/bn"
|
2511 |
+
top: "conv4_13/x1/bn"
|
2512 |
+
}
|
2513 |
+
layer {
|
2514 |
+
name: "conv4_13/x1"
|
2515 |
+
type: "Convolution"
|
2516 |
+
bottom: "conv4_13/x1/bn"
|
2517 |
+
top: "conv4_13/x1"
|
2518 |
+
convolution_param {
|
2519 |
+
num_output: 128
|
2520 |
+
bias_term: false
|
2521 |
+
kernel_size: 1
|
2522 |
+
}
|
2523 |
+
}
|
2524 |
+
layer {
|
2525 |
+
name: "conv4_13/x2/bn"
|
2526 |
+
type: "BatchNorm"
|
2527 |
+
bottom: "conv4_13/x1"
|
2528 |
+
top: "conv4_13/x2/bn"
|
2529 |
+
batch_norm_param {
|
2530 |
+
eps: 1e-5
|
2531 |
+
}
|
2532 |
+
}
|
2533 |
+
layer {
|
2534 |
+
name: "conv4_13/x2/scale"
|
2535 |
+
type: "Scale"
|
2536 |
+
bottom: "conv4_13/x2/bn"
|
2537 |
+
top: "conv4_13/x2/bn"
|
2538 |
+
scale_param {
|
2539 |
+
bias_term: true
|
2540 |
+
}
|
2541 |
+
}
|
2542 |
+
layer {
|
2543 |
+
name: "relu4_13/x2"
|
2544 |
+
type: "ReLU"
|
2545 |
+
bottom: "conv4_13/x2/bn"
|
2546 |
+
top: "conv4_13/x2/bn"
|
2547 |
+
}
|
2548 |
+
layer {
|
2549 |
+
name: "conv4_13/x2"
|
2550 |
+
type: "Convolution"
|
2551 |
+
bottom: "conv4_13/x2/bn"
|
2552 |
+
top: "conv4_13/x2"
|
2553 |
+
convolution_param {
|
2554 |
+
num_output: 32
|
2555 |
+
bias_term: false
|
2556 |
+
pad: 1
|
2557 |
+
kernel_size: 3
|
2558 |
+
}
|
2559 |
+
}
|
2560 |
+
layer {
|
2561 |
+
name: "concat_4_13"
|
2562 |
+
type: "Concat"
|
2563 |
+
bottom: "concat_4_12"
|
2564 |
+
bottom: "conv4_13/x2"
|
2565 |
+
top: "concat_4_13"
|
2566 |
+
}
|
2567 |
+
layer {
|
2568 |
+
name: "conv4_14/x1/bn"
|
2569 |
+
type: "BatchNorm"
|
2570 |
+
bottom: "concat_4_13"
|
2571 |
+
top: "conv4_14/x1/bn"
|
2572 |
+
batch_norm_param {
|
2573 |
+
eps: 1e-5
|
2574 |
+
}
|
2575 |
+
}
|
2576 |
+
layer {
|
2577 |
+
name: "conv4_14/x1/scale"
|
2578 |
+
type: "Scale"
|
2579 |
+
bottom: "conv4_14/x1/bn"
|
2580 |
+
top: "conv4_14/x1/bn"
|
2581 |
+
scale_param {
|
2582 |
+
bias_term: true
|
2583 |
+
}
|
2584 |
+
}
|
2585 |
+
layer {
|
2586 |
+
name: "relu4_14/x1"
|
2587 |
+
type: "ReLU"
|
2588 |
+
bottom: "conv4_14/x1/bn"
|
2589 |
+
top: "conv4_14/x1/bn"
|
2590 |
+
}
|
2591 |
+
layer {
|
2592 |
+
name: "conv4_14/x1"
|
2593 |
+
type: "Convolution"
|
2594 |
+
bottom: "conv4_14/x1/bn"
|
2595 |
+
top: "conv4_14/x1"
|
2596 |
+
convolution_param {
|
2597 |
+
num_output: 128
|
2598 |
+
bias_term: false
|
2599 |
+
kernel_size: 1
|
2600 |
+
}
|
2601 |
+
}
|
2602 |
+
layer {
|
2603 |
+
name: "conv4_14/x2/bn"
|
2604 |
+
type: "BatchNorm"
|
2605 |
+
bottom: "conv4_14/x1"
|
2606 |
+
top: "conv4_14/x2/bn"
|
2607 |
+
batch_norm_param {
|
2608 |
+
eps: 1e-5
|
2609 |
+
}
|
2610 |
+
}
|
2611 |
+
layer {
|
2612 |
+
name: "conv4_14/x2/scale"
|
2613 |
+
type: "Scale"
|
2614 |
+
bottom: "conv4_14/x2/bn"
|
2615 |
+
top: "conv4_14/x2/bn"
|
2616 |
+
scale_param {
|
2617 |
+
bias_term: true
|
2618 |
+
}
|
2619 |
+
}
|
2620 |
+
layer {
|
2621 |
+
name: "relu4_14/x2"
|
2622 |
+
type: "ReLU"
|
2623 |
+
bottom: "conv4_14/x2/bn"
|
2624 |
+
top: "conv4_14/x2/bn"
|
2625 |
+
}
|
2626 |
+
layer {
|
2627 |
+
name: "conv4_14/x2"
|
2628 |
+
type: "Convolution"
|
2629 |
+
bottom: "conv4_14/x2/bn"
|
2630 |
+
top: "conv4_14/x2"
|
2631 |
+
convolution_param {
|
2632 |
+
num_output: 32
|
2633 |
+
bias_term: false
|
2634 |
+
pad: 1
|
2635 |
+
kernel_size: 3
|
2636 |
+
}
|
2637 |
+
}
|
2638 |
+
layer {
|
2639 |
+
name: "concat_4_14"
|
2640 |
+
type: "Concat"
|
2641 |
+
bottom: "concat_4_13"
|
2642 |
+
bottom: "conv4_14/x2"
|
2643 |
+
top: "concat_4_14"
|
2644 |
+
}
|
2645 |
+
layer {
|
2646 |
+
name: "conv4_15/x1/bn"
|
2647 |
+
type: "BatchNorm"
|
2648 |
+
bottom: "concat_4_14"
|
2649 |
+
top: "conv4_15/x1/bn"
|
2650 |
+
batch_norm_param {
|
2651 |
+
eps: 1e-5
|
2652 |
+
}
|
2653 |
+
}
|
2654 |
+
layer {
|
2655 |
+
name: "conv4_15/x1/scale"
|
2656 |
+
type: "Scale"
|
2657 |
+
bottom: "conv4_15/x1/bn"
|
2658 |
+
top: "conv4_15/x1/bn"
|
2659 |
+
scale_param {
|
2660 |
+
bias_term: true
|
2661 |
+
}
|
2662 |
+
}
|
2663 |
+
layer {
|
2664 |
+
name: "relu4_15/x1"
|
2665 |
+
type: "ReLU"
|
2666 |
+
bottom: "conv4_15/x1/bn"
|
2667 |
+
top: "conv4_15/x1/bn"
|
2668 |
+
}
|
2669 |
+
layer {
|
2670 |
+
name: "conv4_15/x1"
|
2671 |
+
type: "Convolution"
|
2672 |
+
bottom: "conv4_15/x1/bn"
|
2673 |
+
top: "conv4_15/x1"
|
2674 |
+
convolution_param {
|
2675 |
+
num_output: 128
|
2676 |
+
bias_term: false
|
2677 |
+
kernel_size: 1
|
2678 |
+
}
|
2679 |
+
}
|
2680 |
+
layer {
|
2681 |
+
name: "conv4_15/x2/bn"
|
2682 |
+
type: "BatchNorm"
|
2683 |
+
bottom: "conv4_15/x1"
|
2684 |
+
top: "conv4_15/x2/bn"
|
2685 |
+
batch_norm_param {
|
2686 |
+
eps: 1e-5
|
2687 |
+
}
|
2688 |
+
}
|
2689 |
+
layer {
|
2690 |
+
name: "conv4_15/x2/scale"
|
2691 |
+
type: "Scale"
|
2692 |
+
bottom: "conv4_15/x2/bn"
|
2693 |
+
top: "conv4_15/x2/bn"
|
2694 |
+
scale_param {
|
2695 |
+
bias_term: true
|
2696 |
+
}
|
2697 |
+
}
|
2698 |
+
layer {
|
2699 |
+
name: "relu4_15/x2"
|
2700 |
+
type: "ReLU"
|
2701 |
+
bottom: "conv4_15/x2/bn"
|
2702 |
+
top: "conv4_15/x2/bn"
|
2703 |
+
}
|
2704 |
+
layer {
|
2705 |
+
name: "conv4_15/x2"
|
2706 |
+
type: "Convolution"
|
2707 |
+
bottom: "conv4_15/x2/bn"
|
2708 |
+
top: "conv4_15/x2"
|
2709 |
+
convolution_param {
|
2710 |
+
num_output: 32
|
2711 |
+
bias_term: false
|
2712 |
+
pad: 1
|
2713 |
+
kernel_size: 3
|
2714 |
+
}
|
2715 |
+
}
|
2716 |
+
layer {
|
2717 |
+
name: "concat_4_15"
|
2718 |
+
type: "Concat"
|
2719 |
+
bottom: "concat_4_14"
|
2720 |
+
bottom: "conv4_15/x2"
|
2721 |
+
top: "concat_4_15"
|
2722 |
+
}
|
2723 |
+
layer {
|
2724 |
+
name: "conv4_16/x1/bn"
|
2725 |
+
type: "BatchNorm"
|
2726 |
+
bottom: "concat_4_15"
|
2727 |
+
top: "conv4_16/x1/bn"
|
2728 |
+
batch_norm_param {
|
2729 |
+
eps: 1e-5
|
2730 |
+
}
|
2731 |
+
}
|
2732 |
+
layer {
|
2733 |
+
name: "conv4_16/x1/scale"
|
2734 |
+
type: "Scale"
|
2735 |
+
bottom: "conv4_16/x1/bn"
|
2736 |
+
top: "conv4_16/x1/bn"
|
2737 |
+
scale_param {
|
2738 |
+
bias_term: true
|
2739 |
+
}
|
2740 |
+
}
|
2741 |
+
layer {
|
2742 |
+
name: "relu4_16/x1"
|
2743 |
+
type: "ReLU"
|
2744 |
+
bottom: "conv4_16/x1/bn"
|
2745 |
+
top: "conv4_16/x1/bn"
|
2746 |
+
}
|
2747 |
+
layer {
|
2748 |
+
name: "conv4_16/x1"
|
2749 |
+
type: "Convolution"
|
2750 |
+
bottom: "conv4_16/x1/bn"
|
2751 |
+
top: "conv4_16/x1"
|
2752 |
+
convolution_param {
|
2753 |
+
num_output: 128
|
2754 |
+
bias_term: false
|
2755 |
+
kernel_size: 1
|
2756 |
+
}
|
2757 |
+
}
|
2758 |
+
layer {
|
2759 |
+
name: "conv4_16/x2/bn"
|
2760 |
+
type: "BatchNorm"
|
2761 |
+
bottom: "conv4_16/x1"
|
2762 |
+
top: "conv4_16/x2/bn"
|
2763 |
+
batch_norm_param {
|
2764 |
+
eps: 1e-5
|
2765 |
+
}
|
2766 |
+
}
|
2767 |
+
layer {
|
2768 |
+
name: "conv4_16/x2/scale"
|
2769 |
+
type: "Scale"
|
2770 |
+
bottom: "conv4_16/x2/bn"
|
2771 |
+
top: "conv4_16/x2/bn"
|
2772 |
+
scale_param {
|
2773 |
+
bias_term: true
|
2774 |
+
}
|
2775 |
+
}
|
2776 |
+
layer {
|
2777 |
+
name: "relu4_16/x2"
|
2778 |
+
type: "ReLU"
|
2779 |
+
bottom: "conv4_16/x2/bn"
|
2780 |
+
top: "conv4_16/x2/bn"
|
2781 |
+
}
|
2782 |
+
layer {
|
2783 |
+
name: "conv4_16/x2"
|
2784 |
+
type: "Convolution"
|
2785 |
+
bottom: "conv4_16/x2/bn"
|
2786 |
+
top: "conv4_16/x2"
|
2787 |
+
convolution_param {
|
2788 |
+
num_output: 32
|
2789 |
+
bias_term: false
|
2790 |
+
pad: 1
|
2791 |
+
kernel_size: 3
|
2792 |
+
}
|
2793 |
+
}
|
2794 |
+
layer {
|
2795 |
+
name: "concat_4_16"
|
2796 |
+
type: "Concat"
|
2797 |
+
bottom: "concat_4_15"
|
2798 |
+
bottom: "conv4_16/x2"
|
2799 |
+
top: "concat_4_16"
|
2800 |
+
}
|
2801 |
+
layer {
|
2802 |
+
name: "conv4_17/x1/bn"
|
2803 |
+
type: "BatchNorm"
|
2804 |
+
bottom: "concat_4_16"
|
2805 |
+
top: "conv4_17/x1/bn"
|
2806 |
+
batch_norm_param {
|
2807 |
+
eps: 1e-5
|
2808 |
+
}
|
2809 |
+
}
|
2810 |
+
layer {
|
2811 |
+
name: "conv4_17/x1/scale"
|
2812 |
+
type: "Scale"
|
2813 |
+
bottom: "conv4_17/x1/bn"
|
2814 |
+
top: "conv4_17/x1/bn"
|
2815 |
+
scale_param {
|
2816 |
+
bias_term: true
|
2817 |
+
}
|
2818 |
+
}
|
2819 |
+
layer {
|
2820 |
+
name: "relu4_17/x1"
|
2821 |
+
type: "ReLU"
|
2822 |
+
bottom: "conv4_17/x1/bn"
|
2823 |
+
top: "conv4_17/x1/bn"
|
2824 |
+
}
|
2825 |
+
layer {
|
2826 |
+
name: "conv4_17/x1"
|
2827 |
+
type: "Convolution"
|
2828 |
+
bottom: "conv4_17/x1/bn"
|
2829 |
+
top: "conv4_17/x1"
|
2830 |
+
convolution_param {
|
2831 |
+
num_output: 128
|
2832 |
+
bias_term: false
|
2833 |
+
kernel_size: 1
|
2834 |
+
}
|
2835 |
+
}
|
2836 |
+
layer {
|
2837 |
+
name: "conv4_17/x2/bn"
|
2838 |
+
type: "BatchNorm"
|
2839 |
+
bottom: "conv4_17/x1"
|
2840 |
+
top: "conv4_17/x2/bn"
|
2841 |
+
batch_norm_param {
|
2842 |
+
eps: 1e-5
|
2843 |
+
}
|
2844 |
+
}
|
2845 |
+
layer {
|
2846 |
+
name: "conv4_17/x2/scale"
|
2847 |
+
type: "Scale"
|
2848 |
+
bottom: "conv4_17/x2/bn"
|
2849 |
+
top: "conv4_17/x2/bn"
|
2850 |
+
scale_param {
|
2851 |
+
bias_term: true
|
2852 |
+
}
|
2853 |
+
}
|
2854 |
+
layer {
|
2855 |
+
name: "relu4_17/x2"
|
2856 |
+
type: "ReLU"
|
2857 |
+
bottom: "conv4_17/x2/bn"
|
2858 |
+
top: "conv4_17/x2/bn"
|
2859 |
+
}
|
2860 |
+
layer {
|
2861 |
+
name: "conv4_17/x2"
|
2862 |
+
type: "Convolution"
|
2863 |
+
bottom: "conv4_17/x2/bn"
|
2864 |
+
top: "conv4_17/x2"
|
2865 |
+
convolution_param {
|
2866 |
+
num_output: 32
|
2867 |
+
bias_term: false
|
2868 |
+
pad: 1
|
2869 |
+
kernel_size: 3
|
2870 |
+
}
|
2871 |
+
}
|
2872 |
+
layer {
|
2873 |
+
name: "concat_4_17"
|
2874 |
+
type: "Concat"
|
2875 |
+
bottom: "concat_4_16"
|
2876 |
+
bottom: "conv4_17/x2"
|
2877 |
+
top: "concat_4_17"
|
2878 |
+
}
|
2879 |
+
layer {
|
2880 |
+
name: "conv4_18/x1/bn"
|
2881 |
+
type: "BatchNorm"
|
2882 |
+
bottom: "concat_4_17"
|
2883 |
+
top: "conv4_18/x1/bn"
|
2884 |
+
batch_norm_param {
|
2885 |
+
eps: 1e-5
|
2886 |
+
}
|
2887 |
+
}
|
2888 |
+
layer {
|
2889 |
+
name: "conv4_18/x1/scale"
|
2890 |
+
type: "Scale"
|
2891 |
+
bottom: "conv4_18/x1/bn"
|
2892 |
+
top: "conv4_18/x1/bn"
|
2893 |
+
scale_param {
|
2894 |
+
bias_term: true
|
2895 |
+
}
|
2896 |
+
}
|
2897 |
+
layer {
|
2898 |
+
name: "relu4_18/x1"
|
2899 |
+
type: "ReLU"
|
2900 |
+
bottom: "conv4_18/x1/bn"
|
2901 |
+
top: "conv4_18/x1/bn"
|
2902 |
+
}
|
2903 |
+
layer {
|
2904 |
+
name: "conv4_18/x1"
|
2905 |
+
type: "Convolution"
|
2906 |
+
bottom: "conv4_18/x1/bn"
|
2907 |
+
top: "conv4_18/x1"
|
2908 |
+
convolution_param {
|
2909 |
+
num_output: 128
|
2910 |
+
bias_term: false
|
2911 |
+
kernel_size: 1
|
2912 |
+
}
|
2913 |
+
}
|
2914 |
+
layer {
|
2915 |
+
name: "conv4_18/x2/bn"
|
2916 |
+
type: "BatchNorm"
|
2917 |
+
bottom: "conv4_18/x1"
|
2918 |
+
top: "conv4_18/x2/bn"
|
2919 |
+
batch_norm_param {
|
2920 |
+
eps: 1e-5
|
2921 |
+
}
|
2922 |
+
}
|
2923 |
+
layer {
|
2924 |
+
name: "conv4_18/x2/scale"
|
2925 |
+
type: "Scale"
|
2926 |
+
bottom: "conv4_18/x2/bn"
|
2927 |
+
top: "conv4_18/x2/bn"
|
2928 |
+
scale_param {
|
2929 |
+
bias_term: true
|
2930 |
+
}
|
2931 |
+
}
|
2932 |
+
layer {
|
2933 |
+
name: "relu4_18/x2"
|
2934 |
+
type: "ReLU"
|
2935 |
+
bottom: "conv4_18/x2/bn"
|
2936 |
+
top: "conv4_18/x2/bn"
|
2937 |
+
}
|
2938 |
+
layer {
|
2939 |
+
name: "conv4_18/x2"
|
2940 |
+
type: "Convolution"
|
2941 |
+
bottom: "conv4_18/x2/bn"
|
2942 |
+
top: "conv4_18/x2"
|
2943 |
+
convolution_param {
|
2944 |
+
num_output: 32
|
2945 |
+
bias_term: false
|
2946 |
+
pad: 1
|
2947 |
+
kernel_size: 3
|
2948 |
+
}
|
2949 |
+
}
|
2950 |
+
layer {
|
2951 |
+
name: "concat_4_18"
|
2952 |
+
type: "Concat"
|
2953 |
+
bottom: "concat_4_17"
|
2954 |
+
bottom: "conv4_18/x2"
|
2955 |
+
top: "concat_4_18"
|
2956 |
+
}
|
2957 |
+
layer {
|
2958 |
+
name: "conv4_19/x1/bn"
|
2959 |
+
type: "BatchNorm"
|
2960 |
+
bottom: "concat_4_18"
|
2961 |
+
top: "conv4_19/x1/bn"
|
2962 |
+
batch_norm_param {
|
2963 |
+
eps: 1e-5
|
2964 |
+
}
|
2965 |
+
}
|
2966 |
+
layer {
|
2967 |
+
name: "conv4_19/x1/scale"
|
2968 |
+
type: "Scale"
|
2969 |
+
bottom: "conv4_19/x1/bn"
|
2970 |
+
top: "conv4_19/x1/bn"
|
2971 |
+
scale_param {
|
2972 |
+
bias_term: true
|
2973 |
+
}
|
2974 |
+
}
|
2975 |
+
layer {
|
2976 |
+
name: "relu4_19/x1"
|
2977 |
+
type: "ReLU"
|
2978 |
+
bottom: "conv4_19/x1/bn"
|
2979 |
+
top: "conv4_19/x1/bn"
|
2980 |
+
}
|
2981 |
+
layer {
|
2982 |
+
name: "conv4_19/x1"
|
2983 |
+
type: "Convolution"
|
2984 |
+
bottom: "conv4_19/x1/bn"
|
2985 |
+
top: "conv4_19/x1"
|
2986 |
+
convolution_param {
|
2987 |
+
num_output: 128
|
2988 |
+
bias_term: false
|
2989 |
+
kernel_size: 1
|
2990 |
+
}
|
2991 |
+
}
|
2992 |
+
layer {
|
2993 |
+
name: "conv4_19/x2/bn"
|
2994 |
+
type: "BatchNorm"
|
2995 |
+
bottom: "conv4_19/x1"
|
2996 |
+
top: "conv4_19/x2/bn"
|
2997 |
+
batch_norm_param {
|
2998 |
+
eps: 1e-5
|
2999 |
+
}
|
3000 |
+
}
|
3001 |
+
layer {
|
3002 |
+
name: "conv4_19/x2/scale"
|
3003 |
+
type: "Scale"
|
3004 |
+
bottom: "conv4_19/x2/bn"
|
3005 |
+
top: "conv4_19/x2/bn"
|
3006 |
+
scale_param {
|
3007 |
+
bias_term: true
|
3008 |
+
}
|
3009 |
+
}
|
3010 |
+
layer {
|
3011 |
+
name: "relu4_19/x2"
|
3012 |
+
type: "ReLU"
|
3013 |
+
bottom: "conv4_19/x2/bn"
|
3014 |
+
top: "conv4_19/x2/bn"
|
3015 |
+
}
|
3016 |
+
layer {
|
3017 |
+
name: "conv4_19/x2"
|
3018 |
+
type: "Convolution"
|
3019 |
+
bottom: "conv4_19/x2/bn"
|
3020 |
+
top: "conv4_19/x2"
|
3021 |
+
convolution_param {
|
3022 |
+
num_output: 32
|
3023 |
+
bias_term: false
|
3024 |
+
pad: 1
|
3025 |
+
kernel_size: 3
|
3026 |
+
}
|
3027 |
+
}
|
3028 |
+
layer {
|
3029 |
+
name: "concat_4_19"
|
3030 |
+
type: "Concat"
|
3031 |
+
bottom: "concat_4_18"
|
3032 |
+
bottom: "conv4_19/x2"
|
3033 |
+
top: "concat_4_19"
|
3034 |
+
}
|
3035 |
+
layer {
|
3036 |
+
name: "conv4_20/x1/bn"
|
3037 |
+
type: "BatchNorm"
|
3038 |
+
bottom: "concat_4_19"
|
3039 |
+
top: "conv4_20/x1/bn"
|
3040 |
+
batch_norm_param {
|
3041 |
+
eps: 1e-5
|
3042 |
+
}
|
3043 |
+
}
|
3044 |
+
layer {
|
3045 |
+
name: "conv4_20/x1/scale"
|
3046 |
+
type: "Scale"
|
3047 |
+
bottom: "conv4_20/x1/bn"
|
3048 |
+
top: "conv4_20/x1/bn"
|
3049 |
+
scale_param {
|
3050 |
+
bias_term: true
|
3051 |
+
}
|
3052 |
+
}
|
3053 |
+
layer {
|
3054 |
+
name: "relu4_20/x1"
|
3055 |
+
type: "ReLU"
|
3056 |
+
bottom: "conv4_20/x1/bn"
|
3057 |
+
top: "conv4_20/x1/bn"
|
3058 |
+
}
|
3059 |
+
layer {
|
3060 |
+
name: "conv4_20/x1"
|
3061 |
+
type: "Convolution"
|
3062 |
+
bottom: "conv4_20/x1/bn"
|
3063 |
+
top: "conv4_20/x1"
|
3064 |
+
convolution_param {
|
3065 |
+
num_output: 128
|
3066 |
+
bias_term: false
|
3067 |
+
kernel_size: 1
|
3068 |
+
}
|
3069 |
+
}
|
3070 |
+
layer {
|
3071 |
+
name: "conv4_20/x2/bn"
|
3072 |
+
type: "BatchNorm"
|
3073 |
+
bottom: "conv4_20/x1"
|
3074 |
+
top: "conv4_20/x2/bn"
|
3075 |
+
batch_norm_param {
|
3076 |
+
eps: 1e-5
|
3077 |
+
}
|
3078 |
+
}
|
3079 |
+
layer {
|
3080 |
+
name: "conv4_20/x2/scale"
|
3081 |
+
type: "Scale"
|
3082 |
+
bottom: "conv4_20/x2/bn"
|
3083 |
+
top: "conv4_20/x2/bn"
|
3084 |
+
scale_param {
|
3085 |
+
bias_term: true
|
3086 |
+
}
|
3087 |
+
}
|
3088 |
+
layer {
|
3089 |
+
name: "relu4_20/x2"
|
3090 |
+
type: "ReLU"
|
3091 |
+
bottom: "conv4_20/x2/bn"
|
3092 |
+
top: "conv4_20/x2/bn"
|
3093 |
+
}
|
3094 |
+
layer {
|
3095 |
+
name: "conv4_20/x2"
|
3096 |
+
type: "Convolution"
|
3097 |
+
bottom: "conv4_20/x2/bn"
|
3098 |
+
top: "conv4_20/x2"
|
3099 |
+
convolution_param {
|
3100 |
+
num_output: 32
|
3101 |
+
bias_term: false
|
3102 |
+
pad: 1
|
3103 |
+
kernel_size: 3
|
3104 |
+
}
|
3105 |
+
}
|
3106 |
+
layer {
|
3107 |
+
name: "concat_4_20"
|
3108 |
+
type: "Concat"
|
3109 |
+
bottom: "concat_4_19"
|
3110 |
+
bottom: "conv4_20/x2"
|
3111 |
+
top: "concat_4_20"
|
3112 |
+
}
|
3113 |
+
layer {
|
3114 |
+
name: "conv4_21/x1/bn"
|
3115 |
+
type: "BatchNorm"
|
3116 |
+
bottom: "concat_4_20"
|
3117 |
+
top: "conv4_21/x1/bn"
|
3118 |
+
batch_norm_param {
|
3119 |
+
eps: 1e-5
|
3120 |
+
}
|
3121 |
+
}
|
3122 |
+
layer {
|
3123 |
+
name: "conv4_21/x1/scale"
|
3124 |
+
type: "Scale"
|
3125 |
+
bottom: "conv4_21/x1/bn"
|
3126 |
+
top: "conv4_21/x1/bn"
|
3127 |
+
scale_param {
|
3128 |
+
bias_term: true
|
3129 |
+
}
|
3130 |
+
}
|
3131 |
+
layer {
|
3132 |
+
name: "relu4_21/x1"
|
3133 |
+
type: "ReLU"
|
3134 |
+
bottom: "conv4_21/x1/bn"
|
3135 |
+
top: "conv4_21/x1/bn"
|
3136 |
+
}
|
3137 |
+
layer {
|
3138 |
+
name: "conv4_21/x1"
|
3139 |
+
type: "Convolution"
|
3140 |
+
bottom: "conv4_21/x1/bn"
|
3141 |
+
top: "conv4_21/x1"
|
3142 |
+
convolution_param {
|
3143 |
+
num_output: 128
|
3144 |
+
bias_term: false
|
3145 |
+
kernel_size: 1
|
3146 |
+
}
|
3147 |
+
}
|
3148 |
+
layer {
|
3149 |
+
name: "conv4_21/x2/bn"
|
3150 |
+
type: "BatchNorm"
|
3151 |
+
bottom: "conv4_21/x1"
|
3152 |
+
top: "conv4_21/x2/bn"
|
3153 |
+
batch_norm_param {
|
3154 |
+
eps: 1e-5
|
3155 |
+
}
|
3156 |
+
}
|
3157 |
+
layer {
|
3158 |
+
name: "conv4_21/x2/scale"
|
3159 |
+
type: "Scale"
|
3160 |
+
bottom: "conv4_21/x2/bn"
|
3161 |
+
top: "conv4_21/x2/bn"
|
3162 |
+
scale_param {
|
3163 |
+
bias_term: true
|
3164 |
+
}
|
3165 |
+
}
|
3166 |
+
layer {
|
3167 |
+
name: "relu4_21/x2"
|
3168 |
+
type: "ReLU"
|
3169 |
+
bottom: "conv4_21/x2/bn"
|
3170 |
+
top: "conv4_21/x2/bn"
|
3171 |
+
}
|
3172 |
+
layer {
|
3173 |
+
name: "conv4_21/x2"
|
3174 |
+
type: "Convolution"
|
3175 |
+
bottom: "conv4_21/x2/bn"
|
3176 |
+
top: "conv4_21/x2"
|
3177 |
+
convolution_param {
|
3178 |
+
num_output: 32
|
3179 |
+
bias_term: false
|
3180 |
+
pad: 1
|
3181 |
+
kernel_size: 3
|
3182 |
+
}
|
3183 |
+
}
|
3184 |
+
layer {
|
3185 |
+
name: "concat_4_21"
|
3186 |
+
type: "Concat"
|
3187 |
+
bottom: "concat_4_20"
|
3188 |
+
bottom: "conv4_21/x2"
|
3189 |
+
top: "concat_4_21"
|
3190 |
+
}
|
3191 |
+
layer {
|
3192 |
+
name: "conv4_22/x1/bn"
|
3193 |
+
type: "BatchNorm"
|
3194 |
+
bottom: "concat_4_21"
|
3195 |
+
top: "conv4_22/x1/bn"
|
3196 |
+
batch_norm_param {
|
3197 |
+
eps: 1e-5
|
3198 |
+
}
|
3199 |
+
}
|
3200 |
+
layer {
|
3201 |
+
name: "conv4_22/x1/scale"
|
3202 |
+
type: "Scale"
|
3203 |
+
bottom: "conv4_22/x1/bn"
|
3204 |
+
top: "conv4_22/x1/bn"
|
3205 |
+
scale_param {
|
3206 |
+
bias_term: true
|
3207 |
+
}
|
3208 |
+
}
|
3209 |
+
layer {
|
3210 |
+
name: "relu4_22/x1"
|
3211 |
+
type: "ReLU"
|
3212 |
+
bottom: "conv4_22/x1/bn"
|
3213 |
+
top: "conv4_22/x1/bn"
|
3214 |
+
}
|
3215 |
+
layer {
|
3216 |
+
name: "conv4_22/x1"
|
3217 |
+
type: "Convolution"
|
3218 |
+
bottom: "conv4_22/x1/bn"
|
3219 |
+
top: "conv4_22/x1"
|
3220 |
+
convolution_param {
|
3221 |
+
num_output: 128
|
3222 |
+
bias_term: false
|
3223 |
+
kernel_size: 1
|
3224 |
+
}
|
3225 |
+
}
|
3226 |
+
layer {
|
3227 |
+
name: "conv4_22/x2/bn"
|
3228 |
+
type: "BatchNorm"
|
3229 |
+
bottom: "conv4_22/x1"
|
3230 |
+
top: "conv4_22/x2/bn"
|
3231 |
+
batch_norm_param {
|
3232 |
+
eps: 1e-5
|
3233 |
+
}
|
3234 |
+
}
|
3235 |
+
layer {
|
3236 |
+
name: "conv4_22/x2/scale"
|
3237 |
+
type: "Scale"
|
3238 |
+
bottom: "conv4_22/x2/bn"
|
3239 |
+
top: "conv4_22/x2/bn"
|
3240 |
+
scale_param {
|
3241 |
+
bias_term: true
|
3242 |
+
}
|
3243 |
+
}
|
3244 |
+
layer {
|
3245 |
+
name: "relu4_22/x2"
|
3246 |
+
type: "ReLU"
|
3247 |
+
bottom: "conv4_22/x2/bn"
|
3248 |
+
top: "conv4_22/x2/bn"
|
3249 |
+
}
|
3250 |
+
layer {
|
3251 |
+
name: "conv4_22/x2"
|
3252 |
+
type: "Convolution"
|
3253 |
+
bottom: "conv4_22/x2/bn"
|
3254 |
+
top: "conv4_22/x2"
|
3255 |
+
convolution_param {
|
3256 |
+
num_output: 32
|
3257 |
+
bias_term: false
|
3258 |
+
pad: 1
|
3259 |
+
kernel_size: 3
|
3260 |
+
}
|
3261 |
+
}
|
3262 |
+
layer {
|
3263 |
+
name: "concat_4_22"
|
3264 |
+
type: "Concat"
|
3265 |
+
bottom: "concat_4_21"
|
3266 |
+
bottom: "conv4_22/x2"
|
3267 |
+
top: "concat_4_22"
|
3268 |
+
}
|
3269 |
+
layer {
|
3270 |
+
name: "conv4_23/x1/bn"
|
3271 |
+
type: "BatchNorm"
|
3272 |
+
bottom: "concat_4_22"
|
3273 |
+
top: "conv4_23/x1/bn"
|
3274 |
+
batch_norm_param {
|
3275 |
+
eps: 1e-5
|
3276 |
+
}
|
3277 |
+
}
|
3278 |
+
layer {
|
3279 |
+
name: "conv4_23/x1/scale"
|
3280 |
+
type: "Scale"
|
3281 |
+
bottom: "conv4_23/x1/bn"
|
3282 |
+
top: "conv4_23/x1/bn"
|
3283 |
+
scale_param {
|
3284 |
+
bias_term: true
|
3285 |
+
}
|
3286 |
+
}
|
3287 |
+
layer {
|
3288 |
+
name: "relu4_23/x1"
|
3289 |
+
type: "ReLU"
|
3290 |
+
bottom: "conv4_23/x1/bn"
|
3291 |
+
top: "conv4_23/x1/bn"
|
3292 |
+
}
|
3293 |
+
layer {
|
3294 |
+
name: "conv4_23/x1"
|
3295 |
+
type: "Convolution"
|
3296 |
+
bottom: "conv4_23/x1/bn"
|
3297 |
+
top: "conv4_23/x1"
|
3298 |
+
convolution_param {
|
3299 |
+
num_output: 128
|
3300 |
+
bias_term: false
|
3301 |
+
kernel_size: 1
|
3302 |
+
}
|
3303 |
+
}
|
3304 |
+
layer {
|
3305 |
+
name: "conv4_23/x2/bn"
|
3306 |
+
type: "BatchNorm"
|
3307 |
+
bottom: "conv4_23/x1"
|
3308 |
+
top: "conv4_23/x2/bn"
|
3309 |
+
batch_norm_param {
|
3310 |
+
eps: 1e-5
|
3311 |
+
}
|
3312 |
+
}
|
3313 |
+
layer {
|
3314 |
+
name: "conv4_23/x2/scale"
|
3315 |
+
type: "Scale"
|
3316 |
+
bottom: "conv4_23/x2/bn"
|
3317 |
+
top: "conv4_23/x2/bn"
|
3318 |
+
scale_param {
|
3319 |
+
bias_term: true
|
3320 |
+
}
|
3321 |
+
}
|
3322 |
+
layer {
|
3323 |
+
name: "relu4_23/x2"
|
3324 |
+
type: "ReLU"
|
3325 |
+
bottom: "conv4_23/x2/bn"
|
3326 |
+
top: "conv4_23/x2/bn"
|
3327 |
+
}
|
3328 |
+
layer {
|
3329 |
+
name: "conv4_23/x2"
|
3330 |
+
type: "Convolution"
|
3331 |
+
bottom: "conv4_23/x2/bn"
|
3332 |
+
top: "conv4_23/x2"
|
3333 |
+
convolution_param {
|
3334 |
+
num_output: 32
|
3335 |
+
bias_term: false
|
3336 |
+
pad: 1
|
3337 |
+
kernel_size: 3
|
3338 |
+
}
|
3339 |
+
}
|
3340 |
+
layer {
|
3341 |
+
name: "concat_4_23"
|
3342 |
+
type: "Concat"
|
3343 |
+
bottom: "concat_4_22"
|
3344 |
+
bottom: "conv4_23/x2"
|
3345 |
+
top: "concat_4_23"
|
3346 |
+
}
|
3347 |
+
layer {
|
3348 |
+
name: "conv4_24/x1/bn"
|
3349 |
+
type: "BatchNorm"
|
3350 |
+
bottom: "concat_4_23"
|
3351 |
+
top: "conv4_24/x1/bn"
|
3352 |
+
batch_norm_param {
|
3353 |
+
eps: 1e-5
|
3354 |
+
}
|
3355 |
+
}
|
3356 |
+
layer {
|
3357 |
+
name: "conv4_24/x1/scale"
|
3358 |
+
type: "Scale"
|
3359 |
+
bottom: "conv4_24/x1/bn"
|
3360 |
+
top: "conv4_24/x1/bn"
|
3361 |
+
scale_param {
|
3362 |
+
bias_term: true
|
3363 |
+
}
|
3364 |
+
}
|
3365 |
+
layer {
|
3366 |
+
name: "relu4_24/x1"
|
3367 |
+
type: "ReLU"
|
3368 |
+
bottom: "conv4_24/x1/bn"
|
3369 |
+
top: "conv4_24/x1/bn"
|
3370 |
+
}
|
3371 |
+
layer {
|
3372 |
+
name: "conv4_24/x1"
|
3373 |
+
type: "Convolution"
|
3374 |
+
bottom: "conv4_24/x1/bn"
|
3375 |
+
top: "conv4_24/x1"
|
3376 |
+
convolution_param {
|
3377 |
+
num_output: 128
|
3378 |
+
bias_term: false
|
3379 |
+
kernel_size: 1
|
3380 |
+
}
|
3381 |
+
}
|
3382 |
+
layer {
|
3383 |
+
name: "conv4_24/x2/bn"
|
3384 |
+
type: "BatchNorm"
|
3385 |
+
bottom: "conv4_24/x1"
|
3386 |
+
top: "conv4_24/x2/bn"
|
3387 |
+
batch_norm_param {
|
3388 |
+
eps: 1e-5
|
3389 |
+
}
|
3390 |
+
}
|
3391 |
+
layer {
|
3392 |
+
name: "conv4_24/x2/scale"
|
3393 |
+
type: "Scale"
|
3394 |
+
bottom: "conv4_24/x2/bn"
|
3395 |
+
top: "conv4_24/x2/bn"
|
3396 |
+
scale_param {
|
3397 |
+
bias_term: true
|
3398 |
+
}
|
3399 |
+
}
|
3400 |
+
layer {
|
3401 |
+
name: "relu4_24/x2"
|
3402 |
+
type: "ReLU"
|
3403 |
+
bottom: "conv4_24/x2/bn"
|
3404 |
+
top: "conv4_24/x2/bn"
|
3405 |
+
}
|
3406 |
+
layer {
|
3407 |
+
name: "conv4_24/x2"
|
3408 |
+
type: "Convolution"
|
3409 |
+
bottom: "conv4_24/x2/bn"
|
3410 |
+
top: "conv4_24/x2"
|
3411 |
+
convolution_param {
|
3412 |
+
num_output: 32
|
3413 |
+
bias_term: false
|
3414 |
+
pad: 1
|
3415 |
+
kernel_size: 3
|
3416 |
+
}
|
3417 |
+
}
|
3418 |
+
layer {
|
3419 |
+
name: "concat_4_24"
|
3420 |
+
type: "Concat"
|
3421 |
+
bottom: "concat_4_23"
|
3422 |
+
bottom: "conv4_24/x2"
|
3423 |
+
top: "concat_4_24"
|
3424 |
+
}
|
3425 |
+
layer {
|
3426 |
+
name: "conv4_blk/bn"
|
3427 |
+
type: "BatchNorm"
|
3428 |
+
bottom: "concat_4_24"
|
3429 |
+
top: "conv4_blk/bn"
|
3430 |
+
batch_norm_param {
|
3431 |
+
eps: 1e-5
|
3432 |
+
}
|
3433 |
+
}
|
3434 |
+
layer {
|
3435 |
+
name: "conv4_blk/scale"
|
3436 |
+
type: "Scale"
|
3437 |
+
bottom: "conv4_blk/bn"
|
3438 |
+
top: "conv4_blk/bn"
|
3439 |
+
scale_param {
|
3440 |
+
bias_term: true
|
3441 |
+
}
|
3442 |
+
}
|
3443 |
+
layer {
|
3444 |
+
name: "relu4_blk"
|
3445 |
+
type: "ReLU"
|
3446 |
+
bottom: "conv4_blk/bn"
|
3447 |
+
top: "conv4_blk/bn"
|
3448 |
+
}
|
3449 |
+
layer {
|
3450 |
+
name: "conv4_blk"
|
3451 |
+
type: "Convolution"
|
3452 |
+
bottom: "conv4_blk/bn"
|
3453 |
+
top: "conv4_blk"
|
3454 |
+
convolution_param {
|
3455 |
+
num_output: 512
|
3456 |
+
bias_term: false
|
3457 |
+
kernel_size: 1
|
3458 |
+
}
|
3459 |
+
}
|
3460 |
+
layer {
|
3461 |
+
name: "pool4"
|
3462 |
+
type: "Pooling"
|
3463 |
+
bottom: "conv4_blk"
|
3464 |
+
top: "pool4"
|
3465 |
+
pooling_param {
|
3466 |
+
pool: AVE
|
3467 |
+
kernel_size: 2
|
3468 |
+
stride: 2
|
3469 |
+
}
|
3470 |
+
}
|
3471 |
+
layer {
|
3472 |
+
name: "conv5_1/x1/bn"
|
3473 |
+
type: "BatchNorm"
|
3474 |
+
bottom: "pool4"
|
3475 |
+
top: "conv5_1/x1/bn"
|
3476 |
+
batch_norm_param {
|
3477 |
+
eps: 1e-5
|
3478 |
+
}
|
3479 |
+
}
|
3480 |
+
layer {
|
3481 |
+
name: "conv5_1/x1/scale"
|
3482 |
+
type: "Scale"
|
3483 |
+
bottom: "conv5_1/x1/bn"
|
3484 |
+
top: "conv5_1/x1/bn"
|
3485 |
+
scale_param {
|
3486 |
+
bias_term: true
|
3487 |
+
}
|
3488 |
+
}
|
3489 |
+
layer {
|
3490 |
+
name: "relu5_1/x1"
|
3491 |
+
type: "ReLU"
|
3492 |
+
bottom: "conv5_1/x1/bn"
|
3493 |
+
top: "conv5_1/x1/bn"
|
3494 |
+
}
|
3495 |
+
layer {
|
3496 |
+
name: "conv5_1/x1"
|
3497 |
+
type: "Convolution"
|
3498 |
+
bottom: "conv5_1/x1/bn"
|
3499 |
+
top: "conv5_1/x1"
|
3500 |
+
convolution_param {
|
3501 |
+
num_output: 128
|
3502 |
+
bias_term: false
|
3503 |
+
kernel_size: 1
|
3504 |
+
}
|
3505 |
+
}
|
3506 |
+
layer {
|
3507 |
+
name: "conv5_1/x2/bn"
|
3508 |
+
type: "BatchNorm"
|
3509 |
+
bottom: "conv5_1/x1"
|
3510 |
+
top: "conv5_1/x2/bn"
|
3511 |
+
batch_norm_param {
|
3512 |
+
eps: 1e-5
|
3513 |
+
}
|
3514 |
+
}
|
3515 |
+
layer {
|
3516 |
+
name: "conv5_1/x2/scale"
|
3517 |
+
type: "Scale"
|
3518 |
+
bottom: "conv5_1/x2/bn"
|
3519 |
+
top: "conv5_1/x2/bn"
|
3520 |
+
scale_param {
|
3521 |
+
bias_term: true
|
3522 |
+
}
|
3523 |
+
}
|
3524 |
+
layer {
|
3525 |
+
name: "relu5_1/x2"
|
3526 |
+
type: "ReLU"
|
3527 |
+
bottom: "conv5_1/x2/bn"
|
3528 |
+
top: "conv5_1/x2/bn"
|
3529 |
+
}
|
3530 |
+
layer {
|
3531 |
+
name: "conv5_1/x2"
|
3532 |
+
type: "Convolution"
|
3533 |
+
bottom: "conv5_1/x2/bn"
|
3534 |
+
top: "conv5_1/x2"
|
3535 |
+
convolution_param {
|
3536 |
+
num_output: 32
|
3537 |
+
bias_term: false
|
3538 |
+
pad: 1
|
3539 |
+
kernel_size: 3
|
3540 |
+
}
|
3541 |
+
}
|
3542 |
+
layer {
|
3543 |
+
name: "concat_5_1"
|
3544 |
+
type: "Concat"
|
3545 |
+
bottom: "pool4"
|
3546 |
+
bottom: "conv5_1/x2"
|
3547 |
+
top: "concat_5_1"
|
3548 |
+
}
|
3549 |
+
layer {
|
3550 |
+
name: "conv5_2/x1/bn"
|
3551 |
+
type: "BatchNorm"
|
3552 |
+
bottom: "concat_5_1"
|
3553 |
+
top: "conv5_2/x1/bn"
|
3554 |
+
batch_norm_param {
|
3555 |
+
eps: 1e-5
|
3556 |
+
}
|
3557 |
+
}
|
3558 |
+
layer {
|
3559 |
+
name: "conv5_2/x1/scale"
|
3560 |
+
type: "Scale"
|
3561 |
+
bottom: "conv5_2/x1/bn"
|
3562 |
+
top: "conv5_2/x1/bn"
|
3563 |
+
scale_param {
|
3564 |
+
bias_term: true
|
3565 |
+
}
|
3566 |
+
}
|
3567 |
+
layer {
|
3568 |
+
name: "relu5_2/x1"
|
3569 |
+
type: "ReLU"
|
3570 |
+
bottom: "conv5_2/x1/bn"
|
3571 |
+
top: "conv5_2/x1/bn"
|
3572 |
+
}
|
3573 |
+
layer {
|
3574 |
+
name: "conv5_2/x1"
|
3575 |
+
type: "Convolution"
|
3576 |
+
bottom: "conv5_2/x1/bn"
|
3577 |
+
top: "conv5_2/x1"
|
3578 |
+
convolution_param {
|
3579 |
+
num_output: 128
|
3580 |
+
bias_term: false
|
3581 |
+
kernel_size: 1
|
3582 |
+
}
|
3583 |
+
}
|
3584 |
+
layer {
|
3585 |
+
name: "conv5_2/x2/bn"
|
3586 |
+
type: "BatchNorm"
|
3587 |
+
bottom: "conv5_2/x1"
|
3588 |
+
top: "conv5_2/x2/bn"
|
3589 |
+
batch_norm_param {
|
3590 |
+
eps: 1e-5
|
3591 |
+
}
|
3592 |
+
}
|
3593 |
+
layer {
|
3594 |
+
name: "conv5_2/x2/scale"
|
3595 |
+
type: "Scale"
|
3596 |
+
bottom: "conv5_2/x2/bn"
|
3597 |
+
top: "conv5_2/x2/bn"
|
3598 |
+
scale_param {
|
3599 |
+
bias_term: true
|
3600 |
+
}
|
3601 |
+
}
|
3602 |
+
layer {
|
3603 |
+
name: "relu5_2/x2"
|
3604 |
+
type: "ReLU"
|
3605 |
+
bottom: "conv5_2/x2/bn"
|
3606 |
+
top: "conv5_2/x2/bn"
|
3607 |
+
}
|
3608 |
+
layer {
|
3609 |
+
name: "conv5_2/x2"
|
3610 |
+
type: "Convolution"
|
3611 |
+
bottom: "conv5_2/x2/bn"
|
3612 |
+
top: "conv5_2/x2"
|
3613 |
+
convolution_param {
|
3614 |
+
num_output: 32
|
3615 |
+
bias_term: false
|
3616 |
+
pad: 1
|
3617 |
+
kernel_size: 3
|
3618 |
+
}
|
3619 |
+
}
|
3620 |
+
layer {
|
3621 |
+
name: "concat_5_2"
|
3622 |
+
type: "Concat"
|
3623 |
+
bottom: "concat_5_1"
|
3624 |
+
bottom: "conv5_2/x2"
|
3625 |
+
top: "concat_5_2"
|
3626 |
+
}
|
3627 |
+
layer {
|
3628 |
+
name: "conv5_3/x1/bn"
|
3629 |
+
type: "BatchNorm"
|
3630 |
+
bottom: "concat_5_2"
|
3631 |
+
top: "conv5_3/x1/bn"
|
3632 |
+
batch_norm_param {
|
3633 |
+
eps: 1e-5
|
3634 |
+
}
|
3635 |
+
}
|
3636 |
+
layer {
|
3637 |
+
name: "conv5_3/x1/scale"
|
3638 |
+
type: "Scale"
|
3639 |
+
bottom: "conv5_3/x1/bn"
|
3640 |
+
top: "conv5_3/x1/bn"
|
3641 |
+
scale_param {
|
3642 |
+
bias_term: true
|
3643 |
+
}
|
3644 |
+
}
|
3645 |
+
layer {
|
3646 |
+
name: "relu5_3/x1"
|
3647 |
+
type: "ReLU"
|
3648 |
+
bottom: "conv5_3/x1/bn"
|
3649 |
+
top: "conv5_3/x1/bn"
|
3650 |
+
}
|
3651 |
+
layer {
|
3652 |
+
name: "conv5_3/x1"
|
3653 |
+
type: "Convolution"
|
3654 |
+
bottom: "conv5_3/x1/bn"
|
3655 |
+
top: "conv5_3/x1"
|
3656 |
+
convolution_param {
|
3657 |
+
num_output: 128
|
3658 |
+
bias_term: false
|
3659 |
+
kernel_size: 1
|
3660 |
+
}
|
3661 |
+
}
|
3662 |
+
layer {
|
3663 |
+
name: "conv5_3/x2/bn"
|
3664 |
+
type: "BatchNorm"
|
3665 |
+
bottom: "conv5_3/x1"
|
3666 |
+
top: "conv5_3/x2/bn"
|
3667 |
+
batch_norm_param {
|
3668 |
+
eps: 1e-5
|
3669 |
+
}
|
3670 |
+
}
|
3671 |
+
layer {
|
3672 |
+
name: "conv5_3/x2/scale"
|
3673 |
+
type: "Scale"
|
3674 |
+
bottom: "conv5_3/x2/bn"
|
3675 |
+
top: "conv5_3/x2/bn"
|
3676 |
+
scale_param {
|
3677 |
+
bias_term: true
|
3678 |
+
}
|
3679 |
+
}
|
3680 |
+
layer {
|
3681 |
+
name: "relu5_3/x2"
|
3682 |
+
type: "ReLU"
|
3683 |
+
bottom: "conv5_3/x2/bn"
|
3684 |
+
top: "conv5_3/x2/bn"
|
3685 |
+
}
|
3686 |
+
layer {
|
3687 |
+
name: "conv5_3/x2"
|
3688 |
+
type: "Convolution"
|
3689 |
+
bottom: "conv5_3/x2/bn"
|
3690 |
+
top: "conv5_3/x2"
|
3691 |
+
convolution_param {
|
3692 |
+
num_output: 32
|
3693 |
+
bias_term: false
|
3694 |
+
pad: 1
|
3695 |
+
kernel_size: 3
|
3696 |
+
}
|
3697 |
+
}
|
3698 |
+
layer {
|
3699 |
+
name: "concat_5_3"
|
3700 |
+
type: "Concat"
|
3701 |
+
bottom: "concat_5_2"
|
3702 |
+
bottom: "conv5_3/x2"
|
3703 |
+
top: "concat_5_3"
|
3704 |
+
}
|
3705 |
+
layer {
|
3706 |
+
name: "conv5_4/x1/bn"
|
3707 |
+
type: "BatchNorm"
|
3708 |
+
bottom: "concat_5_3"
|
3709 |
+
top: "conv5_4/x1/bn"
|
3710 |
+
batch_norm_param {
|
3711 |
+
eps: 1e-5
|
3712 |
+
}
|
3713 |
+
}
|
3714 |
+
layer {
|
3715 |
+
name: "conv5_4/x1/scale"
|
3716 |
+
type: "Scale"
|
3717 |
+
bottom: "conv5_4/x1/bn"
|
3718 |
+
top: "conv5_4/x1/bn"
|
3719 |
+
scale_param {
|
3720 |
+
bias_term: true
|
3721 |
+
}
|
3722 |
+
}
|
3723 |
+
layer {
|
3724 |
+
name: "relu5_4/x1"
|
3725 |
+
type: "ReLU"
|
3726 |
+
bottom: "conv5_4/x1/bn"
|
3727 |
+
top: "conv5_4/x1/bn"
|
3728 |
+
}
|
3729 |
+
layer {
|
3730 |
+
name: "conv5_4/x1"
|
3731 |
+
type: "Convolution"
|
3732 |
+
bottom: "conv5_4/x1/bn"
|
3733 |
+
top: "conv5_4/x1"
|
3734 |
+
convolution_param {
|
3735 |
+
num_output: 128
|
3736 |
+
bias_term: false
|
3737 |
+
kernel_size: 1
|
3738 |
+
}
|
3739 |
+
}
|
3740 |
+
layer {
|
3741 |
+
name: "conv5_4/x2/bn"
|
3742 |
+
type: "BatchNorm"
|
3743 |
+
bottom: "conv5_4/x1"
|
3744 |
+
top: "conv5_4/x2/bn"
|
3745 |
+
batch_norm_param {
|
3746 |
+
eps: 1e-5
|
3747 |
+
}
|
3748 |
+
}
|
3749 |
+
layer {
|
3750 |
+
name: "conv5_4/x2/scale"
|
3751 |
+
type: "Scale"
|
3752 |
+
bottom: "conv5_4/x2/bn"
|
3753 |
+
top: "conv5_4/x2/bn"
|
3754 |
+
scale_param {
|
3755 |
+
bias_term: true
|
3756 |
+
}
|
3757 |
+
}
|
3758 |
+
layer {
|
3759 |
+
name: "relu5_4/x2"
|
3760 |
+
type: "ReLU"
|
3761 |
+
bottom: "conv5_4/x2/bn"
|
3762 |
+
top: "conv5_4/x2/bn"
|
3763 |
+
}
|
3764 |
+
layer {
|
3765 |
+
name: "conv5_4/x2"
|
3766 |
+
type: "Convolution"
|
3767 |
+
bottom: "conv5_4/x2/bn"
|
3768 |
+
top: "conv5_4/x2"
|
3769 |
+
convolution_param {
|
3770 |
+
num_output: 32
|
3771 |
+
bias_term: false
|
3772 |
+
pad: 1
|
3773 |
+
kernel_size: 3
|
3774 |
+
}
|
3775 |
+
}
|
3776 |
+
layer {
|
3777 |
+
name: "concat_5_4"
|
3778 |
+
type: "Concat"
|
3779 |
+
bottom: "concat_5_3"
|
3780 |
+
bottom: "conv5_4/x2"
|
3781 |
+
top: "concat_5_4"
|
3782 |
+
}
|
3783 |
+
layer {
|
3784 |
+
name: "conv5_5/x1/bn"
|
3785 |
+
type: "BatchNorm"
|
3786 |
+
bottom: "concat_5_4"
|
3787 |
+
top: "conv5_5/x1/bn"
|
3788 |
+
batch_norm_param {
|
3789 |
+
eps: 1e-5
|
3790 |
+
}
|
3791 |
+
}
|
3792 |
+
layer {
|
3793 |
+
name: "conv5_5/x1/scale"
|
3794 |
+
type: "Scale"
|
3795 |
+
bottom: "conv5_5/x1/bn"
|
3796 |
+
top: "conv5_5/x1/bn"
|
3797 |
+
scale_param {
|
3798 |
+
bias_term: true
|
3799 |
+
}
|
3800 |
+
}
|
3801 |
+
layer {
|
3802 |
+
name: "relu5_5/x1"
|
3803 |
+
type: "ReLU"
|
3804 |
+
bottom: "conv5_5/x1/bn"
|
3805 |
+
top: "conv5_5/x1/bn"
|
3806 |
+
}
|
3807 |
+
layer {
|
3808 |
+
name: "conv5_5/x1"
|
3809 |
+
type: "Convolution"
|
3810 |
+
bottom: "conv5_5/x1/bn"
|
3811 |
+
top: "conv5_5/x1"
|
3812 |
+
convolution_param {
|
3813 |
+
num_output: 128
|
3814 |
+
bias_term: false
|
3815 |
+
kernel_size: 1
|
3816 |
+
}
|
3817 |
+
}
|
3818 |
+
layer {
|
3819 |
+
name: "conv5_5/x2/bn"
|
3820 |
+
type: "BatchNorm"
|
3821 |
+
bottom: "conv5_5/x1"
|
3822 |
+
top: "conv5_5/x2/bn"
|
3823 |
+
batch_norm_param {
|
3824 |
+
eps: 1e-5
|
3825 |
+
}
|
3826 |
+
}
|
3827 |
+
layer {
|
3828 |
+
name: "conv5_5/x2/scale"
|
3829 |
+
type: "Scale"
|
3830 |
+
bottom: "conv5_5/x2/bn"
|
3831 |
+
top: "conv5_5/x2/bn"
|
3832 |
+
scale_param {
|
3833 |
+
bias_term: true
|
3834 |
+
}
|
3835 |
+
}
|
3836 |
+
layer {
|
3837 |
+
name: "relu5_5/x2"
|
3838 |
+
type: "ReLU"
|
3839 |
+
bottom: "conv5_5/x2/bn"
|
3840 |
+
top: "conv5_5/x2/bn"
|
3841 |
+
}
|
3842 |
+
layer {
|
3843 |
+
name: "conv5_5/x2"
|
3844 |
+
type: "Convolution"
|
3845 |
+
bottom: "conv5_5/x2/bn"
|
3846 |
+
top: "conv5_5/x2"
|
3847 |
+
convolution_param {
|
3848 |
+
num_output: 32
|
3849 |
+
bias_term: false
|
3850 |
+
pad: 1
|
3851 |
+
kernel_size: 3
|
3852 |
+
}
|
3853 |
+
}
|
3854 |
+
layer {
|
3855 |
+
name: "concat_5_5"
|
3856 |
+
type: "Concat"
|
3857 |
+
bottom: "concat_5_4"
|
3858 |
+
bottom: "conv5_5/x2"
|
3859 |
+
top: "concat_5_5"
|
3860 |
+
}
|
3861 |
+
layer {
|
3862 |
+
name: "conv5_6/x1/bn"
|
3863 |
+
type: "BatchNorm"
|
3864 |
+
bottom: "concat_5_5"
|
3865 |
+
top: "conv5_6/x1/bn"
|
3866 |
+
batch_norm_param {
|
3867 |
+
eps: 1e-5
|
3868 |
+
}
|
3869 |
+
}
|
3870 |
+
layer {
|
3871 |
+
name: "conv5_6/x1/scale"
|
3872 |
+
type: "Scale"
|
3873 |
+
bottom: "conv5_6/x1/bn"
|
3874 |
+
top: "conv5_6/x1/bn"
|
3875 |
+
scale_param {
|
3876 |
+
bias_term: true
|
3877 |
+
}
|
3878 |
+
}
|
3879 |
+
layer {
|
3880 |
+
name: "relu5_6/x1"
|
3881 |
+
type: "ReLU"
|
3882 |
+
bottom: "conv5_6/x1/bn"
|
3883 |
+
top: "conv5_6/x1/bn"
|
3884 |
+
}
|
3885 |
+
layer {
|
3886 |
+
name: "conv5_6/x1"
|
3887 |
+
type: "Convolution"
|
3888 |
+
bottom: "conv5_6/x1/bn"
|
3889 |
+
top: "conv5_6/x1"
|
3890 |
+
convolution_param {
|
3891 |
+
num_output: 128
|
3892 |
+
bias_term: false
|
3893 |
+
kernel_size: 1
|
3894 |
+
}
|
3895 |
+
}
|
3896 |
+
layer {
|
3897 |
+
name: "conv5_6/x2/bn"
|
3898 |
+
type: "BatchNorm"
|
3899 |
+
bottom: "conv5_6/x1"
|
3900 |
+
top: "conv5_6/x2/bn"
|
3901 |
+
batch_norm_param {
|
3902 |
+
eps: 1e-5
|
3903 |
+
}
|
3904 |
+
}
|
3905 |
+
layer {
|
3906 |
+
name: "conv5_6/x2/scale"
|
3907 |
+
type: "Scale"
|
3908 |
+
bottom: "conv5_6/x2/bn"
|
3909 |
+
top: "conv5_6/x2/bn"
|
3910 |
+
scale_param {
|
3911 |
+
bias_term: true
|
3912 |
+
}
|
3913 |
+
}
|
3914 |
+
layer {
|
3915 |
+
name: "relu5_6/x2"
|
3916 |
+
type: "ReLU"
|
3917 |
+
bottom: "conv5_6/x2/bn"
|
3918 |
+
top: "conv5_6/x2/bn"
|
3919 |
+
}
|
3920 |
+
layer {
|
3921 |
+
name: "conv5_6/x2"
|
3922 |
+
type: "Convolution"
|
3923 |
+
bottom: "conv5_6/x2/bn"
|
3924 |
+
top: "conv5_6/x2"
|
3925 |
+
convolution_param {
|
3926 |
+
num_output: 32
|
3927 |
+
bias_term: false
|
3928 |
+
pad: 1
|
3929 |
+
kernel_size: 3
|
3930 |
+
}
|
3931 |
+
}
|
3932 |
+
layer {
|
3933 |
+
name: "concat_5_6"
|
3934 |
+
type: "Concat"
|
3935 |
+
bottom: "concat_5_5"
|
3936 |
+
bottom: "conv5_6/x2"
|
3937 |
+
top: "concat_5_6"
|
3938 |
+
}
|
3939 |
+
layer {
|
3940 |
+
name: "conv5_7/x1/bn"
|
3941 |
+
type: "BatchNorm"
|
3942 |
+
bottom: "concat_5_6"
|
3943 |
+
top: "conv5_7/x1/bn"
|
3944 |
+
batch_norm_param {
|
3945 |
+
eps: 1e-5
|
3946 |
+
}
|
3947 |
+
}
|
3948 |
+
layer {
|
3949 |
+
name: "conv5_7/x1/scale"
|
3950 |
+
type: "Scale"
|
3951 |
+
bottom: "conv5_7/x1/bn"
|
3952 |
+
top: "conv5_7/x1/bn"
|
3953 |
+
scale_param {
|
3954 |
+
bias_term: true
|
3955 |
+
}
|
3956 |
+
}
|
3957 |
+
layer {
|
3958 |
+
name: "relu5_7/x1"
|
3959 |
+
type: "ReLU"
|
3960 |
+
bottom: "conv5_7/x1/bn"
|
3961 |
+
top: "conv5_7/x1/bn"
|
3962 |
+
}
|
3963 |
+
layer {
|
3964 |
+
name: "conv5_7/x1"
|
3965 |
+
type: "Convolution"
|
3966 |
+
bottom: "conv5_7/x1/bn"
|
3967 |
+
top: "conv5_7/x1"
|
3968 |
+
convolution_param {
|
3969 |
+
num_output: 128
|
3970 |
+
bias_term: false
|
3971 |
+
kernel_size: 1
|
3972 |
+
}
|
3973 |
+
}
|
3974 |
+
layer {
|
3975 |
+
name: "conv5_7/x2/bn"
|
3976 |
+
type: "BatchNorm"
|
3977 |
+
bottom: "conv5_7/x1"
|
3978 |
+
top: "conv5_7/x2/bn"
|
3979 |
+
batch_norm_param {
|
3980 |
+
eps: 1e-5
|
3981 |
+
}
|
3982 |
+
}
|
3983 |
+
layer {
|
3984 |
+
name: "conv5_7/x2/scale"
|
3985 |
+
type: "Scale"
|
3986 |
+
bottom: "conv5_7/x2/bn"
|
3987 |
+
top: "conv5_7/x2/bn"
|
3988 |
+
scale_param {
|
3989 |
+
bias_term: true
|
3990 |
+
}
|
3991 |
+
}
|
3992 |
+
layer {
|
3993 |
+
name: "relu5_7/x2"
|
3994 |
+
type: "ReLU"
|
3995 |
+
bottom: "conv5_7/x2/bn"
|
3996 |
+
top: "conv5_7/x2/bn"
|
3997 |
+
}
|
3998 |
+
layer {
|
3999 |
+
name: "conv5_7/x2"
|
4000 |
+
type: "Convolution"
|
4001 |
+
bottom: "conv5_7/x2/bn"
|
4002 |
+
top: "conv5_7/x2"
|
4003 |
+
convolution_param {
|
4004 |
+
num_output: 32
|
4005 |
+
bias_term: false
|
4006 |
+
pad: 1
|
4007 |
+
kernel_size: 3
|
4008 |
+
}
|
4009 |
+
}
|
4010 |
+
layer {
|
4011 |
+
name: "concat_5_7"
|
4012 |
+
type: "Concat"
|
4013 |
+
bottom: "concat_5_6"
|
4014 |
+
bottom: "conv5_7/x2"
|
4015 |
+
top: "concat_5_7"
|
4016 |
+
}
|
4017 |
+
layer {
|
4018 |
+
name: "conv5_8/x1/bn"
|
4019 |
+
type: "BatchNorm"
|
4020 |
+
bottom: "concat_5_7"
|
4021 |
+
top: "conv5_8/x1/bn"
|
4022 |
+
batch_norm_param {
|
4023 |
+
eps: 1e-5
|
4024 |
+
}
|
4025 |
+
}
|
4026 |
+
layer {
|
4027 |
+
name: "conv5_8/x1/scale"
|
4028 |
+
type: "Scale"
|
4029 |
+
bottom: "conv5_8/x1/bn"
|
4030 |
+
top: "conv5_8/x1/bn"
|
4031 |
+
scale_param {
|
4032 |
+
bias_term: true
|
4033 |
+
}
|
4034 |
+
}
|
4035 |
+
layer {
|
4036 |
+
name: "relu5_8/x1"
|
4037 |
+
type: "ReLU"
|
4038 |
+
bottom: "conv5_8/x1/bn"
|
4039 |
+
top: "conv5_8/x1/bn"
|
4040 |
+
}
|
4041 |
+
layer {
|
4042 |
+
name: "conv5_8/x1"
|
4043 |
+
type: "Convolution"
|
4044 |
+
bottom: "conv5_8/x1/bn"
|
4045 |
+
top: "conv5_8/x1"
|
4046 |
+
convolution_param {
|
4047 |
+
num_output: 128
|
4048 |
+
bias_term: false
|
4049 |
+
kernel_size: 1
|
4050 |
+
}
|
4051 |
+
}
|
4052 |
+
layer {
|
4053 |
+
name: "conv5_8/x2/bn"
|
4054 |
+
type: "BatchNorm"
|
4055 |
+
bottom: "conv5_8/x1"
|
4056 |
+
top: "conv5_8/x2/bn"
|
4057 |
+
batch_norm_param {
|
4058 |
+
eps: 1e-5
|
4059 |
+
}
|
4060 |
+
}
|
4061 |
+
layer {
|
4062 |
+
name: "conv5_8/x2/scale"
|
4063 |
+
type: "Scale"
|
4064 |
+
bottom: "conv5_8/x2/bn"
|
4065 |
+
top: "conv5_8/x2/bn"
|
4066 |
+
scale_param {
|
4067 |
+
bias_term: true
|
4068 |
+
}
|
4069 |
+
}
|
4070 |
+
layer {
|
4071 |
+
name: "relu5_8/x2"
|
4072 |
+
type: "ReLU"
|
4073 |
+
bottom: "conv5_8/x2/bn"
|
4074 |
+
top: "conv5_8/x2/bn"
|
4075 |
+
}
|
4076 |
+
layer {
|
4077 |
+
name: "conv5_8/x2"
|
4078 |
+
type: "Convolution"
|
4079 |
+
bottom: "conv5_8/x2/bn"
|
4080 |
+
top: "conv5_8/x2"
|
4081 |
+
convolution_param {
|
4082 |
+
num_output: 32
|
4083 |
+
bias_term: false
|
4084 |
+
pad: 1
|
4085 |
+
kernel_size: 3
|
4086 |
+
}
|
4087 |
+
}
|
4088 |
+
layer {
|
4089 |
+
name: "concat_5_8"
|
4090 |
+
type: "Concat"
|
4091 |
+
bottom: "concat_5_7"
|
4092 |
+
bottom: "conv5_8/x2"
|
4093 |
+
top: "concat_5_8"
|
4094 |
+
}
|
4095 |
+
layer {
|
4096 |
+
name: "conv5_9/x1/bn"
|
4097 |
+
type: "BatchNorm"
|
4098 |
+
bottom: "concat_5_8"
|
4099 |
+
top: "conv5_9/x1/bn"
|
4100 |
+
batch_norm_param {
|
4101 |
+
eps: 1e-5
|
4102 |
+
}
|
4103 |
+
}
|
4104 |
+
layer {
|
4105 |
+
name: "conv5_9/x1/scale"
|
4106 |
+
type: "Scale"
|
4107 |
+
bottom: "conv5_9/x1/bn"
|
4108 |
+
top: "conv5_9/x1/bn"
|
4109 |
+
scale_param {
|
4110 |
+
bias_term: true
|
4111 |
+
}
|
4112 |
+
}
|
4113 |
+
layer {
|
4114 |
+
name: "relu5_9/x1"
|
4115 |
+
type: "ReLU"
|
4116 |
+
bottom: "conv5_9/x1/bn"
|
4117 |
+
top: "conv5_9/x1/bn"
|
4118 |
+
}
|
4119 |
+
layer {
|
4120 |
+
name: "conv5_9/x1"
|
4121 |
+
type: "Convolution"
|
4122 |
+
bottom: "conv5_9/x1/bn"
|
4123 |
+
top: "conv5_9/x1"
|
4124 |
+
convolution_param {
|
4125 |
+
num_output: 128
|
4126 |
+
bias_term: false
|
4127 |
+
kernel_size: 1
|
4128 |
+
}
|
4129 |
+
}
|
4130 |
+
layer {
|
4131 |
+
name: "conv5_9/x2/bn"
|
4132 |
+
type: "BatchNorm"
|
4133 |
+
bottom: "conv5_9/x1"
|
4134 |
+
top: "conv5_9/x2/bn"
|
4135 |
+
batch_norm_param {
|
4136 |
+
eps: 1e-5
|
4137 |
+
}
|
4138 |
+
}
|
4139 |
+
layer {
|
4140 |
+
name: "conv5_9/x2/scale"
|
4141 |
+
type: "Scale"
|
4142 |
+
bottom: "conv5_9/x2/bn"
|
4143 |
+
top: "conv5_9/x2/bn"
|
4144 |
+
scale_param {
|
4145 |
+
bias_term: true
|
4146 |
+
}
|
4147 |
+
}
|
4148 |
+
layer {
|
4149 |
+
name: "relu5_9/x2"
|
4150 |
+
type: "ReLU"
|
4151 |
+
bottom: "conv5_9/x2/bn"
|
4152 |
+
top: "conv5_9/x2/bn"
|
4153 |
+
}
|
4154 |
+
layer {
|
4155 |
+
name: "conv5_9/x2"
|
4156 |
+
type: "Convolution"
|
4157 |
+
bottom: "conv5_9/x2/bn"
|
4158 |
+
top: "conv5_9/x2"
|
4159 |
+
convolution_param {
|
4160 |
+
num_output: 32
|
4161 |
+
bias_term: false
|
4162 |
+
pad: 1
|
4163 |
+
kernel_size: 3
|
4164 |
+
}
|
4165 |
+
}
|
4166 |
+
layer {
|
4167 |
+
name: "concat_5_9"
|
4168 |
+
type: "Concat"
|
4169 |
+
bottom: "concat_5_8"
|
4170 |
+
bottom: "conv5_9/x2"
|
4171 |
+
top: "concat_5_9"
|
4172 |
+
}
|
4173 |
+
layer {
|
4174 |
+
name: "conv5_10/x1/bn"
|
4175 |
+
type: "BatchNorm"
|
4176 |
+
bottom: "concat_5_9"
|
4177 |
+
top: "conv5_10/x1/bn"
|
4178 |
+
batch_norm_param {
|
4179 |
+
eps: 1e-5
|
4180 |
+
}
|
4181 |
+
}
|
4182 |
+
layer {
|
4183 |
+
name: "conv5_10/x1/scale"
|
4184 |
+
type: "Scale"
|
4185 |
+
bottom: "conv5_10/x1/bn"
|
4186 |
+
top: "conv5_10/x1/bn"
|
4187 |
+
scale_param {
|
4188 |
+
bias_term: true
|
4189 |
+
}
|
4190 |
+
}
|
4191 |
+
layer {
|
4192 |
+
name: "relu5_10/x1"
|
4193 |
+
type: "ReLU"
|
4194 |
+
bottom: "conv5_10/x1/bn"
|
4195 |
+
top: "conv5_10/x1/bn"
|
4196 |
+
}
|
4197 |
+
layer {
|
4198 |
+
name: "conv5_10/x1"
|
4199 |
+
type: "Convolution"
|
4200 |
+
bottom: "conv5_10/x1/bn"
|
4201 |
+
top: "conv5_10/x1"
|
4202 |
+
convolution_param {
|
4203 |
+
num_output: 128
|
4204 |
+
bias_term: false
|
4205 |
+
kernel_size: 1
|
4206 |
+
}
|
4207 |
+
}
|
4208 |
+
layer {
|
4209 |
+
name: "conv5_10/x2/bn"
|
4210 |
+
type: "BatchNorm"
|
4211 |
+
bottom: "conv5_10/x1"
|
4212 |
+
top: "conv5_10/x2/bn"
|
4213 |
+
batch_norm_param {
|
4214 |
+
eps: 1e-5
|
4215 |
+
}
|
4216 |
+
}
|
4217 |
+
layer {
|
4218 |
+
name: "conv5_10/x2/scale"
|
4219 |
+
type: "Scale"
|
4220 |
+
bottom: "conv5_10/x2/bn"
|
4221 |
+
top: "conv5_10/x2/bn"
|
4222 |
+
scale_param {
|
4223 |
+
bias_term: true
|
4224 |
+
}
|
4225 |
+
}
|
4226 |
+
layer {
|
4227 |
+
name: "relu5_10/x2"
|
4228 |
+
type: "ReLU"
|
4229 |
+
bottom: "conv5_10/x2/bn"
|
4230 |
+
top: "conv5_10/x2/bn"
|
4231 |
+
}
|
4232 |
+
layer {
|
4233 |
+
name: "conv5_10/x2"
|
4234 |
+
type: "Convolution"
|
4235 |
+
bottom: "conv5_10/x2/bn"
|
4236 |
+
top: "conv5_10/x2"
|
4237 |
+
convolution_param {
|
4238 |
+
num_output: 32
|
4239 |
+
bias_term: false
|
4240 |
+
pad: 1
|
4241 |
+
kernel_size: 3
|
4242 |
+
}
|
4243 |
+
}
|
4244 |
+
layer {
|
4245 |
+
name: "concat_5_10"
|
4246 |
+
type: "Concat"
|
4247 |
+
bottom: "concat_5_9"
|
4248 |
+
bottom: "conv5_10/x2"
|
4249 |
+
top: "concat_5_10"
|
4250 |
+
}
|
4251 |
+
layer {
|
4252 |
+
name: "conv5_11/x1/bn"
|
4253 |
+
type: "BatchNorm"
|
4254 |
+
bottom: "concat_5_10"
|
4255 |
+
top: "conv5_11/x1/bn"
|
4256 |
+
batch_norm_param {
|
4257 |
+
eps: 1e-5
|
4258 |
+
}
|
4259 |
+
}
|
4260 |
+
layer {
|
4261 |
+
name: "conv5_11/x1/scale"
|
4262 |
+
type: "Scale"
|
4263 |
+
bottom: "conv5_11/x1/bn"
|
4264 |
+
top: "conv5_11/x1/bn"
|
4265 |
+
scale_param {
|
4266 |
+
bias_term: true
|
4267 |
+
}
|
4268 |
+
}
|
4269 |
+
layer {
|
4270 |
+
name: "relu5_11/x1"
|
4271 |
+
type: "ReLU"
|
4272 |
+
bottom: "conv5_11/x1/bn"
|
4273 |
+
top: "conv5_11/x1/bn"
|
4274 |
+
}
|
4275 |
+
layer {
|
4276 |
+
name: "conv5_11/x1"
|
4277 |
+
type: "Convolution"
|
4278 |
+
bottom: "conv5_11/x1/bn"
|
4279 |
+
top: "conv5_11/x1"
|
4280 |
+
convolution_param {
|
4281 |
+
num_output: 128
|
4282 |
+
bias_term: false
|
4283 |
+
kernel_size: 1
|
4284 |
+
}
|
4285 |
+
}
|
4286 |
+
layer {
|
4287 |
+
name: "conv5_11/x2/bn"
|
4288 |
+
type: "BatchNorm"
|
4289 |
+
bottom: "conv5_11/x1"
|
4290 |
+
top: "conv5_11/x2/bn"
|
4291 |
+
batch_norm_param {
|
4292 |
+
eps: 1e-5
|
4293 |
+
}
|
4294 |
+
}
|
4295 |
+
layer {
|
4296 |
+
name: "conv5_11/x2/scale"
|
4297 |
+
type: "Scale"
|
4298 |
+
bottom: "conv5_11/x2/bn"
|
4299 |
+
top: "conv5_11/x2/bn"
|
4300 |
+
scale_param {
|
4301 |
+
bias_term: true
|
4302 |
+
}
|
4303 |
+
}
|
4304 |
+
layer {
|
4305 |
+
name: "relu5_11/x2"
|
4306 |
+
type: "ReLU"
|
4307 |
+
bottom: "conv5_11/x2/bn"
|
4308 |
+
top: "conv5_11/x2/bn"
|
4309 |
+
}
|
4310 |
+
layer {
|
4311 |
+
name: "conv5_11/x2"
|
4312 |
+
type: "Convolution"
|
4313 |
+
bottom: "conv5_11/x2/bn"
|
4314 |
+
top: "conv5_11/x2"
|
4315 |
+
convolution_param {
|
4316 |
+
num_output: 32
|
4317 |
+
bias_term: false
|
4318 |
+
pad: 1
|
4319 |
+
kernel_size: 3
|
4320 |
+
}
|
4321 |
+
}
|
4322 |
+
layer {
|
4323 |
+
name: "concat_5_11"
|
4324 |
+
type: "Concat"
|
4325 |
+
bottom: "concat_5_10"
|
4326 |
+
bottom: "conv5_11/x2"
|
4327 |
+
top: "concat_5_11"
|
4328 |
+
}
|
4329 |
+
layer {
|
4330 |
+
name: "conv5_12/x1/bn"
|
4331 |
+
type: "BatchNorm"
|
4332 |
+
bottom: "concat_5_11"
|
4333 |
+
top: "conv5_12/x1/bn"
|
4334 |
+
batch_norm_param {
|
4335 |
+
eps: 1e-5
|
4336 |
+
}
|
4337 |
+
}
|
4338 |
+
layer {
|
4339 |
+
name: "conv5_12/x1/scale"
|
4340 |
+
type: "Scale"
|
4341 |
+
bottom: "conv5_12/x1/bn"
|
4342 |
+
top: "conv5_12/x1/bn"
|
4343 |
+
scale_param {
|
4344 |
+
bias_term: true
|
4345 |
+
}
|
4346 |
+
}
|
4347 |
+
layer {
|
4348 |
+
name: "relu5_12/x1"
|
4349 |
+
type: "ReLU"
|
4350 |
+
bottom: "conv5_12/x1/bn"
|
4351 |
+
top: "conv5_12/x1/bn"
|
4352 |
+
}
|
4353 |
+
layer {
|
4354 |
+
name: "conv5_12/x1"
|
4355 |
+
type: "Convolution"
|
4356 |
+
bottom: "conv5_12/x1/bn"
|
4357 |
+
top: "conv5_12/x1"
|
4358 |
+
convolution_param {
|
4359 |
+
num_output: 128
|
4360 |
+
bias_term: false
|
4361 |
+
kernel_size: 1
|
4362 |
+
}
|
4363 |
+
}
|
4364 |
+
layer {
|
4365 |
+
name: "conv5_12/x2/bn"
|
4366 |
+
type: "BatchNorm"
|
4367 |
+
bottom: "conv5_12/x1"
|
4368 |
+
top: "conv5_12/x2/bn"
|
4369 |
+
batch_norm_param {
|
4370 |
+
eps: 1e-5
|
4371 |
+
}
|
4372 |
+
}
|
4373 |
+
layer {
|
4374 |
+
name: "conv5_12/x2/scale"
|
4375 |
+
type: "Scale"
|
4376 |
+
bottom: "conv5_12/x2/bn"
|
4377 |
+
top: "conv5_12/x2/bn"
|
4378 |
+
scale_param {
|
4379 |
+
bias_term: true
|
4380 |
+
}
|
4381 |
+
}
|
4382 |
+
layer {
|
4383 |
+
name: "relu5_12/x2"
|
4384 |
+
type: "ReLU"
|
4385 |
+
bottom: "conv5_12/x2/bn"
|
4386 |
+
top: "conv5_12/x2/bn"
|
4387 |
+
}
|
4388 |
+
layer {
|
4389 |
+
name: "conv5_12/x2"
|
4390 |
+
type: "Convolution"
|
4391 |
+
bottom: "conv5_12/x2/bn"
|
4392 |
+
top: "conv5_12/x2"
|
4393 |
+
convolution_param {
|
4394 |
+
num_output: 32
|
4395 |
+
bias_term: false
|
4396 |
+
pad: 1
|
4397 |
+
kernel_size: 3
|
4398 |
+
}
|
4399 |
+
}
|
4400 |
+
layer {
|
4401 |
+
name: "concat_5_12"
|
4402 |
+
type: "Concat"
|
4403 |
+
bottom: "concat_5_11"
|
4404 |
+
bottom: "conv5_12/x2"
|
4405 |
+
top: "concat_5_12"
|
4406 |
+
}
|
4407 |
+
layer {
|
4408 |
+
name: "conv5_13/x1/bn"
|
4409 |
+
type: "BatchNorm"
|
4410 |
+
bottom: "concat_5_12"
|
4411 |
+
top: "conv5_13/x1/bn"
|
4412 |
+
batch_norm_param {
|
4413 |
+
eps: 1e-5
|
4414 |
+
}
|
4415 |
+
}
|
4416 |
+
layer {
|
4417 |
+
name: "conv5_13/x1/scale"
|
4418 |
+
type: "Scale"
|
4419 |
+
bottom: "conv5_13/x1/bn"
|
4420 |
+
top: "conv5_13/x1/bn"
|
4421 |
+
scale_param {
|
4422 |
+
bias_term: true
|
4423 |
+
}
|
4424 |
+
}
|
4425 |
+
layer {
|
4426 |
+
name: "relu5_13/x1"
|
4427 |
+
type: "ReLU"
|
4428 |
+
bottom: "conv5_13/x1/bn"
|
4429 |
+
top: "conv5_13/x1/bn"
|
4430 |
+
}
|
4431 |
+
layer {
|
4432 |
+
name: "conv5_13/x1"
|
4433 |
+
type: "Convolution"
|
4434 |
+
bottom: "conv5_13/x1/bn"
|
4435 |
+
top: "conv5_13/x1"
|
4436 |
+
convolution_param {
|
4437 |
+
num_output: 128
|
4438 |
+
bias_term: false
|
4439 |
+
kernel_size: 1
|
4440 |
+
}
|
4441 |
+
}
|
4442 |
+
layer {
|
4443 |
+
name: "conv5_13/x2/bn"
|
4444 |
+
type: "BatchNorm"
|
4445 |
+
bottom: "conv5_13/x1"
|
4446 |
+
top: "conv5_13/x2/bn"
|
4447 |
+
batch_norm_param {
|
4448 |
+
eps: 1e-5
|
4449 |
+
}
|
4450 |
+
}
|
4451 |
+
layer {
|
4452 |
+
name: "conv5_13/x2/scale"
|
4453 |
+
type: "Scale"
|
4454 |
+
bottom: "conv5_13/x2/bn"
|
4455 |
+
top: "conv5_13/x2/bn"
|
4456 |
+
scale_param {
|
4457 |
+
bias_term: true
|
4458 |
+
}
|
4459 |
+
}
|
4460 |
+
layer {
|
4461 |
+
name: "relu5_13/x2"
|
4462 |
+
type: "ReLU"
|
4463 |
+
bottom: "conv5_13/x2/bn"
|
4464 |
+
top: "conv5_13/x2/bn"
|
4465 |
+
}
|
4466 |
+
layer {
|
4467 |
+
name: "conv5_13/x2"
|
4468 |
+
type: "Convolution"
|
4469 |
+
bottom: "conv5_13/x2/bn"
|
4470 |
+
top: "conv5_13/x2"
|
4471 |
+
convolution_param {
|
4472 |
+
num_output: 32
|
4473 |
+
bias_term: false
|
4474 |
+
pad: 1
|
4475 |
+
kernel_size: 3
|
4476 |
+
}
|
4477 |
+
}
|
4478 |
+
layer {
|
4479 |
+
name: "concat_5_13"
|
4480 |
+
type: "Concat"
|
4481 |
+
bottom: "concat_5_12"
|
4482 |
+
bottom: "conv5_13/x2"
|
4483 |
+
top: "concat_5_13"
|
4484 |
+
}
|
4485 |
+
layer {
|
4486 |
+
name: "conv5_14/x1/bn"
|
4487 |
+
type: "BatchNorm"
|
4488 |
+
bottom: "concat_5_13"
|
4489 |
+
top: "conv5_14/x1/bn"
|
4490 |
+
batch_norm_param {
|
4491 |
+
eps: 1e-5
|
4492 |
+
}
|
4493 |
+
}
|
4494 |
+
layer {
|
4495 |
+
name: "conv5_14/x1/scale"
|
4496 |
+
type: "Scale"
|
4497 |
+
bottom: "conv5_14/x1/bn"
|
4498 |
+
top: "conv5_14/x1/bn"
|
4499 |
+
scale_param {
|
4500 |
+
bias_term: true
|
4501 |
+
}
|
4502 |
+
}
|
4503 |
+
layer {
|
4504 |
+
name: "relu5_14/x1"
|
4505 |
+
type: "ReLU"
|
4506 |
+
bottom: "conv5_14/x1/bn"
|
4507 |
+
top: "conv5_14/x1/bn"
|
4508 |
+
}
|
4509 |
+
layer {
|
4510 |
+
name: "conv5_14/x1"
|
4511 |
+
type: "Convolution"
|
4512 |
+
bottom: "conv5_14/x1/bn"
|
4513 |
+
top: "conv5_14/x1"
|
4514 |
+
convolution_param {
|
4515 |
+
num_output: 128
|
4516 |
+
bias_term: false
|
4517 |
+
kernel_size: 1
|
4518 |
+
}
|
4519 |
+
}
|
4520 |
+
layer {
|
4521 |
+
name: "conv5_14/x2/bn"
|
4522 |
+
type: "BatchNorm"
|
4523 |
+
bottom: "conv5_14/x1"
|
4524 |
+
top: "conv5_14/x2/bn"
|
4525 |
+
batch_norm_param {
|
4526 |
+
eps: 1e-5
|
4527 |
+
}
|
4528 |
+
}
|
4529 |
+
layer {
|
4530 |
+
name: "conv5_14/x2/scale"
|
4531 |
+
type: "Scale"
|
4532 |
+
bottom: "conv5_14/x2/bn"
|
4533 |
+
top: "conv5_14/x2/bn"
|
4534 |
+
scale_param {
|
4535 |
+
bias_term: true
|
4536 |
+
}
|
4537 |
+
}
|
4538 |
+
layer {
|
4539 |
+
name: "relu5_14/x2"
|
4540 |
+
type: "ReLU"
|
4541 |
+
bottom: "conv5_14/x2/bn"
|
4542 |
+
top: "conv5_14/x2/bn"
|
4543 |
+
}
|
4544 |
+
layer {
|
4545 |
+
name: "conv5_14/x2"
|
4546 |
+
type: "Convolution"
|
4547 |
+
bottom: "conv5_14/x2/bn"
|
4548 |
+
top: "conv5_14/x2"
|
4549 |
+
convolution_param {
|
4550 |
+
num_output: 32
|
4551 |
+
bias_term: false
|
4552 |
+
pad: 1
|
4553 |
+
kernel_size: 3
|
4554 |
+
}
|
4555 |
+
}
|
4556 |
+
layer {
|
4557 |
+
name: "concat_5_14"
|
4558 |
+
type: "Concat"
|
4559 |
+
bottom: "concat_5_13"
|
4560 |
+
bottom: "conv5_14/x2"
|
4561 |
+
top: "concat_5_14"
|
4562 |
+
}
|
4563 |
+
layer {
|
4564 |
+
name: "conv5_15/x1/bn"
|
4565 |
+
type: "BatchNorm"
|
4566 |
+
bottom: "concat_5_14"
|
4567 |
+
top: "conv5_15/x1/bn"
|
4568 |
+
batch_norm_param {
|
4569 |
+
eps: 1e-5
|
4570 |
+
}
|
4571 |
+
}
|
4572 |
+
layer {
|
4573 |
+
name: "conv5_15/x1/scale"
|
4574 |
+
type: "Scale"
|
4575 |
+
bottom: "conv5_15/x1/bn"
|
4576 |
+
top: "conv5_15/x1/bn"
|
4577 |
+
scale_param {
|
4578 |
+
bias_term: true
|
4579 |
+
}
|
4580 |
+
}
|
4581 |
+
layer {
|
4582 |
+
name: "relu5_15/x1"
|
4583 |
+
type: "ReLU"
|
4584 |
+
bottom: "conv5_15/x1/bn"
|
4585 |
+
top: "conv5_15/x1/bn"
|
4586 |
+
}
|
4587 |
+
layer {
|
4588 |
+
name: "conv5_15/x1"
|
4589 |
+
type: "Convolution"
|
4590 |
+
bottom: "conv5_15/x1/bn"
|
4591 |
+
top: "conv5_15/x1"
|
4592 |
+
convolution_param {
|
4593 |
+
num_output: 128
|
4594 |
+
bias_term: false
|
4595 |
+
kernel_size: 1
|
4596 |
+
}
|
4597 |
+
}
|
4598 |
+
layer {
|
4599 |
+
name: "conv5_15/x2/bn"
|
4600 |
+
type: "BatchNorm"
|
4601 |
+
bottom: "conv5_15/x1"
|
4602 |
+
top: "conv5_15/x2/bn"
|
4603 |
+
batch_norm_param {
|
4604 |
+
eps: 1e-5
|
4605 |
+
}
|
4606 |
+
}
|
4607 |
+
layer {
|
4608 |
+
name: "conv5_15/x2/scale"
|
4609 |
+
type: "Scale"
|
4610 |
+
bottom: "conv5_15/x2/bn"
|
4611 |
+
top: "conv5_15/x2/bn"
|
4612 |
+
scale_param {
|
4613 |
+
bias_term: true
|
4614 |
+
}
|
4615 |
+
}
|
4616 |
+
layer {
|
4617 |
+
name: "relu5_15/x2"
|
4618 |
+
type: "ReLU"
|
4619 |
+
bottom: "conv5_15/x2/bn"
|
4620 |
+
top: "conv5_15/x2/bn"
|
4621 |
+
}
|
4622 |
+
layer {
|
4623 |
+
name: "conv5_15/x2"
|
4624 |
+
type: "Convolution"
|
4625 |
+
bottom: "conv5_15/x2/bn"
|
4626 |
+
top: "conv5_15/x2"
|
4627 |
+
convolution_param {
|
4628 |
+
num_output: 32
|
4629 |
+
bias_term: false
|
4630 |
+
pad: 1
|
4631 |
+
kernel_size: 3
|
4632 |
+
}
|
4633 |
+
}
|
4634 |
+
layer {
|
4635 |
+
name: "concat_5_15"
|
4636 |
+
type: "Concat"
|
4637 |
+
bottom: "concat_5_14"
|
4638 |
+
bottom: "conv5_15/x2"
|
4639 |
+
top: "concat_5_15"
|
4640 |
+
}
|
4641 |
+
layer {
|
4642 |
+
name: "conv5_16/x1/bn"
|
4643 |
+
type: "BatchNorm"
|
4644 |
+
bottom: "concat_5_15"
|
4645 |
+
top: "conv5_16/x1/bn"
|
4646 |
+
batch_norm_param {
|
4647 |
+
eps: 1e-5
|
4648 |
+
}
|
4649 |
+
}
|
4650 |
+
layer {
|
4651 |
+
name: "conv5_16/x1/scale"
|
4652 |
+
type: "Scale"
|
4653 |
+
bottom: "conv5_16/x1/bn"
|
4654 |
+
top: "conv5_16/x1/bn"
|
4655 |
+
scale_param {
|
4656 |
+
bias_term: true
|
4657 |
+
}
|
4658 |
+
}
|
4659 |
+
layer {
|
4660 |
+
name: "relu5_16/x1"
|
4661 |
+
type: "ReLU"
|
4662 |
+
bottom: "conv5_16/x1/bn"
|
4663 |
+
top: "conv5_16/x1/bn"
|
4664 |
+
}
|
4665 |
+
layer {
|
4666 |
+
name: "conv5_16/x1"
|
4667 |
+
type: "Convolution"
|
4668 |
+
bottom: "conv5_16/x1/bn"
|
4669 |
+
top: "conv5_16/x1"
|
4670 |
+
convolution_param {
|
4671 |
+
num_output: 128
|
4672 |
+
bias_term: false
|
4673 |
+
kernel_size: 1
|
4674 |
+
}
|
4675 |
+
}
|
4676 |
+
layer {
|
4677 |
+
name: "conv5_16/x2/bn"
|
4678 |
+
type: "BatchNorm"
|
4679 |
+
bottom: "conv5_16/x1"
|
4680 |
+
top: "conv5_16/x2/bn"
|
4681 |
+
batch_norm_param {
|
4682 |
+
eps: 1e-5
|
4683 |
+
}
|
4684 |
+
}
|
4685 |
+
layer {
|
4686 |
+
name: "conv5_16/x2/scale"
|
4687 |
+
type: "Scale"
|
4688 |
+
bottom: "conv5_16/x2/bn"
|
4689 |
+
top: "conv5_16/x2/bn"
|
4690 |
+
scale_param {
|
4691 |
+
bias_term: true
|
4692 |
+
}
|
4693 |
+
}
|
4694 |
+
layer {
|
4695 |
+
name: "relu5_16/x2"
|
4696 |
+
type: "ReLU"
|
4697 |
+
bottom: "conv5_16/x2/bn"
|
4698 |
+
top: "conv5_16/x2/bn"
|
4699 |
+
}
|
4700 |
+
layer {
|
4701 |
+
name: "conv5_16/x2"
|
4702 |
+
type: "Convolution"
|
4703 |
+
bottom: "conv5_16/x2/bn"
|
4704 |
+
top: "conv5_16/x2"
|
4705 |
+
convolution_param {
|
4706 |
+
num_output: 32
|
4707 |
+
bias_term: false
|
4708 |
+
pad: 1
|
4709 |
+
kernel_size: 3
|
4710 |
+
}
|
4711 |
+
}
|
4712 |
+
layer {
|
4713 |
+
name: "concat_5_16"
|
4714 |
+
type: "Concat"
|
4715 |
+
bottom: "concat_5_15"
|
4716 |
+
bottom: "conv5_16/x2"
|
4717 |
+
top: "concat_5_16"
|
4718 |
+
}
|
4719 |
+
layer {
|
4720 |
+
name: "conv5_blk/bn"
|
4721 |
+
type: "BatchNorm"
|
4722 |
+
bottom: "concat_5_16"
|
4723 |
+
top: "conv5_blk/bn"
|
4724 |
+
batch_norm_param {
|
4725 |
+
eps: 1e-5
|
4726 |
+
}
|
4727 |
+
}
|
4728 |
+
layer {
|
4729 |
+
name: "conv5_blk/scale"
|
4730 |
+
type: "Scale"
|
4731 |
+
bottom: "conv5_blk/bn"
|
4732 |
+
top: "conv5_blk/bn"
|
4733 |
+
scale_param {
|
4734 |
+
bias_term: true
|
4735 |
+
}
|
4736 |
+
}
|
4737 |
+
layer {
|
4738 |
+
name: "relu5_blk"
|
4739 |
+
type: "ReLU"
|
4740 |
+
bottom: "conv5_blk/bn"
|
4741 |
+
top: "conv5_blk/bn"
|
4742 |
+
}
|
4743 |
+
layer {
|
4744 |
+
name: "pool5"
|
4745 |
+
type: "Pooling"
|
4746 |
+
bottom: "conv5_blk/bn"
|
4747 |
+
top: "pool5"
|
4748 |
+
pooling_param {
|
4749 |
+
pool: AVE
|
4750 |
+
global_pooling: true
|
4751 |
+
}
|
4752 |
+
}
|
4753 |
+
layer {
|
4754 |
+
name: "fc6"
|
4755 |
+
type: "Convolution"
|
4756 |
+
bottom: "pool5"
|
4757 |
+
top: "fc6"
|
4758 |
+
convolution_param {
|
4759 |
+
num_output: 1000
|
4760 |
+
kernel_size: 1
|
4761 |
+
}
|
4762 |
+
}
|
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from requests.models import MissingSchema
|
2 |
+
import streamlit as st
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image, UnidentifiedImageError
|
6 |
+
import requests
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
# Create application title and file uploader widget.
|
10 |
+
st.title("OpenCV Deep Learning based Image Classification")
|
11 |
+
|
12 |
+
|
13 |
+
# @st.cache(allow_output_mutation=True)
|
14 |
+
@st.cache_resource
|
15 |
+
def load_model():
|
16 |
+
"""Loads the DNN model."""
|
17 |
+
|
18 |
+
# Read the ImageNet class names.
|
19 |
+
with open('classification_classes_ILSVRC2012.txt', 'r') as f:
|
20 |
+
image_net_names = f.read().split('\n')
|
21 |
+
|
22 |
+
# Final class names, picking just the first name if multiple in the class.
|
23 |
+
class_names = [name.split(',')[0] for name in image_net_names]
|
24 |
+
|
25 |
+
# Load the neural network model.
|
26 |
+
model = cv2.dnn.readNet(
|
27 |
+
model='DenseNet_121.caffemodel',
|
28 |
+
config='DenseNet_121.prototxt',
|
29 |
+
framework='Caffe')
|
30 |
+
return model, class_names
|
31 |
+
|
32 |
+
|
33 |
+
def classify(model, image, class_names):
|
34 |
+
"""Performs inference and returns class name with highest confidence."""
|
35 |
+
|
36 |
+
# Remove alpha channel if found.
|
37 |
+
if image.shape[2] == 4:
|
38 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
|
39 |
+
|
40 |
+
# Create blob from image using values specified by the model:
|
41 |
+
# https://github.com/shicai/DenseNet-Caffe
|
42 |
+
blob = cv2.dnn.blobFromImage(
|
43 |
+
image=image, scalefactor=0.017, size=(224, 224), mean=(104, 117, 123))
|
44 |
+
|
45 |
+
# Set the input blob for the neural network and pass through network.
|
46 |
+
model.setInput(blob)
|
47 |
+
outputs = model.forward()
|
48 |
+
|
49 |
+
final_outputs = outputs[0]
|
50 |
+
# Make all the outputs 1D.
|
51 |
+
final_outputs = final_outputs.reshape(1000, 1)
|
52 |
+
# get the class label
|
53 |
+
label_id = np.argmax(final_outputs)
|
54 |
+
# Convert the output scores to softmax probabilities.
|
55 |
+
probs = np.exp(final_outputs) / np.sum(np.exp(final_outputs))
|
56 |
+
# Get the final highest probability.
|
57 |
+
final_prob = np.max(probs) * 100.
|
58 |
+
# Map the max confidence to the class label names.
|
59 |
+
out_name = class_names[label_id]
|
60 |
+
out_text = f"Class: {out_name}, Confidence: {final_prob:.1f}%"
|
61 |
+
return out_text
|
62 |
+
|
63 |
+
|
64 |
+
def header(text):
|
65 |
+
st.markdown(
|
66 |
+
'<p style="background-color:#0066cc;color:#33ff33;font-size:24px;'
|
67 |
+
f'border-radius:2%;" align="center">{text}</p>',
|
68 |
+
unsafe_allow_html=True)
|
69 |
+
|
70 |
+
|
71 |
+
net, class_names = load_model()
|
72 |
+
|
73 |
+
img_file_buffer = st.file_uploader("Choose a file or Camera", type=['jpg', 'jpeg', 'png'])
|
74 |
+
st.text('OR')
|
75 |
+
url = st.text_input('Enter URL')
|
76 |
+
|
77 |
+
if img_file_buffer is not None:
|
78 |
+
# Read the file and convert it to opencv Image.
|
79 |
+
image = np.array(Image.open(img_file_buffer))
|
80 |
+
st.image(image)
|
81 |
+
|
82 |
+
# Call the classification model to detect faces in the image.
|
83 |
+
detections = classify(net, image, class_names)
|
84 |
+
header(detections)
|
85 |
+
|
86 |
+
elif url != '':
|
87 |
+
try:
|
88 |
+
response = requests.get(url)
|
89 |
+
image = np.array(Image.open(BytesIO(response.content)))
|
90 |
+
st.image(image)
|
91 |
+
|
92 |
+
# Call the classification model to detect faces in the image.
|
93 |
+
detections = classify(net, image, class_names)
|
94 |
+
header(detections)
|
95 |
+
except MissingSchema as err:
|
96 |
+
st.header('Invalid URL, Try Again!')
|
97 |
+
print(err)
|
98 |
+
except UnidentifiedImageError as err:
|
99 |
+
st.header('URL has no Image, Try Again!')
|
100 |
+
print(err)
|
classification_classes_ILSVRC2012.txt
ADDED
@@ -0,0 +1,1000 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tench, Tinca tinca
|
2 |
+
goldfish, Carassius auratus
|
3 |
+
great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias
|
4 |
+
tiger shark, Galeocerdo cuvieri
|
5 |
+
hammerhead, hammerhead shark
|
6 |
+
electric ray, crampfish, numbfish, torpedo
|
7 |
+
stingray
|
8 |
+
cock
|
9 |
+
hen
|
10 |
+
ostrich, Struthio camelus
|
11 |
+
brambling, Fringilla montifringilla
|
12 |
+
goldfinch, Carduelis carduelis
|
13 |
+
house finch, linnet, Carpodacus mexicanus
|
14 |
+
junco, snowbird
|
15 |
+
indigo bunting, indigo finch, indigo bird, Passerina cyanea
|
16 |
+
robin, American robin, Turdus migratorius
|
17 |
+
bulbul
|
18 |
+
jay
|
19 |
+
magpie
|
20 |
+
chickadee
|
21 |
+
water ouzel, dipper
|
22 |
+
kite
|
23 |
+
bald eagle, American eagle, Haliaeetus leucocephalus
|
24 |
+
vulture
|
25 |
+
great grey owl, great gray owl, Strix nebulosa
|
26 |
+
European fire salamander, Salamandra salamandra
|
27 |
+
common newt, Triturus vulgaris
|
28 |
+
eft
|
29 |
+
spotted salamander, Ambystoma maculatum
|
30 |
+
axolotl, mud puppy, Ambystoma mexicanum
|
31 |
+
bullfrog, Rana catesbeiana
|
32 |
+
tree frog, tree-frog
|
33 |
+
tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui
|
34 |
+
loggerhead, loggerhead turtle, Caretta caretta
|
35 |
+
leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea
|
36 |
+
mud turtle
|
37 |
+
terrapin
|
38 |
+
box turtle, box tortoise
|
39 |
+
banded gecko
|
40 |
+
common iguana, iguana, Iguana iguana
|
41 |
+
American chameleon, anole, Anolis carolinensis
|
42 |
+
whiptail, whiptail lizard
|
43 |
+
agama
|
44 |
+
frilled lizard, Chlamydosaurus kingi
|
45 |
+
alligator lizard
|
46 |
+
Gila monster, Heloderma suspectum
|
47 |
+
green lizard, Lacerta viridis
|
48 |
+
African chameleon, Chamaeleo chamaeleon
|
49 |
+
Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis
|
50 |
+
African crocodile, Nile crocodile, Crocodylus niloticus
|
51 |
+
American alligator, Alligator mississipiensis
|
52 |
+
triceratops
|
53 |
+
thunder snake, worm snake, Carphophis amoenus
|
54 |
+
ringneck snake, ring-necked snake, ring snake
|
55 |
+
hognose snake, puff adder, sand viper
|
56 |
+
green snake, grass snake
|
57 |
+
king snake, kingsnake
|
58 |
+
garter snake, grass snake
|
59 |
+
water snake
|
60 |
+
vine snake
|
61 |
+
night snake, Hypsiglena torquata
|
62 |
+
boa constrictor, Constrictor constrictor
|
63 |
+
rock python, rock snake, Python sebae
|
64 |
+
Indian cobra, Naja naja
|
65 |
+
green mamba
|
66 |
+
sea snake
|
67 |
+
horned viper, cerastes, sand viper, horned asp, Cerastes cornutus
|
68 |
+
diamondback, diamondback rattlesnake, Crotalus adamanteus
|
69 |
+
sidewinder, horned rattlesnake, Crotalus cerastes
|
70 |
+
trilobite
|
71 |
+
harvestman, daddy longlegs, Phalangium opilio
|
72 |
+
scorpion
|
73 |
+
black and gold garden spider, Argiope aurantia
|
74 |
+
barn spider, Araneus cavaticus
|
75 |
+
garden spider, Aranea diademata
|
76 |
+
black widow, Latrodectus mactans
|
77 |
+
tarantula
|
78 |
+
wolf spider, hunting spider
|
79 |
+
tick
|
80 |
+
centipede
|
81 |
+
black grouse
|
82 |
+
ptarmigan
|
83 |
+
ruffed grouse, partridge, Bonasa umbellus
|
84 |
+
prairie chicken, prairie grouse, prairie fowl
|
85 |
+
peacock
|
86 |
+
quail
|
87 |
+
partridge
|
88 |
+
African grey, African gray, Psittacus erithacus
|
89 |
+
macaw
|
90 |
+
sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita
|
91 |
+
lorikeet
|
92 |
+
coucal
|
93 |
+
bee eater
|
94 |
+
hornbill
|
95 |
+
hummingbird
|
96 |
+
jacamar
|
97 |
+
toucan
|
98 |
+
drake
|
99 |
+
red-breasted merganser, Mergus serrator
|
100 |
+
goose
|
101 |
+
black swan, Cygnus atratus
|
102 |
+
tusker
|
103 |
+
echidna, spiny anteater, anteater
|
104 |
+
platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus
|
105 |
+
wallaby, brush kangaroo
|
106 |
+
koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus
|
107 |
+
wombat
|
108 |
+
jellyfish
|
109 |
+
sea anemone, anemone
|
110 |
+
brain coral
|
111 |
+
flatworm, platyhelminth
|
112 |
+
nematode, nematode worm, roundworm
|
113 |
+
conch
|
114 |
+
snail
|
115 |
+
slug
|
116 |
+
sea slug, nudibranch
|
117 |
+
chiton, coat-of-mail shell, sea cradle, polyplacophore
|
118 |
+
chambered nautilus, pearly nautilus, nautilus
|
119 |
+
Dungeness crab, Cancer magister
|
120 |
+
rock crab, Cancer irroratus
|
121 |
+
fiddler crab
|
122 |
+
king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica
|
123 |
+
American lobster, Northern lobster, Maine lobster, Homarus americanus
|
124 |
+
spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish
|
125 |
+
crayfish, crawfish, crawdad, crawdaddy
|
126 |
+
hermit crab
|
127 |
+
isopod
|
128 |
+
white stork, Ciconia ciconia
|
129 |
+
black stork, Ciconia nigra
|
130 |
+
spoonbill
|
131 |
+
flamingo
|
132 |
+
little blue heron, Egretta caerulea
|
133 |
+
American egret, great white heron, Egretta albus
|
134 |
+
bittern
|
135 |
+
crane
|
136 |
+
limpkin, Aramus pictus
|
137 |
+
European gallinule, Porphyrio porphyrio
|
138 |
+
American coot, marsh hen, mud hen, water hen, Fulica americana
|
139 |
+
bustard
|
140 |
+
ruddy turnstone, Arenaria interpres
|
141 |
+
red-backed sandpiper, dunlin, Erolia alpina
|
142 |
+
redshank, Tringa totanus
|
143 |
+
dowitcher
|
144 |
+
oystercatcher, oyster catcher
|
145 |
+
pelican
|
146 |
+
king penguin, Aptenodytes patagonica
|
147 |
+
albatross, mollymawk
|
148 |
+
grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus
|
149 |
+
killer whale, killer, orca, grampus, sea wolf, Orcinus orca
|
150 |
+
dugong, Dugong dugon
|
151 |
+
sea lion
|
152 |
+
Chihuahua
|
153 |
+
Japanese spaniel
|
154 |
+
Maltese dog, Maltese terrier, Maltese
|
155 |
+
Pekinese, Pekingese, Peke
|
156 |
+
Shih-Tzu
|
157 |
+
Blenheim spaniel
|
158 |
+
papillon
|
159 |
+
toy terrier
|
160 |
+
Rhodesian ridgeback
|
161 |
+
Afghan hound, Afghan
|
162 |
+
basset, basset hound
|
163 |
+
beagle
|
164 |
+
bloodhound, sleuthhound
|
165 |
+
bluetick
|
166 |
+
black-and-tan coonhound
|
167 |
+
Walker hound, Walker foxhound
|
168 |
+
English foxhound
|
169 |
+
redbone
|
170 |
+
borzoi, Russian wolfhound
|
171 |
+
Irish wolfhound
|
172 |
+
Italian greyhound
|
173 |
+
whippet
|
174 |
+
Ibizan hound, Ibizan Podenco
|
175 |
+
Norwegian elkhound, elkhound
|
176 |
+
otterhound, otter hound
|
177 |
+
Saluki, gazelle hound
|
178 |
+
Scottish deerhound, deerhound
|
179 |
+
Weimaraner
|
180 |
+
Staffordshire bullterrier, Staffordshire bull terrier
|
181 |
+
American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier
|
182 |
+
Bedlington terrier
|
183 |
+
Border terrier
|
184 |
+
Kerry blue terrier
|
185 |
+
Irish terrier
|
186 |
+
Norfolk terrier
|
187 |
+
Norwich terrier
|
188 |
+
Yorkshire terrier
|
189 |
+
wire-haired fox terrier
|
190 |
+
Lakeland terrier
|
191 |
+
Sealyham terrier, Sealyham
|
192 |
+
Airedale, Airedale terrier
|
193 |
+
cairn, cairn terrier
|
194 |
+
Australian terrier
|
195 |
+
Dandie Dinmont, Dandie Dinmont terrier
|
196 |
+
Boston bull, Boston terrier
|
197 |
+
miniature schnauzer
|
198 |
+
giant schnauzer
|
199 |
+
standard schnauzer
|
200 |
+
Scotch terrier, Scottish terrier, Scottie
|
201 |
+
Tibetan terrier, chrysanthemum dog
|
202 |
+
silky terrier, Sydney silky
|
203 |
+
soft-coated wheaten terrier
|
204 |
+
West Highland white terrier
|
205 |
+
Lhasa, Lhasa apso
|
206 |
+
flat-coated retriever
|
207 |
+
curly-coated retriever
|
208 |
+
golden retriever
|
209 |
+
Labrador retriever
|
210 |
+
Chesapeake Bay retriever
|
211 |
+
German short-haired pointer
|
212 |
+
vizsla, Hungarian pointer
|
213 |
+
English setter
|
214 |
+
Irish setter, red setter
|
215 |
+
Gordon setter
|
216 |
+
Brittany spaniel
|
217 |
+
clumber, clumber spaniel
|
218 |
+
English springer, English springer spaniel
|
219 |
+
Welsh springer spaniel
|
220 |
+
cocker spaniel, English cocker spaniel, cocker
|
221 |
+
Sussex spaniel
|
222 |
+
Irish water spaniel
|
223 |
+
kuvasz
|
224 |
+
schipperke
|
225 |
+
groenendael
|
226 |
+
malinois
|
227 |
+
briard
|
228 |
+
kelpie
|
229 |
+
komondor
|
230 |
+
Old English sheepdog, bobtail
|
231 |
+
Shetland sheepdog, Shetland sheep dog, Shetland
|
232 |
+
collie
|
233 |
+
Border collie
|
234 |
+
Bouvier des Flandres, Bouviers des Flandres
|
235 |
+
Rottweiler
|
236 |
+
German shepherd, German shepherd dog, German police dog, alsatian
|
237 |
+
Doberman, Doberman pinscher
|
238 |
+
miniature pinscher
|
239 |
+
Greater Swiss Mountain dog
|
240 |
+
Bernese mountain dog
|
241 |
+
Appenzeller
|
242 |
+
EntleBucher
|
243 |
+
boxer
|
244 |
+
bull mastiff
|
245 |
+
Tibetan mastiff
|
246 |
+
French bulldog
|
247 |
+
Great Dane
|
248 |
+
Saint Bernard, St Bernard
|
249 |
+
Eskimo dog, husky
|
250 |
+
malamute, malemute, Alaskan malamute
|
251 |
+
Siberian husky
|
252 |
+
dalmatian, coach dog, carriage dog
|
253 |
+
affenpinscher, monkey pinscher, monkey dog
|
254 |
+
basenji
|
255 |
+
pug, pug-dog
|
256 |
+
Leonberg
|
257 |
+
Newfoundland, Newfoundland dog
|
258 |
+
Great Pyrenees
|
259 |
+
Samoyed, Samoyede
|
260 |
+
Pomeranian
|
261 |
+
chow, chow chow
|
262 |
+
keeshond
|
263 |
+
Brabancon griffon
|
264 |
+
Pembroke, Pembroke Welsh corgi
|
265 |
+
Cardigan, Cardigan Welsh corgi
|
266 |
+
toy poodle
|
267 |
+
miniature poodle
|
268 |
+
standard poodle
|
269 |
+
Mexican hairless
|
270 |
+
timber wolf, grey wolf, gray wolf, Canis lupus
|
271 |
+
white wolf, Arctic wolf, Canis lupus tundrarum
|
272 |
+
red wolf, maned wolf, Canis rufus, Canis niger
|
273 |
+
coyote, prairie wolf, brush wolf, Canis latrans
|
274 |
+
dingo, warrigal, warragal, Canis dingo
|
275 |
+
dhole, Cuon alpinus
|
276 |
+
African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus
|
277 |
+
hyena, hyaena
|
278 |
+
red fox, Vulpes vulpes
|
279 |
+
kit fox, Vulpes macrotis
|
280 |
+
Arctic fox, white fox, Alopex lagopus
|
281 |
+
grey fox, gray fox, Urocyon cinereoargenteus
|
282 |
+
tabby, tabby cat
|
283 |
+
tiger cat
|
284 |
+
Persian cat
|
285 |
+
Siamese cat, Siamese
|
286 |
+
Egyptian cat
|
287 |
+
cougar, puma, catamount, mountain lion, painter, panther, Felis concolor
|
288 |
+
lynx, catamount
|
289 |
+
leopard, Panthera pardus
|
290 |
+
snow leopard, ounce, Panthera uncia
|
291 |
+
jaguar, panther, Panthera onca, Felis onca
|
292 |
+
lion, king of beasts, Panthera leo
|
293 |
+
tiger, Panthera tigris
|
294 |
+
cheetah, chetah, Acinonyx jubatus
|
295 |
+
brown bear, bruin, Ursus arctos
|
296 |
+
American black bear, black bear, Ursus americanus, Euarctos americanus
|
297 |
+
ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus
|
298 |
+
sloth bear, Melursus ursinus, Ursus ursinus
|
299 |
+
mongoose
|
300 |
+
meerkat, mierkat
|
301 |
+
tiger beetle
|
302 |
+
ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle
|
303 |
+
ground beetle, carabid beetle
|
304 |
+
long-horned beetle, longicorn, longicorn beetle
|
305 |
+
leaf beetle, chrysomelid
|
306 |
+
dung beetle
|
307 |
+
rhinoceros beetle
|
308 |
+
weevil
|
309 |
+
fly
|
310 |
+
bee
|
311 |
+
ant, emmet, pismire
|
312 |
+
grasshopper, hopper
|
313 |
+
cricket
|
314 |
+
walking stick, walkingstick, stick insect
|
315 |
+
cockroach, roach
|
316 |
+
mantis, mantid
|
317 |
+
cicada, cicala
|
318 |
+
leafhopper
|
319 |
+
lacewing, lacewing fly
|
320 |
+
dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk
|
321 |
+
damselfly
|
322 |
+
admiral
|
323 |
+
ringlet, ringlet butterfly
|
324 |
+
monarch, monarch butterfly, milkweed butterfly, Danaus plexippus
|
325 |
+
cabbage butterfly
|
326 |
+
sulphur butterfly, sulfur butterfly
|
327 |
+
lycaenid, lycaenid butterfly
|
328 |
+
starfish, sea star
|
329 |
+
sea urchin
|
330 |
+
sea cucumber, holothurian
|
331 |
+
wood rabbit, cottontail, cottontail rabbit
|
332 |
+
hare
|
333 |
+
Angora, Angora rabbit
|
334 |
+
hamster
|
335 |
+
porcupine, hedgehog
|
336 |
+
fox squirrel, eastern fox squirrel, Sciurus niger
|
337 |
+
marmot
|
338 |
+
beaver
|
339 |
+
guinea pig, Cavia cobaya
|
340 |
+
sorrel
|
341 |
+
zebra
|
342 |
+
hog, pig, grunter, squealer, Sus scrofa
|
343 |
+
wild boar, boar, Sus scrofa
|
344 |
+
warthog
|
345 |
+
hippopotamus, hippo, river horse, Hippopotamus amphibius
|
346 |
+
ox
|
347 |
+
water buffalo, water ox, Asiatic buffalo, Bubalus bubalis
|
348 |
+
bison
|
349 |
+
ram, tup
|
350 |
+
bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis
|
351 |
+
ibex, Capra ibex
|
352 |
+
hartebeest
|
353 |
+
impala, Aepyceros melampus
|
354 |
+
gazelle
|
355 |
+
Arabian camel, dromedary, Camelus dromedarius
|
356 |
+
llama
|
357 |
+
weasel
|
358 |
+
mink
|
359 |
+
polecat, fitch, foulmart, foumart, Mustela putorius
|
360 |
+
black-footed ferret, ferret, Mustela nigripes
|
361 |
+
otter
|
362 |
+
skunk, polecat, wood pussy
|
363 |
+
badger
|
364 |
+
armadillo
|
365 |
+
three-toed sloth, ai, Bradypus tridactylus
|
366 |
+
orangutan, orang, orangutang, Pongo pygmaeus
|
367 |
+
gorilla, Gorilla gorilla
|
368 |
+
chimpanzee, chimp, Pan troglodytes
|
369 |
+
gibbon, Hylobates lar
|
370 |
+
siamang, Hylobates syndactylus, Symphalangus syndactylus
|
371 |
+
guenon, guenon monkey
|
372 |
+
patas, hussar monkey, Erythrocebus patas
|
373 |
+
baboon
|
374 |
+
macaque
|
375 |
+
langur
|
376 |
+
colobus, colobus monkey
|
377 |
+
proboscis monkey, Nasalis larvatus
|
378 |
+
marmoset
|
379 |
+
capuchin, ringtail, Cebus capucinus
|
380 |
+
howler monkey, howler
|
381 |
+
titi, titi monkey
|
382 |
+
spider monkey, Ateles geoffroyi
|
383 |
+
squirrel monkey, Saimiri sciureus
|
384 |
+
Madagascar cat, ring-tailed lemur, Lemur catta
|
385 |
+
indri, indris, Indri indri, Indri brevicaudatus
|
386 |
+
Indian elephant, Elephas maximus
|
387 |
+
African elephant, Loxodonta africana
|
388 |
+
lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens
|
389 |
+
giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca
|
390 |
+
barracouta, snoek
|
391 |
+
eel
|
392 |
+
coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch
|
393 |
+
rock beauty, Holocanthus tricolor
|
394 |
+
anemone fish
|
395 |
+
sturgeon
|
396 |
+
gar, garfish, garpike, billfish, Lepisosteus osseus
|
397 |
+
lionfish
|
398 |
+
puffer, pufferfish, blowfish, globefish
|
399 |
+
abacus
|
400 |
+
abaya
|
401 |
+
academic gown, academic robe, judge's robe
|
402 |
+
accordion, piano accordion, squeeze box
|
403 |
+
acoustic guitar
|
404 |
+
aircraft carrier, carrier, flattop, attack aircraft carrier
|
405 |
+
airliner
|
406 |
+
airship, dirigible
|
407 |
+
altar
|
408 |
+
ambulance
|
409 |
+
amphibian, amphibious vehicle
|
410 |
+
analog clock
|
411 |
+
apiary, bee house
|
412 |
+
apron
|
413 |
+
ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin
|
414 |
+
assault rifle, assault gun
|
415 |
+
backpack, back pack, knapsack, packsack, rucksack, haversack
|
416 |
+
bakery, bakeshop, bakehouse
|
417 |
+
balance beam, beam
|
418 |
+
balloon
|
419 |
+
ballpoint, ballpoint pen, ballpen, Biro
|
420 |
+
Band Aid
|
421 |
+
banjo
|
422 |
+
bannister, banister, balustrade, balusters, handrail
|
423 |
+
barbell
|
424 |
+
barber chair
|
425 |
+
barbershop
|
426 |
+
barn
|
427 |
+
barometer
|
428 |
+
barrel, cask
|
429 |
+
barrow, garden cart, lawn cart, wheelbarrow
|
430 |
+
baseball
|
431 |
+
basketball
|
432 |
+
bassinet
|
433 |
+
bassoon
|
434 |
+
bathing cap, swimming cap
|
435 |
+
bath towel
|
436 |
+
bathtub, bathing tub, bath, tub
|
437 |
+
beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon
|
438 |
+
beacon, lighthouse, beacon light, pharos
|
439 |
+
beaker
|
440 |
+
bearskin, busby, shako
|
441 |
+
beer bottle
|
442 |
+
beer glass
|
443 |
+
bell cote, bell cot
|
444 |
+
bib
|
445 |
+
bicycle-built-for-two, tandem bicycle, tandem
|
446 |
+
bikini, two-piece
|
447 |
+
binder, ring-binder
|
448 |
+
binoculars, field glasses, opera glasses
|
449 |
+
birdhouse
|
450 |
+
boathouse
|
451 |
+
bobsled, bobsleigh, bob
|
452 |
+
bolo tie, bolo, bola tie, bola
|
453 |
+
bonnet, poke bonnet
|
454 |
+
bookcase
|
455 |
+
bookshop, bookstore, bookstall
|
456 |
+
bottlecap
|
457 |
+
bow
|
458 |
+
bow tie, bow-tie, bowtie
|
459 |
+
brass, memorial tablet, plaque
|
460 |
+
brassiere, bra, bandeau
|
461 |
+
breakwater, groin, groyne, mole, bulwark, seawall, jetty
|
462 |
+
breastplate, aegis, egis
|
463 |
+
broom
|
464 |
+
bucket, pail
|
465 |
+
buckle
|
466 |
+
bulletproof vest
|
467 |
+
bullet train, bullet
|
468 |
+
butcher shop, meat market
|
469 |
+
cab, hack, taxi, taxicab
|
470 |
+
caldron, cauldron
|
471 |
+
candle, taper, wax light
|
472 |
+
cannon
|
473 |
+
canoe
|
474 |
+
can opener, tin opener
|
475 |
+
cardigan
|
476 |
+
car mirror
|
477 |
+
carousel, carrousel, merry-go-round, roundabout, whirligig
|
478 |
+
carpenter's kit, tool kit
|
479 |
+
carton
|
480 |
+
car wheel
|
481 |
+
cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM
|
482 |
+
cassette
|
483 |
+
cassette player
|
484 |
+
castle
|
485 |
+
catamaran
|
486 |
+
CD player
|
487 |
+
cello, violoncello
|
488 |
+
cellular telephone, cellular phone, cellphone, cell, mobile phone
|
489 |
+
chain
|
490 |
+
chainlink fence
|
491 |
+
chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour
|
492 |
+
chain saw, chainsaw
|
493 |
+
chest
|
494 |
+
chiffonier, commode
|
495 |
+
chime, bell, gong
|
496 |
+
china cabinet, china closet
|
497 |
+
Christmas stocking
|
498 |
+
church, church building
|
499 |
+
cinema, movie theater, movie theatre, movie house, picture palace
|
500 |
+
cleaver, meat cleaver, chopper
|
501 |
+
cliff dwelling
|
502 |
+
cloak
|
503 |
+
clog, geta, patten, sabot
|
504 |
+
cocktail shaker
|
505 |
+
coffee mug
|
506 |
+
coffeepot
|
507 |
+
coil, spiral, volute, whorl, helix
|
508 |
+
combination lock
|
509 |
+
computer keyboard, keypad
|
510 |
+
confectionery, confectionary, candy store
|
511 |
+
container ship, containership, container vessel
|
512 |
+
convertible
|
513 |
+
corkscrew, bottle screw
|
514 |
+
cornet, horn, trumpet, trump
|
515 |
+
cowboy boot
|
516 |
+
cowboy hat, ten-gallon hat
|
517 |
+
cradle
|
518 |
+
crane
|
519 |
+
crash helmet
|
520 |
+
crate
|
521 |
+
crib, cot
|
522 |
+
Crock Pot
|
523 |
+
croquet ball
|
524 |
+
crutch
|
525 |
+
cuirass
|
526 |
+
dam, dike, dyke
|
527 |
+
desk
|
528 |
+
desktop computer
|
529 |
+
dial telephone, dial phone
|
530 |
+
diaper, nappy, napkin
|
531 |
+
digital clock
|
532 |
+
digital watch
|
533 |
+
dining table, board
|
534 |
+
dishrag, dishcloth
|
535 |
+
dishwasher, dish washer, dishwashing machine
|
536 |
+
disk brake, disc brake
|
537 |
+
dock, dockage, docking facility
|
538 |
+
dogsled, dog sled, dog sleigh
|
539 |
+
dome
|
540 |
+
doormat, welcome mat
|
541 |
+
drilling platform, offshore rig
|
542 |
+
drum, membranophone, tympan
|
543 |
+
drumstick
|
544 |
+
dumbbell
|
545 |
+
Dutch oven
|
546 |
+
electric fan, blower
|
547 |
+
electric guitar
|
548 |
+
electric locomotive
|
549 |
+
entertainment center
|
550 |
+
envelope
|
551 |
+
espresso maker
|
552 |
+
face powder
|
553 |
+
feather boa, boa
|
554 |
+
file, file cabinet, filing cabinet
|
555 |
+
fireboat
|
556 |
+
fire engine, fire truck
|
557 |
+
fire screen, fireguard
|
558 |
+
flagpole, flagstaff
|
559 |
+
flute, transverse flute
|
560 |
+
folding chair
|
561 |
+
football helmet
|
562 |
+
forklift
|
563 |
+
fountain
|
564 |
+
fountain pen
|
565 |
+
four-poster
|
566 |
+
freight car
|
567 |
+
French horn, horn
|
568 |
+
frying pan, frypan, skillet
|
569 |
+
fur coat
|
570 |
+
garbage truck, dustcart
|
571 |
+
gasmask, respirator, gas helmet
|
572 |
+
gas pump, gasoline pump, petrol pump, island dispenser
|
573 |
+
goblet
|
574 |
+
go-kart
|
575 |
+
golf ball
|
576 |
+
golfcart, golf cart
|
577 |
+
gondola
|
578 |
+
gong, tam-tam
|
579 |
+
gown
|
580 |
+
grand piano, grand
|
581 |
+
greenhouse, nursery, glasshouse
|
582 |
+
grille, radiator grille
|
583 |
+
grocery store, grocery, food market, market
|
584 |
+
guillotine
|
585 |
+
hair slide
|
586 |
+
hair spray
|
587 |
+
half track
|
588 |
+
hammer
|
589 |
+
hamper
|
590 |
+
hand blower, blow dryer, blow drier, hair dryer, hair drier
|
591 |
+
hand-held computer, hand-held microcomputer
|
592 |
+
handkerchief, hankie, hanky, hankey
|
593 |
+
hard disc, hard disk, fixed disk
|
594 |
+
harmonica, mouth organ, harp, mouth harp
|
595 |
+
harp
|
596 |
+
harvester, reaper
|
597 |
+
hatchet
|
598 |
+
holster
|
599 |
+
home theater, home theatre
|
600 |
+
honeycomb
|
601 |
+
hook, claw
|
602 |
+
hoopskirt, crinoline
|
603 |
+
horizontal bar, high bar
|
604 |
+
horse cart, horse-cart
|
605 |
+
hourglass
|
606 |
+
iPod
|
607 |
+
iron, smoothing iron
|
608 |
+
jack-o'-lantern
|
609 |
+
jean, blue jean, denim
|
610 |
+
jeep, landrover
|
611 |
+
jersey, T-shirt, tee shirt
|
612 |
+
jigsaw puzzle
|
613 |
+
jinrikisha, ricksha, rickshaw
|
614 |
+
joystick
|
615 |
+
kimono
|
616 |
+
knee pad
|
617 |
+
knot
|
618 |
+
lab coat, laboratory coat
|
619 |
+
ladle
|
620 |
+
lampshade, lamp shade
|
621 |
+
laptop, laptop computer
|
622 |
+
lawn mower, mower
|
623 |
+
lens cap, lens cover
|
624 |
+
letter opener, paper knife, paperknife
|
625 |
+
library
|
626 |
+
lifeboat
|
627 |
+
lighter, light, igniter, ignitor
|
628 |
+
limousine, limo
|
629 |
+
liner, ocean liner
|
630 |
+
lipstick, lip rouge
|
631 |
+
Loafer
|
632 |
+
lotion
|
633 |
+
loudspeaker, speaker, speaker unit, loudspeaker system, speaker system
|
634 |
+
loupe, jeweler's loupe
|
635 |
+
lumbermill, sawmill
|
636 |
+
magnetic compass
|
637 |
+
mailbag, postbag
|
638 |
+
mailbox, letter box
|
639 |
+
maillot
|
640 |
+
maillot, tank suit
|
641 |
+
manhole cover
|
642 |
+
maraca
|
643 |
+
marimba, xylophone
|
644 |
+
mask
|
645 |
+
matchstick
|
646 |
+
maypole
|
647 |
+
maze, labyrinth
|
648 |
+
measuring cup
|
649 |
+
medicine chest, medicine cabinet
|
650 |
+
megalith, megalithic structure
|
651 |
+
microphone, mike
|
652 |
+
microwave, microwave oven
|
653 |
+
military uniform
|
654 |
+
milk can
|
655 |
+
minibus
|
656 |
+
miniskirt, mini
|
657 |
+
minivan
|
658 |
+
missile
|
659 |
+
mitten
|
660 |
+
mixing bowl
|
661 |
+
mobile home, manufactured home
|
662 |
+
Model T
|
663 |
+
modem
|
664 |
+
monastery
|
665 |
+
monitor
|
666 |
+
moped
|
667 |
+
mortar
|
668 |
+
mortarboard
|
669 |
+
mosque
|
670 |
+
mosquito net
|
671 |
+
motor scooter, scooter
|
672 |
+
mountain bike, all-terrain bike, off-roader
|
673 |
+
mountain tent
|
674 |
+
mouse, computer mouse
|
675 |
+
mousetrap
|
676 |
+
moving van
|
677 |
+
muzzle
|
678 |
+
nail
|
679 |
+
neck brace
|
680 |
+
necklace
|
681 |
+
nipple
|
682 |
+
notebook, notebook computer
|
683 |
+
obelisk
|
684 |
+
oboe, hautboy, hautbois
|
685 |
+
ocarina, sweet potato
|
686 |
+
odometer, hodometer, mileometer, milometer
|
687 |
+
oil filter
|
688 |
+
organ, pipe organ
|
689 |
+
oscilloscope, scope, cathode-ray oscilloscope, CRO
|
690 |
+
overskirt
|
691 |
+
oxcart
|
692 |
+
oxygen mask
|
693 |
+
packet
|
694 |
+
paddle, boat paddle
|
695 |
+
paddlewheel, paddle wheel
|
696 |
+
padlock
|
697 |
+
paintbrush
|
698 |
+
pajama, pyjama, pj's, jammies
|
699 |
+
palace
|
700 |
+
panpipe, pandean pipe, syrinx
|
701 |
+
paper towel
|
702 |
+
parachute, chute
|
703 |
+
parallel bars, bars
|
704 |
+
park bench
|
705 |
+
parking meter
|
706 |
+
passenger car, coach, carriage
|
707 |
+
patio, terrace
|
708 |
+
pay-phone, pay-station
|
709 |
+
pedestal, plinth, footstall
|
710 |
+
pencil box, pencil case
|
711 |
+
pencil sharpener
|
712 |
+
perfume, essence
|
713 |
+
Petri dish
|
714 |
+
photocopier
|
715 |
+
pick, plectrum, plectron
|
716 |
+
pickelhaube
|
717 |
+
picket fence, paling
|
718 |
+
pickup, pickup truck
|
719 |
+
pier
|
720 |
+
piggy bank, penny bank
|
721 |
+
pill bottle
|
722 |
+
pillow
|
723 |
+
ping-pong ball
|
724 |
+
pinwheel
|
725 |
+
pirate, pirate ship
|
726 |
+
pitcher, ewer
|
727 |
+
plane, carpenter's plane, woodworking plane
|
728 |
+
planetarium
|
729 |
+
plastic bag
|
730 |
+
plate rack
|
731 |
+
plow, plough
|
732 |
+
plunger, plumber's helper
|
733 |
+
Polaroid camera, Polaroid Land camera
|
734 |
+
pole
|
735 |
+
police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria
|
736 |
+
poncho
|
737 |
+
pool table, billiard table, snooker table
|
738 |
+
pop bottle, soda bottle
|
739 |
+
pot, flowerpot
|
740 |
+
potter's wheel
|
741 |
+
power drill
|
742 |
+
prayer rug, prayer mat
|
743 |
+
printer
|
744 |
+
prison, prison house
|
745 |
+
projectile, missile
|
746 |
+
projector
|
747 |
+
puck, hockey puck
|
748 |
+
punching bag, punch bag, punching ball, punchball
|
749 |
+
purse
|
750 |
+
quill, quill pen
|
751 |
+
quilt, comforter, comfort, puff
|
752 |
+
racer, race car, racing car
|
753 |
+
racket, racquet
|
754 |
+
radiator
|
755 |
+
radio, wireless
|
756 |
+
radio telescope, radio reflector
|
757 |
+
rain barrel
|
758 |
+
recreational vehicle, RV, R.V.
|
759 |
+
reel
|
760 |
+
reflex camera
|
761 |
+
refrigerator, icebox
|
762 |
+
remote control, remote
|
763 |
+
restaurant, eating house, eating place, eatery
|
764 |
+
revolver, six-gun, six-shooter
|
765 |
+
rifle
|
766 |
+
rocking chair, rocker
|
767 |
+
rotisserie
|
768 |
+
rubber eraser, rubber, pencil eraser
|
769 |
+
rugby ball
|
770 |
+
rule, ruler
|
771 |
+
running shoe
|
772 |
+
safe
|
773 |
+
safety pin
|
774 |
+
saltshaker, salt shaker
|
775 |
+
sandal
|
776 |
+
sarong
|
777 |
+
sax, saxophone
|
778 |
+
scabbard
|
779 |
+
scale, weighing machine
|
780 |
+
school bus
|
781 |
+
schooner
|
782 |
+
scoreboard
|
783 |
+
screen, CRT screen
|
784 |
+
screw
|
785 |
+
screwdriver
|
786 |
+
seat belt, seatbelt
|
787 |
+
sewing machine
|
788 |
+
shield, buckler
|
789 |
+
shoe shop, shoe-shop, shoe store
|
790 |
+
shoji
|
791 |
+
shopping basket
|
792 |
+
shopping cart
|
793 |
+
shovel
|
794 |
+
shower cap
|
795 |
+
shower curtain
|
796 |
+
ski
|
797 |
+
ski mask
|
798 |
+
sleeping bag
|
799 |
+
slide rule, slipstick
|
800 |
+
sliding door
|
801 |
+
slot, one-armed bandit
|
802 |
+
snorkel
|
803 |
+
snowmobile
|
804 |
+
snowplow, snowplough
|
805 |
+
soap dispenser
|
806 |
+
soccer ball
|
807 |
+
sock
|
808 |
+
solar dish, solar collector, solar furnace
|
809 |
+
sombrero
|
810 |
+
soup bowl
|
811 |
+
space bar
|
812 |
+
space heater
|
813 |
+
space shuttle
|
814 |
+
spatula
|
815 |
+
speedboat
|
816 |
+
spider web, spider's web
|
817 |
+
spindle
|
818 |
+
sports car, sport car
|
819 |
+
spotlight, spot
|
820 |
+
stage
|
821 |
+
steam locomotive
|
822 |
+
steel arch bridge
|
823 |
+
steel drum
|
824 |
+
stethoscope
|
825 |
+
stole
|
826 |
+
stone wall
|
827 |
+
stopwatch, stop watch
|
828 |
+
stove
|
829 |
+
strainer
|
830 |
+
streetcar, tram, tramcar, trolley, trolley car
|
831 |
+
stretcher
|
832 |
+
studio couch, day bed
|
833 |
+
stupa, tope
|
834 |
+
submarine, pigboat, sub, U-boat
|
835 |
+
suit, suit of clothes
|
836 |
+
sundial
|
837 |
+
sunglass
|
838 |
+
sunglasses, dark glasses, shades
|
839 |
+
sunscreen, sunblock, sun blocker
|
840 |
+
suspension bridge
|
841 |
+
swab, swob, mop
|
842 |
+
sweatshirt
|
843 |
+
swimming trunks, bathing trunks
|
844 |
+
swing
|
845 |
+
switch, electric switch, electrical switch
|
846 |
+
syringe
|
847 |
+
table lamp
|
848 |
+
tank, army tank, armored combat vehicle, armoured combat vehicle
|
849 |
+
tape player
|
850 |
+
teapot
|
851 |
+
teddy, teddy bear
|
852 |
+
television, television system
|
853 |
+
tennis ball
|
854 |
+
thatch, thatched roof
|
855 |
+
theater curtain, theatre curtain
|
856 |
+
thimble
|
857 |
+
thresher, thrasher, threshing machine
|
858 |
+
throne
|
859 |
+
tile roof
|
860 |
+
toaster
|
861 |
+
tobacco shop, tobacconist shop, tobacconist
|
862 |
+
toilet seat
|
863 |
+
torch
|
864 |
+
totem pole
|
865 |
+
tow truck, tow car, wrecker
|
866 |
+
toyshop
|
867 |
+
tractor
|
868 |
+
trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi
|
869 |
+
tray
|
870 |
+
trench coat
|
871 |
+
tricycle, trike, velocipede
|
872 |
+
trimaran
|
873 |
+
tripod
|
874 |
+
triumphal arch
|
875 |
+
trolleybus, trolley coach, trackless trolley
|
876 |
+
trombone
|
877 |
+
tub, vat
|
878 |
+
turnstile
|
879 |
+
typewriter keyboard
|
880 |
+
umbrella
|
881 |
+
unicycle, monocycle
|
882 |
+
upright, upright piano
|
883 |
+
vacuum, vacuum cleaner
|
884 |
+
vase
|
885 |
+
vault
|
886 |
+
velvet
|
887 |
+
vending machine
|
888 |
+
vestment
|
889 |
+
viaduct
|
890 |
+
violin, fiddle
|
891 |
+
volleyball
|
892 |
+
waffle iron
|
893 |
+
wall clock
|
894 |
+
wallet, billfold, notecase, pocketbook
|
895 |
+
wardrobe, closet, press
|
896 |
+
warplane, military plane
|
897 |
+
washbasin, handbasin, washbowl, lavabo, wash-hand basin
|
898 |
+
washer, automatic washer, washing machine
|
899 |
+
water bottle
|
900 |
+
water jug
|
901 |
+
water tower
|
902 |
+
whiskey jug
|
903 |
+
whistle
|
904 |
+
wig
|
905 |
+
window screen
|
906 |
+
window shade
|
907 |
+
Windsor tie
|
908 |
+
wine bottle
|
909 |
+
wing
|
910 |
+
wok
|
911 |
+
wooden spoon
|
912 |
+
wool, woolen, woollen
|
913 |
+
worm fence, snake fence, snake-rail fence, Virginia fence
|
914 |
+
wreck
|
915 |
+
yawl
|
916 |
+
yurt
|
917 |
+
web site, website, internet site, site
|
918 |
+
comic book
|
919 |
+
crossword puzzle, crossword
|
920 |
+
street sign
|
921 |
+
traffic light, traffic signal, stoplight
|
922 |
+
book jacket, dust cover, dust jacket, dust wrapper
|
923 |
+
menu
|
924 |
+
plate
|
925 |
+
guacamole
|
926 |
+
consomme
|
927 |
+
hot pot, hotpot
|
928 |
+
trifle
|
929 |
+
ice cream, icecream
|
930 |
+
ice lolly, lolly, lollipop, popsicle
|
931 |
+
French loaf
|
932 |
+
bagel, beigel
|
933 |
+
pretzel
|
934 |
+
cheeseburger
|
935 |
+
hotdog, hot dog, red hot
|
936 |
+
mashed potato
|
937 |
+
head cabbage
|
938 |
+
broccoli
|
939 |
+
cauliflower
|
940 |
+
zucchini, courgette
|
941 |
+
spaghetti squash
|
942 |
+
acorn squash
|
943 |
+
butternut squash
|
944 |
+
cucumber, cuke
|
945 |
+
artichoke, globe artichoke
|
946 |
+
bell pepper
|
947 |
+
cardoon
|
948 |
+
mushroom
|
949 |
+
Granny Smith
|
950 |
+
strawberry
|
951 |
+
orange
|
952 |
+
lemon
|
953 |
+
fig
|
954 |
+
pineapple, ananas
|
955 |
+
banana
|
956 |
+
jackfruit, jak, jack
|
957 |
+
custard apple
|
958 |
+
pomegranate
|
959 |
+
hay
|
960 |
+
carbonara
|
961 |
+
chocolate sauce, chocolate syrup
|
962 |
+
dough
|
963 |
+
meat loaf, meatloaf
|
964 |
+
pizza, pizza pie
|
965 |
+
potpie
|
966 |
+
burrito
|
967 |
+
red wine
|
968 |
+
espresso
|
969 |
+
cup
|
970 |
+
eggnog
|
971 |
+
alp
|
972 |
+
bubble
|
973 |
+
cliff, drop, drop-off
|
974 |
+
coral reef
|
975 |
+
geyser
|
976 |
+
lakeside, lakeshore
|
977 |
+
promontory, headland, head, foreland
|
978 |
+
sandbar, sand bar
|
979 |
+
seashore, coast, seacoast, sea-coast
|
980 |
+
valley, vale
|
981 |
+
volcano
|
982 |
+
ballplayer, baseball player
|
983 |
+
groom, bridegroom
|
984 |
+
scuba diver
|
985 |
+
rapeseed
|
986 |
+
daisy
|
987 |
+
yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum
|
988 |
+
corn
|
989 |
+
acorn
|
990 |
+
hip, rose hip, rosehip
|
991 |
+
buckeye, horse chestnut, conker
|
992 |
+
coral fungus
|
993 |
+
agaric
|
994 |
+
gyromitra
|
995 |
+
stinkhorn, carrion fungus
|
996 |
+
earthstar
|
997 |
+
hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa
|
998 |
+
bolete
|
999 |
+
ear, spike, capitulum
|
1000 |
+
toilet tissue, toilet paper, bathroom tissue
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
libgl1
|
requirements.txt
ADDED
Binary file (148 Bytes). View file
|
|