ankanxopencv commited on
Commit
fee6d38
·
1 Parent(s): f23cbc0

Upload 8 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ samples/god.jpg filter=lfs diff=lfs merge=lfs -text
37
+ samples/road.jpg filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ from transformers import pipeline
4
+
5
+ from PIL import Image
6
+
7
+ import cv2
8
+ import numpy as np
9
+
10
+ from random import choice
11
+ import io
12
+
13
+ detector50 = pipeline(model="facebook/detr-resnet-50")
14
+
15
+ detector101 = pipeline(model="facebook/detr-resnet-101")
16
+
17
+
18
+ import gradio as gr
19
+
20
+ COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
21
+ "#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
22
+ "#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
23
+
24
+ fdic = {
25
+ "family" : "Impact",
26
+ "style" : "italic",
27
+ "size" : 15,
28
+ "color" : "yellow",
29
+ "weight" : "bold"
30
+ }
31
+
32
+
33
+ def get_figure(in_pil_img, in_results):
34
+ # Convert PIL image to OpenCV format
35
+ img_cv2 = np.array(in_pil_img)
36
+ img_cv2 = cv2.cvtColor(img_cv2, cv2.COLOR_RGB2BGR)
37
+
38
+ for prediction in in_results:
39
+ selected_color = choice(COLORS)
40
+ color = tuple(int(selected_color[i:i+2], 16) for i in (1, 3, 5)) # Convert hex color to RGB tuple
41
+
42
+ x, y = prediction['box']['xmin'], prediction['box']['ymin']
43
+ w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin']
44
+
45
+ # Draw bounding box using OpenCV
46
+ img_cv2 = cv2.rectangle(img_cv2, (x, y), (x+w, y+h), color, 2)
47
+ text = f"{prediction['label']}: {round(prediction['score']*100, 1)}%"
48
+ img_cv2 = cv2.putText(img_cv2, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
49
+
50
+ # Convert back to PIL format
51
+ img_pil = Image.fromarray(cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB))
52
+ return img_pil
53
+
54
+
55
+ def infer(model, in_pil_img):
56
+
57
+ results = None
58
+ if model == "detr-resnet-101":
59
+ results = detector101(in_pil_img)
60
+ else:
61
+ results = detector50(in_pil_img)
62
+
63
+ output_pil_img = get_figure(in_pil_img, results)
64
+
65
+ output_pil_img.save("output.jpg")
66
+
67
+ return output_pil_img
68
+
69
+
70
+ with gr.Blocks(title="DETR Object Detection using openCV",
71
+ css=".gradio-container {background:lightyellow;}"
72
+ ) as demo:
73
+ #sample_index = gr.State([])
74
+
75
+ gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">ObjecTron🪄</div>""")
76
+ gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">
77
+ A object detection app using OpenCV, Huggingface-transformers, detr-resnet and Gradio </div>""")
78
+ gr.HTML("""<h4 style="color:navy;">1. Select a model.</h4>""")
79
+
80
+ model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Model name")
81
+
82
+ gr.HTML("""<br/>""")
83
+ gr.HTML("""<h4 style="color:navy;">2-a. Select an example below</h4>""")
84
+ gr.HTML("""<h4 style="color:navy;">2-b. Or upload an image by clicking on the canvas.</h4>""")
85
+
86
+ with gr.Row():
87
+ input_image = gr.Image(label="Input image", type="pil")
88
+ output_image = gr.Image(label="Output image with predicted instances", type="pil")
89
+
90
+ gr.Examples(['samples/god.jpg','samples/road.jpg','samples/cats.jpg','samples/detectron.png','samples/dogandcat.jpg'], inputs=input_image)
91
+
92
+ gr.HTML("""<br/>""")
93
+ gr.HTML("""<h4 style="color:navy;">3. Then, click the button below to predict and see the magic!!!</h4>""")
94
+
95
+ send_btn = gr.Button("Expecto Patronum 🪄")
96
+ send_btn.click(fn=infer, inputs=[model, input_image], outputs=[output_image])
97
+
98
+ gr.HTML("""<br/>""")
99
+ gr.HTML("""<h4 style="color:navy;">Reference</h4>""")
100
+ gr.HTML("""<ul>""")
101
+ gr.HTML("""<li><a href="https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb" target="_blank">Hands-on tutorial for DETR by facebookresearch</a>""")
102
+ gr.HTML("""</ul>""")
103
+
104
+
105
+ #demo.queue()
106
+ demo.launch(debug=True)
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ timm
4
+ opencv-python
5
+ pillow
samples/cats.jpg ADDED
samples/detectron.png ADDED
samples/dogandcat.jpg ADDED
samples/god.jpg ADDED

Git LFS Details

  • SHA256: d53f5fd2d64677652ed3459b1359fa17c95c81f6b08ebc7eb3145d19ac203919
  • Pointer size: 132 Bytes
  • Size of remote file: 4.26 MB
samples/hotdog.jpg ADDED
samples/road.jpg ADDED

Git LFS Details

  • SHA256: 0ec79ecb8cf5bcb733ccf2d034154151f3d622f3dff2bc98753ec291efe16124
  • Pointer size: 132 Bytes
  • Size of remote file: 4.81 MB