anktechsol anmol11p commited on
Commit
83c1d33
·
verified ·
1 Parent(s): 788163d

Improve input flow and reporting (#2)

Browse files

- Improve input flow and reporting (a401b06d8e828d01e5db4f7823428cd76be40566)


Co-authored-by: anmol pamday <[email protected]>

Files changed (1) hide show
  1. src/compliance_lib.py +108 -46
src/compliance_lib.py CHANGED
@@ -1,58 +1,120 @@
1
- import requests, re, bs4, json, os
2
- from functools import lru_cache
3
- from datetime import datetime, timedelta
4
-
5
- # ---- 1. simple web scraper --------------------------------------------------
6
- HEADERS = {"User-Agent": "anupalankarta/1.0"}
7
-
8
- @lru_cache(maxsize=128)
9
- def fetch_text(url: str, ttl_hours: int = 12) -> str:
10
- """Download & cache plain-text from a URL for `ttl_hours`."""
11
- cache_path = f".cache_{re.sub(r'[^A-Za-z0-9]', '_', url)}.txt"
12
- if os.path.exists(cache_path):
13
- mtime = datetime.fromtimestamp(os.path.getmtime(cache_path))
14
- if datetime.utcnow() - mtime < timedelta(hours=ttl_hours):
15
- return open(cache_path, encoding="utf-8").read()
16
- r = requests.get(url, headers=HEADERS, timeout=20)
17
- soup = bs4.BeautifulSoup(r.text, "html.parser")
18
- text = " ".join(t.get_text(" ", strip=True) for t in soup.find_all(["p", "li"]))
19
- open(cache_path, "w", encoding="utf-8").write(text)
20
- return text
21
-
22
- # ---- 2. minimal rule base ---------------------------------------------------
23
- RULES = {
24
- "GDPR": [
25
- ("Lawful basis documented", r"lawful\s+basis"),
26
  ("Data-subject rights process", r"right\s+to\s+access|erasure"),
27
  ("72-hour breach notice plan", r"72\s*hour"),
28
  ],
29
- "EU_AI_Act": [
30
- ("High-risk AI DPIA", r"risk\s+assessment"),
31
  ("Training data governance", r"data\s+governance"),
32
  ],
33
- "ISO_27001": [
34
  ("Annex A control list", r"annex\s*a"),
35
  ("Statement of Applicability", r"statement\s+of\s+applicability"),
36
- ],
37
- # extend as needed
38
- }
39
-
40
- def run_check(text: str) -> dict:
41
- """Return dict{framework: list[(item, pass_bool)]}."""
42
- results = {}
43
- for fw, tests in RULES.items():
44
- framework_res = []
45
- for label, pattern in tests:
46
- framework_res.append((label, bool(re.search(pattern, text, re.I))))
47
- results[fw] = framework_res
48
  return results
49
 
50
- # ---- 3. Hugging Face model wrapper -----------------------------------------
51
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  HF_MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"
54
 
55
- def generate_report(prompt: str, max_tokens=600) -> str:
56
- client = InferenceClient(model=HF_MODEL, token=os.environ.get("HF_TOKEN"))
57
- return client.text_generation(prompt, max_new_tokens=max_tokens,
58
- temperature=0.4, top_p=0.9)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from huggingface_hub import InferenceClient
3
+ import os
4
+ import requests as req
5
+ from bs4 import BeautifulSoup
6
+ import streamlit as st
7
+ from dotenv import load_dotenv
8
+ load_dotenv()
9
+ RULES={
10
+ "GDPR":[
11
+ ("Lawful basis documented", r"lawful\s+basis"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ("Data-subject rights process", r"right\s+to\s+access|erasure"),
13
  ("72-hour breach notice plan", r"72\s*hour"),
14
  ],
15
+ "EU_AI_ACT":[
16
+ ("High-risk AI DPIA", r"risk\s+assessment"),
17
  ("Training data governance", r"data\s+governance"),
18
  ],
19
+ "ISO_27001":[
20
  ("Annex A control list", r"annex\s*a"),
21
  ("Statement of Applicability", r"statement\s+of\s+applicability"),
22
+ ]
23
+ }
24
+
25
+ def run_check(text,framework):
26
+ # print(text,framework) #array from me aata hai framework
27
+ results={}
28
+ for fw in framework:
29
+ results[fw]=[] #store particular fw data
30
+ # one work as label & one work as pattern e.g==>label: Training data governance pattern: data\s+governance
31
+ for label, pattern in RULES[fw]:
32
+ match = re.search(pattern, text, re.I) # re.I = re.IGNORECASE
33
+ results[fw].append((label, bool(match)))
34
  return results
35
 
36
+
37
+
38
+ AI_REPORT_PROMPT = """
39
+ You are an expert compliance consultant with deep experience in GDPR, the EU AI Act, ISO 27001, and related global data‑privacy and security standards. You have just received a concise checklist summary showing, for each framework, how many controls passed and which specific items failed.
40
+
41
+ Your task is to produce a **clear, actionable report** tailored to a technical audience. Structure it as follows:
42
+
43
+ 1. **Executive Summary**
44
+ - One or two sentences on overall compliance posture
45
+ - Highest‑level takeaways
46
+
47
+ 2. **Key Issues Identified**
48
+ - For each framework with failures, list:
49
+ - The specific failed control(s) by label
50
+ - A brief description of why that control matters
51
+ - Use bullet points and group by framework
52
+
53
+ 3. **Redemption Strategies**
54
+ - For each key issue above, recommend a **concrete next step** or mitigation strategy
55
+ - Prioritize actions by risk/impact (e.g., “High‑priority: Encrypt data at rest to meet ISO 27001 A.10.1”)
56
+
57
+ 4. **Additional Resources & Next Steps**
58
+ - A short paragraph on how deeper expert review can streamline remediation
59
+ - A call‑out promoting AnkTechSol’s professional compliance consulting (e.g., “For a full policy audit, tailored gap analysis, and implementation roadmap, visit anktechsol.com or contact our team at [contact link].”)
60
+
61
+ 5. **Appendix (Optional)**
62
+ - Raw bullet list of “Framework: X passed/total, Y failed/total”
63
+
64
+ Make sure to:
65
+ - Use clear headings (`## Executive Summary`, etc.)
66
+ - Keep each section brief but substantive (no more than 4–6 bullets per section)
67
+ - Write in a confident, consultative tone
68
+
69
+ Here are the raw results to incorporate:
70
+
71
+ {bullet}
72
+
73
+ Generate the report as markdown.
74
+ """
75
 
76
  HF_MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"
77
 
78
+
79
+
80
+
81
+ def generate_report(prompt,max_tokens=600):
82
+ token = os.getenv("HF_TOKEN")
83
+ if not token:
84
+ raise EnvironmentError("token is not found in env issue")
85
+
86
+ client = InferenceClient(
87
+ provider="together",
88
+ api_key=token,
89
+ )
90
+ try:
91
+ response = client.chat.completions.create(
92
+ model=HF_MODEL,
93
+ messages=[ {
94
+ "role": "user",
95
+ "content": prompt
96
+ }]
97
+
98
+ )
99
+
100
+ return response.choices[0].message.content
101
+ except Exception as e:
102
+
103
+ return "Error: Failed to generate report."
104
+
105
+
106
+ def fetchText(url):
107
+ try:
108
+ response = req.get(url)
109
+ response.raise_for_status()
110
+ soup = BeautifulSoup(response.text, 'html.parser')
111
+ main_content = soup.find('main')
112
+ if main_content:
113
+ text = main_content.get_text(separator='\n', strip=True)
114
+ else:
115
+ text = soup.body.get_text(separator='\n', strip=True)
116
+
117
+ return text.strip(), None # No error
118
+ except Exception as e:
119
+ return "", f"Error fetching URL: {e}"
120
+ __all__=["RULES","run_check","AI_REPORT_PROMPT","generate_report","fetchText"]