Spaces:
Running
Running
fix token problem
Browse files- src/compliance_lib.py +52 -47
src/compliance_lib.py
CHANGED
@@ -1,40 +1,37 @@
|
|
1 |
import re
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import requests as req
|
5 |
from bs4 import BeautifulSoup
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
RULES={
|
10 |
-
"GDPR":[
|
11 |
-
|
12 |
("Data-subject rights process", r"right\s+to\s+access|erasure"),
|
13 |
("72-hour breach notice plan", r"72\s*hour"),
|
14 |
],
|
15 |
-
"EU_AI_ACT":[
|
16 |
-
|
17 |
("Training data governance", r"data\s+governance"),
|
18 |
],
|
19 |
-
"ISO_27001":[
|
20 |
("Annex A control list", r"annex\s*a"),
|
21 |
("Statement of Applicability", r"statement\s+of\s+applicability"),
|
22 |
]
|
23 |
-
|
|
|
24 |
|
25 |
-
def run_check(text,framework):
|
26 |
-
|
27 |
-
results={}
|
28 |
for fw in framework:
|
29 |
-
results[fw]=[]
|
30 |
-
# one work as label & one work as pattern e.g==>label: Training data governance pattern: data\s+governance
|
31 |
for label, pattern in RULES[fw]:
|
32 |
-
|
33 |
-
|
34 |
return results
|
35 |
|
36 |
|
37 |
-
|
38 |
AI_REPORT_PROMPT = """
|
39 |
You are an expert compliance consultant with deep experience in GDPR, the EU AI Act, ISO 27001, and related global data‑privacy and security standards. You have just received a concise checklist summary showing, for each framework, how many controls passed and which specific items failed.
|
40 |
|
@@ -75,32 +72,39 @@ Generate the report as markdown.
|
|
75 |
|
76 |
HF_MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
return "Error: Failed to generate report."
|
104 |
|
105 |
|
106 |
def fetchText(url):
|
@@ -113,8 +117,9 @@ def fetchText(url):
|
|
113 |
text = main_content.get_text(separator='\n', strip=True)
|
114 |
else:
|
115 |
text = soup.body.get_text(separator='\n', strip=True)
|
116 |
-
|
117 |
-
return text.strip(), None # No error
|
118 |
except Exception as e:
|
119 |
return "", f"Error fetching URL: {e}"
|
120 |
-
|
|
|
|
|
|
1 |
import re
|
|
|
2 |
import os
|
3 |
import requests as req
|
4 |
from bs4 import BeautifulSoup
|
5 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
6 |
+
import torch
|
7 |
+
|
8 |
+
RULES = {
|
9 |
+
"GDPR": [
|
10 |
+
("Lawful basis documented", r"lawful\s+basis"),
|
11 |
("Data-subject rights process", r"right\s+to\s+access|erasure"),
|
12 |
("72-hour breach notice plan", r"72\s*hour"),
|
13 |
],
|
14 |
+
"EU_AI_ACT": [
|
15 |
+
("High-risk AI DPIA", r"risk\s+assessment"),
|
16 |
("Training data governance", r"data\s+governance"),
|
17 |
],
|
18 |
+
"ISO_27001": [
|
19 |
("Annex A control list", r"annex\s*a"),
|
20 |
("Statement of Applicability", r"statement\s+of\s+applicability"),
|
21 |
]
|
22 |
+
}
|
23 |
+
|
24 |
|
25 |
+
def run_check(text, framework):
|
26 |
+
results = {}
|
|
|
27 |
for fw in framework:
|
28 |
+
results[fw] = []
|
|
|
29 |
for label, pattern in RULES[fw]:
|
30 |
+
match = re.search(pattern, text, re.I)
|
31 |
+
results[fw].append((label, bool(match)))
|
32 |
return results
|
33 |
|
34 |
|
|
|
35 |
AI_REPORT_PROMPT = """
|
36 |
You are an expert compliance consultant with deep experience in GDPR, the EU AI Act, ISO 27001, and related global data‑privacy and security standards. You have just received a concise checklist summary showing, for each framework, how many controls passed and which specific items failed.
|
37 |
|
|
|
72 |
|
73 |
HF_MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
74 |
|
75 |
+
# Load the text generation pipeline
|
76 |
+
def load_pipeline():
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL)
|
78 |
+
model = AutoModelForCausalLM.from_pretrained(
|
79 |
+
HF_MODEL,
|
80 |
+
torch_dtype=torch.float16,
|
81 |
+
device_map="auto",
|
82 |
+
trust_remote_code=True
|
83 |
+
)
|
84 |
+
pipe = pipeline(
|
85 |
+
"text-generation",
|
86 |
+
model=model,
|
87 |
+
tokenizer=tokenizer,
|
88 |
+
device_map="auto"
|
89 |
+
)
|
90 |
+
return pipe
|
91 |
+
|
92 |
+
generator = load_pipeline()
|
93 |
+
|
94 |
+
|
95 |
+
def generate_report(prompt, max_tokens=600):
|
96 |
+
try:
|
97 |
+
response = generator(
|
98 |
+
prompt,
|
99 |
+
max_new_tokens=max_tokens,
|
100 |
+
do_sample=True,
|
101 |
+
temperature=0.7,
|
102 |
+
top_p=0.95,
|
103 |
+
return_full_text=False
|
104 |
)
|
105 |
+
return response[0]["generated_text"]
|
106 |
+
except Exception as e:
|
107 |
+
return f"Error: {e}"
|
|
|
|
|
108 |
|
109 |
|
110 |
def fetchText(url):
|
|
|
117 |
text = main_content.get_text(separator='\n', strip=True)
|
118 |
else:
|
119 |
text = soup.body.get_text(separator='\n', strip=True)
|
120 |
+
return text.strip(), None
|
|
|
121 |
except Exception as e:
|
122 |
return "", f"Error fetching URL: {e}"
|
123 |
+
|
124 |
+
# Exported functions
|
125 |
+
__all__ = ["RULES", "run_check", "AI_REPORT_PROMPT", "generate_report", "fetchText"]
|