Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
import pymongo
|
6 |
+
import logging
|
7 |
+
import nest_asyncio
|
8 |
+
from langchain.docstore.document import Document
|
9 |
+
import redis
|
10 |
+
import asyncio
|
11 |
+
import threading
|
12 |
+
import time
|
13 |
+
|
14 |
+
# Config
|
15 |
+
nest_asyncio.apply()
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
database = "AlertSimAndRemediation"
|
18 |
+
collection = "alert_embed"
|
19 |
+
stream_name = "alerts"
|
20 |
+
|
21 |
+
# Environment variables
|
22 |
+
MONGO_URI = os.getenv('MONGO_URI')
|
23 |
+
REDIS_HOST = os.getenv('REDIS_HOST')
|
24 |
+
REDIS_PWD = os.getenv('REDIS_PWD')
|
25 |
+
|
26 |
+
# Embedding model
|
27 |
+
embedding_args = {
|
28 |
+
"model_name": "BAAI/bge-large-en-v1.5",
|
29 |
+
"model_kwargs": {"device": "cpu"},
|
30 |
+
"encode_kwargs": {"normalize_embeddings": True}
|
31 |
+
}
|
32 |
+
embedding_model = HuggingFaceEmbeddings(**embedding_args)
|
33 |
+
|
34 |
+
# MongoDB connection
|
35 |
+
connection = pymongo.MongoClient(MONGO_URI)
|
36 |
+
alert_collection = connection[database][collection]
|
37 |
+
|
38 |
+
# Redis connection
|
39 |
+
r = redis.Redis(host=REDIS_HOST, password=REDIS_PWD, port=16652)
|
40 |
+
|
41 |
+
# Global variables to store alert information
|
42 |
+
latest_alert = "No alerts yet."
|
43 |
+
alert_count = 0
|
44 |
+
|
45 |
+
# Preprocessing
|
46 |
+
def create_textual_description(entry_data):
|
47 |
+
entry_dict = {k.decode(): v.decode() for k, v in entry_data.items()}
|
48 |
+
|
49 |
+
category = entry_dict["Category"]
|
50 |
+
created_at = entry_dict["CreatedAt"]
|
51 |
+
acknowledged = "Acknowledged" if entry_dict["Acknowledged"] == "1" else "Not Acknowledged"
|
52 |
+
remedy = entry_dict["Remedy"]
|
53 |
+
severity = entry_dict["Severity"]
|
54 |
+
source = entry_dict["Source"]
|
55 |
+
node = entry_dict["node"]
|
56 |
+
|
57 |
+
description = f"A {severity} alert of category {category} was raised from the {source} source for node {node} at {created_at}. The alert is {acknowledged}. The recommended remedy is: {remedy}."
|
58 |
+
|
59 |
+
return description, entry_dict
|
60 |
+
|
61 |
+
# Saving alert doc
|
62 |
+
def save(entry):
|
63 |
+
vector_search = MongoDBAtlasVectorSearch.from_documents(
|
64 |
+
documents=[Document(
|
65 |
+
page_content=entry["content"],
|
66 |
+
metadata=entry["metadata"]
|
67 |
+
)],
|
68 |
+
embedding=embedding_model,
|
69 |
+
collection=alert_collection,
|
70 |
+
index_name="alert_index",
|
71 |
+
)
|
72 |
+
logging.info("Alert stored successfully!")
|
73 |
+
|
74 |
+
# Listening to alert stream
|
75 |
+
def listen_to_alerts():
|
76 |
+
global latest_alert, alert_count
|
77 |
+
last_id = '$'
|
78 |
+
|
79 |
+
while True:
|
80 |
+
entries = r.xread({stream_name: last_id}, block=1000, count=None)
|
81 |
+
|
82 |
+
if entries:
|
83 |
+
stream, new_entries = entries[0]
|
84 |
+
|
85 |
+
for entry_id, entry_data in new_entries:
|
86 |
+
description, entry_dict = create_textual_description(entry_data)
|
87 |
+
save({
|
88 |
+
"content": description,
|
89 |
+
"metadata": entry_dict
|
90 |
+
})
|
91 |
+
latest_alert = description
|
92 |
+
alert_count += 1
|
93 |
+
last_id = entry_id
|
94 |
+
|
95 |
+
# Start listening to alerts in a separate thread
|
96 |
+
threading.Thread(target=listen_to_alerts, daemon=True).start()
|
97 |
+
|
98 |
+
# Function to get current stats
|
99 |
+
def get_current_stats():
|
100 |
+
return latest_alert, f"Total Alerts: {alert_count}"
|
101 |
+
|
102 |
+
# Gradio interface
|
103 |
+
def create_interface():
|
104 |
+
with gr.Blocks() as iface:
|
105 |
+
gr.Markdown("# Alert Monitoring Service")
|
106 |
+
with gr.Row():
|
107 |
+
latest_alert_md = gr.Markdown("Waiting for alerts...")
|
108 |
+
with gr.Row():
|
109 |
+
alert_count_md = gr.Markdown("Total Alerts: 0")
|
110 |
+
|
111 |
+
def update_stats():
|
112 |
+
while True:
|
113 |
+
time.sleep(1) # Update every second
|
114 |
+
yield get_current_stats()
|
115 |
+
|
116 |
+
iface.load(update_stats, None, [latest_alert_md, alert_count_md], every=1)
|
117 |
+
|
118 |
+
return iface
|
119 |
+
|
120 |
+
# Launch the app
|
121 |
+
if __name__ == "__main__":
|
122 |
+
iface = create_interface()
|
123 |
+
iface.queue().launch()
|