Spaces:
Sleeping
Sleeping
Commit
·
1448822
1
Parent(s):
6f367b5
Added redis streams listener fix
Browse files
app.py
CHANGED
@@ -17,55 +17,6 @@ from langchain_core.runnables.history import RunnableWithMessageHistory
|
|
17 |
from langchain_core.chat_history import BaseChatMessageHistory
|
18 |
from langchain.chains import RetrievalQA
|
19 |
import nest_asyncio
|
20 |
-
import pymongo
|
21 |
-
import logging
|
22 |
-
from langchain.docstore.document import Document
|
23 |
-
import redis
|
24 |
-
import threading
|
25 |
-
|
26 |
-
# config
|
27 |
-
nest_asyncio.apply()
|
28 |
-
logging.basicConfig(level=logging.INFO)
|
29 |
-
database = "AlertSimAndRemediation"
|
30 |
-
collection = "alert_embed"
|
31 |
-
index_name = "alert_index"
|
32 |
-
stream_name = "alerts"
|
33 |
-
redis_port = 16652
|
34 |
-
|
35 |
-
# embedding model
|
36 |
-
embedding_args = {
|
37 |
-
"model_name" : "BAAI/bge-large-en-v1.5",
|
38 |
-
"model_kwargs" : {"device": "cpu"},
|
39 |
-
"encode_kwargs" : {"normalize_embeddings": True}
|
40 |
-
}
|
41 |
-
embedding_model = HuggingFaceEmbeddings(**embedding_args)
|
42 |
-
|
43 |
-
# Mongo Connection
|
44 |
-
connection = pymongo.MongoClient(os.environ["MONGO_URI"])
|
45 |
-
alert_collection = connection[database][collection]
|
46 |
-
|
47 |
-
# redis connection
|
48 |
-
r = redis.Redis(host=os.environ['REDIS_HOST'], password=os.environ['REDIS_PWD'], port=port)
|
49 |
-
|
50 |
-
Sure, here's the entire code with the Streamlit app and the Redis stream listener combined:
|
51 |
-
pythonCopy codeimport streamlit as st
|
52 |
-
import os
|
53 |
-
from collections.abc import Collection
|
54 |
-
from langchain.memory import ChatMessageHistory
|
55 |
-
from langchain_community.chat_message_histories import (
|
56 |
-
StreamlitChatMessageHistory,
|
57 |
-
)
|
58 |
-
from langchain_groq import ChatGroq
|
59 |
-
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
60 |
-
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
61 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
62 |
-
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
63 |
-
from langchain.chains.combine_documents import create_stuff_documents_chain
|
64 |
-
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
|
65 |
-
from langchain_core.runnables.history import RunnableWithMessageHistory
|
66 |
-
from langchain_core.chat_history import BaseChatMessageHistory
|
67 |
-
from langchain.chains import RetrievalQA
|
68 |
-
import nest_asyncio
|
69 |
nest_asyncio.apply()
|
70 |
|
71 |
import pymongo
|
|
|
17 |
from langchain_core.chat_history import BaseChatMessageHistory
|
18 |
from langchain.chains import RetrievalQA
|
19 |
import nest_asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
nest_asyncio.apply()
|
21 |
|
22 |
import pymongo
|