File size: 8,116 Bytes
10757ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from typing import List, Dict, Any, Optional, Type
from langchain_core.tools import BaseTool
from pydantic import BaseModel, Field
import pandas as pd
from .sql_runtime import SQLRuntime
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from .load_llm import load_llm
from langchain_core.messages import SystemMessage
from langchain_core.prompts import HumanMessagePromptTemplate
from langchain.agents import AgentExecutor, create_react_agent
from dotenv import load_dotenv
from react import run_agent_executor
from prompts import react_prompt

# definig the input schema
class QueryInput(BaseModel):
    query: str = Field(..., description="The SQL query to execute, make sure to use semicolon at the end of the query, do not execute harmful queries")

class TableNameInput(BaseModel):
    table_name: str = Field(..., description="The name of the table to analyze")

class ColumnSearchInput(BaseModel):
    table_name: str = Field(..., description="The name of the table to search")
    column_name: str = Field(..., description="The name of the column to search")
    limit: int = Field(default=10, description="Maximum number of distinct values to return")

class SQLQueryTool(BaseTool):
    name: str = "sql_query"
    description: str = """
    Execute a SQL query and return the results.
    Use this when you need to run a specific SQL query on the elections database.
    The query should be a valid SQL statement and should end with a semicolon.
    There should be no harmful queries executed.
    There are three tables in the database: elections_2019, elections_2024, maha_2019
    """
    args_schema: Type[BaseModel] = QueryInput

    # def __init__(self, db_path: Optional[str] = None):
    #     super().__init__()
    #     self.

    def _run(self, query: str) -> str:
        sql_runtime = SQLRuntime('../data/elections.db')
        try:
            result = sql_runtime.execute(query)
            if result["code"] != 0:
                return f"Error executing query: {result['msg']['reason']}"
            
            # Convert to DataFrame for nice string representation
            df = pd.DataFrame(result["data"])
            if not df.empty:
                return df.to_string()
            return "Query returned no results"
            
        except Exception as e:
            return f"Error: {str(e)}"
        
class TableInfoTool(BaseTool):
    name: str = "get_table_info"
    description: str = """
    Get information about a specific table including its schema and basic statistics.
    Use this when you need to understand the structure of a table or get basic statistics about it.
    """
    args_schema: Type[BaseModel] = TableNameInput

    # def __init__(self, db_path: Optional[str] = None):
    #     super().__init__()
        

    def _run(self, table_name: str) -> str:
        sql_runtime = SQLRuntime('../data/elections.db')
        try:
            # Get schema
            schema = sql_runtime.get_schema_for_table(table_name)
            
            # Get row count
            count_query = f"SELECT COUNT(*) FROM {table_name}"
            count_result = sql_runtime.execute(count_query)
            row_count = count_result["data"][0][0] if count_result["code"] == 0 else "Error"
            
            # Get sample data
            sample_query = f"SELECT * FROM {table_name} LIMIT 3"
            sample_result = sql_runtime.execute(sample_query)
            
            info = f"""
                Table: {table_name}
                Columns: {', '.join(schema)}
                Row Count: {row_count}
                Sample Data:
                {pd.DataFrame(sample_result['data'], columns=schema).to_string() if sample_result['code'] == 0 else 'Error getting sample data'}
            """
            return info
        except Exception as e:
            return f"Error getting table info: {str(e)}"

class ColumnValuesTool(BaseTool):
    name: str = "find_column_values"
    description: str = """
    Find distinct values in a specific column of a table.
    Use this when you need to know what unique values exist in a particular column.
    """
    args_schema: Type[BaseModel] = ColumnSearchInput

    # def __init__(self, db_path: Optional[str] = None):
    #     super().__init__()
    #     self.sql_runtime = SQLRuntime(db_path)

    def _run(self, table_name: str, column_name: str, limit: int = 10) -> str:
        sql_runtime = SQLRuntime('../data/elections.db')
        try:
            query = f"""
            SELECT DISTINCT {column_name} 
            FROM {table_name} 
            LIMIT {limit}
            """
            result = sql_runtime.execute(query)
            if result["code"] != 0:
                return f"Error finding values: {result['msg']['reason']}"
            
            values = [row[0] for row in result["data"]]
            return f"Distinct values in {column_name}: {', '.join(map(str, values))}"
        except Exception as e:
            return f"Error: {str(e)}"
        
class ListTablesTool(BaseTool):
    name: str = "list_tables"
    description: str = """
    List all available tables in the database.
    Use this when you need to know what tables are available to query.
    """

    # def __init__(self, db_path: Optional[str] = None):
    #     super().__init__()
    #     self.sql_runtime = SQLRuntime(db_path)

    def _run(self, *args, **kwargs) -> str:
        sql_runtime = SQLRuntime('../data/elections.db')
        try:
            tables = sql_runtime.list_tables()
            return f"Available tables: {', '.join(tables)}"
        except Exception as e:
            return f"Error listing tables: {str(e)}"
        
def create_sql_agent_tools(db_path: Optional[str] = '../data/elections.db') -> List[BaseTool]:
    """
    Create a list of all SQL tools for use with a Langchain agent.
    """
    return [
        SQLQueryTool(),
        TableInfoTool(),
        # ColumnValuesTool(),
        ListTablesTool()
    ]

if __name__ == "__main__":
    load_dotenv()
    tools = create_sql_agent_tools()
    for tool in tools:
        print(f"Tool: {tool.name}")
        print(f"Description: {tool.description}")
        # print(f"Args Schema: {tool.args_schema.schema()}")


    # prompt = prompt = ChatPromptTemplate.from_messages(
    #     [
    #         SystemMessage(
    #                 content="""
    #                 You are a sql agent who has access to a database with three tables: elections_2019, elections_2024, maha_2019. 
    #                 You can use the following tools:
    #                 - sql_query: Execute a SQL query and return the results.
    #                 - get_table_info: Get information about a specific table including its schema and basic statistics.
    #                 - find_column_values: Find distinct values in a specific column of a table.
    #                 - list_tables: List all available tables in the database.

    #                 Answer the questions using the tools provided. Do not execute harmful queries.
    #                 """
    #             ),
    #         HumanMessagePromptTemplate.from_template("{text}"),
    #     ]
    # )


    output_parser = StrOutputParser()

    # Create the llm
    llm = load_llm()

    # llm.bind_tools(tools)

    # res = llm.invoke("who won elections in maharashtra in Nandurbar in elections 2019? use the given tools")

    # chain = prompt | llm | output_parser

    # Run the chain
    agent = create_react_agent(llm, tools, react_prompt)
    # Create an agent executor by passing in the agent and tools
    agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

    print("Agent created successfully")

    # Run the agent
    # agent_executor.invoke({"input": "Who won the elections in 2019 for the state maharashtra in constituency Akkalkuwa?"})

    res = agent_executor.invoke({"input": "who won elections in maharashtra in Nandurbar in elections 2019?"})

    # run_agent_executor(agent_executor, {"input": "who won elections in maharashtra in Nandurbar in elections 2019?"})