|
import streamlit as st
|
|
import numpy as np
|
|
import cv2
|
|
from PIL import Image
|
|
|
|
|
|
prototxt_path = "colorization_deploy_v2.prototxt"
|
|
model_path = "colorization_release_v2.caffemodel"
|
|
kernel_path = "pts_in_hull.npy"
|
|
|
|
|
|
net = cv2.dnn.readNetFromCaffe(prototxt_path, model_path)
|
|
points = np.load(kernel_path)
|
|
points = points.transpose().reshape(2, 313, 1, 1)
|
|
net.getLayer(net.getLayerId("class8_ab")).blobs = [points.astype(np.float32)]
|
|
net.getLayer(net.getLayerId("conv8_313_rh")).blobs = [np.full([1, 313], 2.686, dtype="float32")]
|
|
|
|
|
|
st.title("Black-and-White Image Colorization")
|
|
st.write("Upload a black-and-white image to colorize it.")
|
|
|
|
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
|
if uploaded_file is not None:
|
|
|
|
image = Image.open(uploaded_file)
|
|
bw_image = np.array(image.convert("RGB"))
|
|
bw_image = cv2.cvtColor(bw_image, cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
normalized = bw_image.astype("float32") / 255.0
|
|
lab = cv2.cvtColor(normalized, cv2.COLOR_BGR2LAB)
|
|
resized = cv2.resize(lab, (224, 224))
|
|
L = cv2.split(resized)[0]
|
|
L -= 55
|
|
|
|
|
|
net.setInput(cv2.dnn.blobFromImage(L))
|
|
ab = net.forward()[0, :, :, :].transpose((1, 2, 0))
|
|
ab = cv2.resize(ab, (bw_image.shape[1], bw_image.shape[0]))
|
|
|
|
|
|
L = cv2.split(lab)[0]
|
|
colorized = np.concatenate((L[:, :, np.newaxis], ab), axis=2)
|
|
|
|
|
|
colorized = cv2.cvtColor(colorized, cv2.COLOR_LAB2BGR)
|
|
colorized = (255 * colorized).astype("uint8")
|
|
|
|
|
|
st.image(colorized, channels="BGR", caption="Colorized Image")
|
|
|
|
|
|
colorized_image = Image.fromarray(cv2.cvtColor(colorized, cv2.COLOR_BGR2RGB))
|
|
colorized_image.save("colorized_output.jpg")
|
|
with open("colorized_output.jpg", "rb") as file:
|
|
btn = st.download_button(
|
|
label="Download colorized image",
|
|
data=file,
|
|
file_name="colorized_image.jpg",
|
|
mime="image/jpeg"
|
|
)
|
|
|