|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
from audiocraft.data.audio import audio_write
|
|
|
|
|
|
def get_white_noise(chs: int = 1, num_frames: int = 1):
|
|
wav = torch.randn(chs, num_frames)
|
|
return wav
|
|
|
|
|
|
def get_batch_white_noise(bs: int = 1, chs: int = 1, num_frames: int = 1):
|
|
wav = torch.randn(bs, chs, num_frames)
|
|
return wav
|
|
|
|
|
|
def save_wav(path: str, wav: torch.Tensor, sample_rate: int):
|
|
assert wav.dim() == 2, wav.shape
|
|
fp = Path(path)
|
|
assert fp.suffix in ['.mp3', '.ogg', '.wav', '.flac'], fp
|
|
audio_write(fp.parent / fp.stem, wav, sample_rate, fp.suffix[1:],
|
|
normalize=False, strategy='clip', peak_clip_headroom_db=0)
|
|
|