annapurnapadmaprema-ji
commited on
Commit
•
0b3a9f2
1
Parent(s):
4d80d41
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from audiocraft.models import MusicGen
|
2 |
import streamlit as st
|
|
|
3 |
import torch
|
4 |
import torchaudio
|
5 |
from io import BytesIO
|
@@ -16,9 +17,7 @@ def generate_music_tensors(description, duration: int):
|
|
16 |
|
17 |
model.set_generation_params(
|
18 |
use_sampling=True,
|
19 |
-
top_k=
|
20 |
-
top_p=0.85,
|
21 |
-
temperature=0.8,
|
22 |
duration=duration
|
23 |
)
|
24 |
|
@@ -31,15 +30,16 @@ def generate_music_tensors(description, duration: int):
|
|
31 |
|
32 |
def save_audio_to_bytes(samples: torch.Tensor):
|
33 |
sample_rate = 32000
|
34 |
-
assert samples.dim() ==
|
35 |
-
samples = samples[0] # Take the first batch item
|
36 |
samples = samples.detach().cpu()
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
|
44 |
st.set_page_config(
|
45 |
page_icon=":musical_note:",
|
@@ -50,29 +50,32 @@ def main():
|
|
50 |
st.title("Your Music")
|
51 |
|
52 |
with st.expander("See Explanation"):
|
53 |
-
st.write("
|
54 |
|
55 |
text_area = st.text_area("Enter description")
|
56 |
-
time_slider = st.slider("Select time duration (seconds)", 2, 20,
|
57 |
|
58 |
if text_area and time_slider:
|
59 |
-
st.json(
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
st.write("We will
|
|
|
65 |
st.subheader("Generated Music")
|
66 |
music_tensors = generate_music_tensors(text_area, time_slider)
|
67 |
-
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
# Play
|
72 |
-
st.audio(
|
|
|
|
|
73 |
st.download_button(
|
74 |
label="Download Audio",
|
75 |
-
data=
|
76 |
file_name="generated_music.wav",
|
77 |
mime="audio/wav"
|
78 |
)
|
|
|
1 |
from audiocraft.models import MusicGen
|
2 |
import streamlit as st
|
3 |
+
import os
|
4 |
import torch
|
5 |
import torchaudio
|
6 |
from io import BytesIO
|
|
|
17 |
|
18 |
model.set_generation_params(
|
19 |
use_sampling=True,
|
20 |
+
top_k=250,
|
|
|
|
|
21 |
duration=duration
|
22 |
)
|
23 |
|
|
|
30 |
|
31 |
def save_audio_to_bytes(samples: torch.Tensor):
|
32 |
sample_rate = 32000
|
33 |
+
assert samples.dim() == 2 or samples.dim() == 3
|
|
|
34 |
samples = samples.detach().cpu()
|
35 |
|
36 |
+
if samples.dim() == 2:
|
37 |
+
samples = samples[None, ...] # Add batch dimension if missing
|
38 |
+
|
39 |
+
audio_buffer = BytesIO()
|
40 |
+
torchaudio.save(audio_buffer, samples[0], sample_rate=sample_rate, format="wav")
|
41 |
+
audio_buffer.seek(0) # Move to the start of the buffer
|
42 |
+
return audio_buffer
|
43 |
|
44 |
st.set_page_config(
|
45 |
page_icon=":musical_note:",
|
|
|
50 |
st.title("Your Music")
|
51 |
|
52 |
with st.expander("See Explanation"):
|
53 |
+
st.write("This app uses Meta's Audiocraft Music Gen model to generate audio based on your description.")
|
54 |
|
55 |
text_area = st.text_area("Enter description")
|
56 |
+
time_slider = st.slider("Select time duration (seconds)", 2, 20, 5)
|
57 |
|
58 |
if text_area and time_slider:
|
59 |
+
st.json(
|
60 |
+
{
|
61 |
+
"Description": text_area,
|
62 |
+
"Selected duration": time_slider
|
63 |
+
}
|
64 |
+
st.write("We will back with your music....please enjoy doing the rest of your tasks while we come back in some time :)")
|
65 |
+
)
|
66 |
st.subheader("Generated Music")
|
67 |
music_tensors = generate_music_tensors(text_area, time_slider)
|
68 |
+
|
69 |
+
# Convert audio to bytes for playback and download
|
70 |
+
audio_buffer = save_audio_to_bytes(music_tensors)
|
71 |
+
|
72 |
+
# Play audio
|
73 |
+
st.audio(audio_buffer, format="audio/wav")
|
74 |
+
|
75 |
+
# Download button for audio
|
76 |
st.download_button(
|
77 |
label="Download Audio",
|
78 |
+
data=audio_buffer,
|
79 |
file_name="generated_music.wav",
|
80 |
mime="audio/wav"
|
81 |
)
|