from fastai.vision.all import * import gradio as gr # Load the trained model learn = load_learner("model.pkl") # Ensure "model.pkl" is in the working directory # Define a function to predict the class def predict(img): pred, pred_idx, probs = learn.predict(img) return {learn.dls.vocab[i]: float(probs[i]) for i in range(len(probs))} # Create a Gradio interface interface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label()) # Launch the app interface.launch()