anushka81
changes
bad655a
raw
history blame
3.28 kB
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
from torchvision.models.segmentation import fcn_resnet50
from torchvision.transforms import Compose, ToTensor, Normalize, Resize, ToPILImage
from PIL import Image
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load Stable Diffusion for text-to-image
text_to_image_pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)
# Load a pre-trained FCN model for image-to-image transformations
unet_model = fcn_resnet50(pretrained=True).eval().to(device)
# Transforms for UNet
preprocess = Compose([
Resize((512, 512)),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
postprocess = Compose([
ToPILImage(),
])
# Function for Text-to-Image
def text_to_image(prompt, negative_prompt, guidance_scale, num_inference_steps):
image = text_to_image_pipe(
prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
).images[0]
return image
# Function for Image-to-Image using Dynamic UNet
def apply_dynamic_unet(init_image, strength):
with torch.no_grad():
image_tensor = preprocess(init_image).unsqueeze(0).to(device)
output = unet_model(image_tensor)["out"][0]
output = torch.softmax(output, dim=0) # Normalize predictions
mask = output.argmax(dim=0).float().cpu()
blended = (strength * mask.unsqueeze(0) + (1 - strength) * image_tensor[0].cpu()).clamp(0, 1)
blended_image = postprocess(blended)
return blended_image
# Gradio Interface
with gr.Blocks(theme='Respair/[email protected]') as demo:
gr.Markdown("# Text-to-Image and Image-to-Image ")
with gr.Tab("Text-to-Image"):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter your text here...")
text_negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter what to avoid...")
with gr.Row():
guidance_scale = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance Scale")
num_inference_steps = gr.Slider(10, 100, value=50, step=1, label="Inference Steps")
with gr.Row():
generate_btn = gr.Button("Generate", elem_classes=["primary-button"])
with gr.Row():
text_output = gr.Image(label="Generated Image")
generate_btn.click(
text_to_image,
inputs=[text_prompt, text_negative_prompt, guidance_scale, num_inference_steps],
outputs=text_output,
)
with gr.Tab("Image-to-Image"):
with gr.Row():
init_image = gr.Image(type="pil", label="Upload Initial Image")
with gr.Row():
strength = gr.Slider(0.1, 1.0, value=0.75, step=0.05, label="Blend Strength")
with gr.Row():
img_generate_btn = gr.Button("Apply UNet", elem_classes=["primary-button"])
with gr.Row():
img_output = gr.Image(label="Modified Image")
img_generate_btn.click(apply_dynamic_unet, inputs=[init_image, strength], outputs=img_output)
demo.launch(share=True)