anushka81 commited on
Commit
d13ee8a
·
1 Parent(s): bad655a

prompt in image2image

Browse files
Files changed (1) hide show
  1. app.py +12 -2
app.py CHANGED
@@ -40,7 +40,10 @@ def text_to_image(prompt, negative_prompt, guidance_scale, num_inference_steps):
40
 
41
 
42
  # Function for Image-to-Image using Dynamic UNet
43
- def apply_dynamic_unet(init_image, strength):
 
 
 
44
  with torch.no_grad():
45
  image_tensor = preprocess(init_image).unsqueeze(0).to(device)
46
  output = unet_model(image_tensor)["out"][0]
@@ -73,9 +76,16 @@ with gr.Blocks(theme='Respair/[email protected]') as demo:
73
  outputs=text_output,
74
  )
75
 
 
76
  with gr.Tab("Image-to-Image"):
 
 
 
 
77
  with gr.Row():
78
  init_image = gr.Image(type="pil", label="Upload Initial Image")
 
 
79
  with gr.Row():
80
  strength = gr.Slider(0.1, 1.0, value=0.75, step=0.05, label="Blend Strength")
81
  with gr.Row():
@@ -83,6 +93,6 @@ with gr.Blocks(theme='Respair/[email protected]') as demo:
83
  with gr.Row():
84
  img_output = gr.Image(label="Modified Image")
85
 
86
- img_generate_btn.click(apply_dynamic_unet, inputs=[init_image, strength], outputs=img_output)
87
 
88
  demo.launch(share=True)
 
40
 
41
 
42
  # Function for Image-to-Image using Dynamic UNet
43
+ def apply_dynamic_unet(init_image, prompt, strength):
44
+ # Placeholder for prompt-based logic
45
+ print(f"Received prompt: {prompt}") # You can define prompt-based rules here.
46
+
47
  with torch.no_grad():
48
  image_tensor = preprocess(init_image).unsqueeze(0).to(device)
49
  output = unet_model(image_tensor)["out"][0]
 
76
  outputs=text_output,
77
  )
78
 
79
+ # Gradio Tab with Prompt
80
  with gr.Tab("Image-to-Image"):
81
+ gr.Markdown(
82
+ "**Transform uploaded images using a dynamic UNet model.**\n"
83
+ "Provide a prompt to describe the transformation and use the `Blend Strength` slider to adjust blending."
84
+ )
85
  with gr.Row():
86
  init_image = gr.Image(type="pil", label="Upload Initial Image")
87
+ with gr.Row():
88
+ img_prompt = gr.Textbox(label="Prompt", placeholder="Describe the transformation (optional)...")
89
  with gr.Row():
90
  strength = gr.Slider(0.1, 1.0, value=0.75, step=0.05, label="Blend Strength")
91
  with gr.Row():
 
93
  with gr.Row():
94
  img_output = gr.Image(label="Modified Image")
95
 
96
+ img_generate_btn.click(apply_dynamic_unet, inputs=[init_image, img_prompt, strength], outputs=img_output)
97
 
98
  demo.launch(share=True)