import gradio as gr import torch from diffusers import StableDiffusionPipeline from torchvision.models.segmentation import fcn_resnet50 from torchvision.transforms import Compose, ToTensor, Normalize, Resize, ToPILImage from PIL import Image # Device configuration device = "cuda" if torch.cuda.is_available() else "cpu" # Load Stable Diffusion for text-to-image text_to_image_pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32 ).to(device) # Load a pre-trained FCN model for image-to-image transformations unet_model = fcn_resnet50(pretrained=True).eval().to(device) # Transforms for UNet preprocess = Compose([ Resize((512, 512)), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) postprocess = Compose([ ToPILImage(), ]) # Function for Text-to-Image def text_to_image(prompt, negative_prompt, guidance_scale, num_inference_steps): image = text_to_image_pipe( prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, ).images[0] return image # Function for Image-to-Image using Dynamic UNet def apply_dynamic_unet(init_image, strength): with torch.no_grad(): image_tensor = preprocess(init_image).unsqueeze(0).to(device) output = unet_model(image_tensor)["out"][0] output = torch.softmax(output, dim=0) # Normalize predictions mask = output.argmax(dim=0).float().cpu() blended = (strength * mask.unsqueeze(0) + (1 - strength) * image_tensor[0].cpu()).clamp(0, 1) blended_image = postprocess(blended) return blended_image # Gradio Interface with gr.Blocks(theme='Respair/Shiki@1.2.2') as demo: gr.Markdown("# Text-to-Image and Image-to-Image ") with gr.Tab("Text-to-Image"): with gr.Row(): text_prompt = gr.Textbox(label="Prompt", placeholder="Enter your text here...") text_negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter what to avoid...") with gr.Row(): guidance_scale = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance Scale") num_inference_steps = gr.Slider(10, 100, value=50, step=1, label="Inference Steps") with gr.Row(): generate_btn = gr.Button("Generate", elem_classes=["primary-button"]) with gr.Row(): text_output = gr.Image(label="Generated Image") generate_btn.click( text_to_image, inputs=[text_prompt, text_negative_prompt, guidance_scale, num_inference_steps], outputs=text_output, ) with gr.Tab("Image-to-Image"): with gr.Row(): init_image = gr.Image(type="pil", label="Upload Initial Image") with gr.Row(): strength = gr.Slider(0.1, 1.0, value=0.75, step=0.05, label="Blend Strength") with gr.Row(): img_generate_btn = gr.Button("Apply UNet", elem_classes=["primary-button"]) with gr.Row(): img_output = gr.Image(label="Modified Image") img_generate_btn.click(apply_dynamic_unet, inputs=[init_image, strength], outputs=img_output) demo.launch(share=True)