import gradio as gr import torch from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline from PIL import Image # Device configuration device = "cuda" if torch.cuda.is_available() else "cpu" # Load Stable Diffusion pipelines text_to_image_pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32 ).to(device) image_to_image_pipe = StableDiffusionImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 if device == "cuda" else torch.float32 ).to(device) # Function for Text-to-Image def text_to_image(prompt, negative_prompt, guidance_scale, num_inference_steps): image = text_to_image_pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, ).images[0] return image # Function for Image-to-Image def image_to_image(prompt, negative_prompt, init_image, strength, guidance_scale, num_inference_steps): init_image = init_image.convert("RGB").resize((512, 512)) # Ensure the image is resized image = image_to_image_pipe( prompt=prompt, negative_prompt=negative_prompt, init_image=init_image, strength=strength, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, ).images[0] return image # Gradio Interface with gr.Blocks(theme='NoCrypt/miku') as demo: gr.Markdown("# Text-to-Image and Image-to-Image generation") with gr.Tab("Text-to-Image"): gr.Markdown("Generate images from text prompts") with gr.Row(): text_prompt = gr.Textbox(label="Prompt", placeholder="Enter your text here...") text_negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter what to avoid...") with gr.Row(): guidance_scale = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance Scale") num_inference_steps = gr.Slider(10, 100, value=50, step=1, label="Inference Steps") with gr.Row(): generate_btn = gr.Button("Generate", elem_classes=["primary-button"]) with gr.Row(): text_output = gr.Image(label="Generated Image") generate_btn.click( text_to_image, inputs=[text_prompt, text_negative_prompt, guidance_scale, num_inference_steps], outputs=text_output, ) with gr.Tab("Image-to-Image"): gr.Markdown( "Modify images - Upload an image, provide a prompt describing the transformation, and adjust settings for desired results." ) with gr.Row(): init_image = gr.Image(type="pil", label="Upload Initial Image") with gr.Row(): img_prompt = gr.Textbox(label="Prompt", placeholder="Describe modifications...") img_negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter what to avoid...") with gr.Row(): strength = gr.Slider(0.1, 1.0, value=0.75, step=0.05, label="Strength") img_guidance_scale = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance Scale") img_num_inference_steps = gr.Slider(10, 100, value=50, step=1, label="Inference Steps") with gr.Row(): img_generate_btn = gr.Button("Generate", elem_classes=["primary-button"]) with gr.Row(): img_output = gr.Image(label="Modified Image") img_generate_btn.click( image_to_image, inputs=[img_prompt, img_negative_prompt, init_image, strength, img_guidance_scale, img_num_inference_steps], outputs=img_output, ) demo.launch(share=True)