import torch import torch.nn as nn import re class IdentityMap(nn.Module): def __init__(self): super().__init__() def forward(self, x, *args, **kwargs): return x @property def config(self): return {"mm_projector_type": 'identity'} class SimpleResBlock(nn.Module): def __init__(self, channels): super().__init__() self.pre_norm = nn.LayerNorm(channels) self.proj = nn.Sequential( nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels) ) def forward(self, x): x = self.pre_norm(x) return x + self.proj(x) class DualMLPProjector(nn.Module): def __init__(self, config, mlp_depth): super().__init__() self.encoder_mlp = nn.Sequential( nn.Linear(config.mm_hidden_size * 4, config.hidden_size), *[nn.Sequential(nn.GELU(), nn.Linear(config.hidden_size, config.hidden_size)) for _ in range(mlp_depth-1)] ) def forward(self, image_features, encoder_last_hidden_state): encoder_last_hidden_state = torch.cat((image_features, encoder_last_hidden_state), dim=-1) concatenated = self.encoder_mlp(encoder_last_hidden_state) return concatenated def build_vision_projector(config, delay_load=False, **kwargs): projector_type = getattr(config, 'mm_projector_type', 'linear') if projector_type == 'linear': return nn.Linear(config.mm_hidden_size, config.hidden_size) mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) if mlp_gelu_match: mlp_depth = int(mlp_gelu_match.group(1)) return DualMLPProjector(config, mlp_depth) if projector_type == 'identity': return IdentityMap() raise ValueError(f'Unknown projector type: {projector_type}')