Spaces:
Sleeping
Sleeping
File size: 33,321 Bytes
1fa7b63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
import gradio as gr
import torch
from PIL import Image
import base64
from io import BytesIO
import pandas as pd
import numpy as np
import random as rd
import math
from diffusers import StableDiffusionPipeline
from transformers import CLIPProcessor, CLIPModel, Pix2StructProcessor, Pix2StructForConditionalGeneration, ViltProcessor, ViltForQuestionAnswering, BlipProcessor, BlipForQuestionAnswering, AutoProcessor, AutoModelForCausalLM
import openai
clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
vilt_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vilt_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
import ds_manager as ds_mgr
MISSING_C = None
C1_B64s = []
C2_B64s = []
C1_PILs = []
C2_PILs = []
def updateErrorMsg(isError, text):
return gr.Markdown.update(visible=isError, value=text)
def moveStep1():
variants = ["primary","secondary","secondary"]
#inter = [True, False, False]
tabs = [True, False, False]
return (gr.update(variant=variants[0]),
gr.update(variant=variants[1]),
gr.update(variant=variants[2]),
gr.update(visible=tabs[0]),
gr.update(visible=tabs[1]),
gr.update(visible=tabs[2]))
# Interaction with top tabs
def moveStep1_clear():
variants = ["primary","secondary","secondary"]
#inter = [True, False, False]
tabs = [True, False, False]
return (gr.update(variant=variants[0]),
gr.update(variant=variants[1]),
gr.update(variant=variants[2]),
gr.update(visible=tabs[0]),
gr.update(visible=tabs[1]),
gr.update(visible=tabs[2]),
gr.Textbox.update(value=""),
gr.Textbox.update(value=""),
gr.Textbox.update(value=""),
gr.Textbox.update(value=""))
def moveStep2():
variants = ["secondary","primary","secondary"]
#inter = [True, True, False]
tabs = [False, True, False]
return (gr.update(variant=variants[0]),
gr.update(variant=variants[1]),
gr.update(variant=variants[2]),
gr.update(visible=tabs[0]),
gr.update(visible=tabs[1]),
gr.update(visible=tabs[2]))
def moveStep3():
variants = ["secondary","secondary","primary"]
#inter = [True, True, False]
tabs = [False, False, True]
return (gr.update(variant=variants[0]),
gr.update(variant=variants[1]),
gr.update(variant=variants[2]),
gr.update(visible=tabs[0]),
gr.update(visible=tabs[1]),
gr.update(visible=tabs[2]))
def decode_b64(b64s):
decoded = []
for b64 in b64s:
decoded.append(Image.open(BytesIO(base64.b64decode(b64))))
return decoded
def generate(prompt, openai_key):
prompt = prompt.lower().strip()
_, retrieved, _ = ds_mgr.getSavedSentences(prompt)
print(f"retrieved: {retrieved}")
if len(retrieved.index) > 0:
update_value = decode_b64(list(retrieved['b64']))
print(f"update_value: {update_value}")
return update_value, list(retrieved['b64'])
openai.api_key = openai_key
response = openai.Image.create(
prompt=prompt,
n=4,
size="256x256",
response_format='b64_json'
)
image_b64s = []
save_b64s = []
for image in response['data']:
image_b64s.append(image['b64_json'])
save_b64s.append([prompt, image['b64_json']])
save_df = pd.DataFrame(save_b64s, columns=["prompt", "b64"])
print(f"save_df: {save_b64s}")
# save (save_df)
ds_mgr.saveSentences(save_df)
images = decode_b64(image_b64s)
# images = pipe(prompt, height=256, width=256, num_images_per_prompt=2).images
#print(images)
# return (
# gr.update(value=images)
# )
return images, image_b64s
def clip(imgs1, imgs2, g1, g2):
"""
imgs1: list of PIL Images
imgs1: list of PIL Images
g1: list of str (test-concepts 1)
g2: list of str (test-concepts 2)
returns avg_probs_imgs1, avg_probs_imgs2 - dicts for imgs1, imgs2
({img index: {'g1': probability, 'g2': probability}})
"""
# One call of CLIP processor + model - may need to batch later
inputs = clip_processor(text = g1 + g2, images = imgs1 + imgs2,
return_tensors="pt", padding=True)
outputs = clip_model(**inputs)
logits_imgs1 = outputs.logits_per_image[:len(imgs1)]
logits_imgs2 = outputs.logits_per_image[len(imgs1):]
probs_imgs1 = torch.softmax(logits_imgs1, dim=1)
probs_imgs2 = torch.softmax(logits_imgs2, dim=1)
avg_probs_imgs1 = {}
avg_probs_imgs2 = {}
# Calculate the probabilities of prompts in g1 and g2 for each image in imgs1
for idx, img_probs in enumerate(probs_imgs1):
prob_g1 = img_probs[:len(g1)].sum().item()
prob_g2 = img_probs[len(g1):].sum().item()
avg_probs_imgs1[idx] = {'g1': prob_g1, 'g2': prob_g2}
# Calculate the probabilities of prompts in g1 and g2 for each image in imgs2
for idx, img_probs in enumerate(probs_imgs2):
prob_g1 = img_probs[:len(g1)].sum().item()
prob_g2 = img_probs[len(g1):].sum().item()
avg_probs_imgs2[idx] = {'g1': prob_g1, 'g2': prob_g2}
print(f"avg_probs_imgs1:\n{avg_probs_imgs1}")
print(f"avg_probs_imgs2:\n{avg_probs_imgs2}")
# Can do an average probability over all images - need to decide how we are using this
return avg_probs_imgs1, avg_probs_imgs2
def vilt_test(imgs1, imgs2, g1, g2, model, processor):
avg_probs_imgs1 = {}
avg_probs_imgs2 = {}
for i, img in enumerate(imgs1):
g1c = rd.choice(g1)
g2c = rd.choice(g2)
encoding = processor(img, f'Is the image of a {g1c}?', return_tensors="pt")
outputs = model(**encoding)
logits = outputs.logits
idx = logits.argmax(-1).item()
ans = model.config.id2label[idx]
print("Predicted answer:", model.config.id2label[idx])
logitsList = torch.softmax(logits, dim=1).flatten().tolist()
m = max(logitsList)
s = -math.inf
for logit in logitsList:
if s <= logit < m:
s = logit
t = sum(logitsList)
pm, ps = m/t, s/t
if 'yes' in ans:
avg_probs_imgs1[i] = {'g1': pm, 'g2': ps}
else:
avg_probs_imgs1[i] = {'g1': ps, 'g2': pm}
for i, img in enumerate(imgs2):
g2c = rd.choice(g2)
g1c = rd.choice(g1)
encoding = processor(img, f'Is the image of a {g2c}?', return_tensors="pt")
outputs = model(**encoding)
logits = outputs.logits
idx = logits.argmax(-1).item()
ans = model.config.id2label[idx]
print("Predicted answer:", model.config.id2label[idx])
logitsList = torch.softmax(logits, dim=1).flatten().tolist()
m = max(logitsList)
s = -math.inf
for logit in logitsList:
if s <= logit < m:
s = logit
t = sum(logitsList)
pm, ps = m/t, s/t
if 'yes' in ans:
avg_probs_imgs2[i] = {'g1': ps, 'g2': pm}
else:
avg_probs_imgs2[i] = {'g1': pm, 'g2': ps}
print(f"avg_probs_imgs1:\n{avg_probs_imgs1}")
print(f"avg_probs_imgs2:\n{avg_probs_imgs2}")
return avg_probs_imgs1, avg_probs_imgs2
def bloombergViz(att, numblocks, score, concept_images, concept_b64s, onRight=False):
leftColor = "#065b41" #"#555"
rightColor = "#35d4ac" #"#999"
# if flip:
# leftColor = "#35d4ac" #"#999"
# rightColor = "#065b41" #"#555"
spanClass = "tooltiptext_left"
if onRight:
spanClass = "tooltiptext_right"
# g1p is indices of score where g1 >= g2
# g2p is indices of score where g2 < g1
g1p = []
g2p = []
print(f"score: {score}")
for i in score:
if score[i]['g1'] >= score[i]['g2']:
g1p.append(i)
else:
g2p.append(i)
res = ""
for i in g1p:
disp = concept_b64s[i]
res += f"<div style='height:20px;width:20px;background-color:{leftColor};display:inline-block;position:relative' id='filled'><span class='{spanClass}' style='color:#FFF'><center><img src='data:image/jpeg;base64,{disp}'></center><br>This image was identified as more likely to depict a group 1 term.</span></div> "
for i in g2p:
disp = concept_b64s[i]
res += f"<div style='height:20px;width:20px;background-color:{rightColor};display:inline-block;position:relative' id='empty'><span class='{spanClass}' style='color:#FFF'><center><img src='data:image/jpeg;base64,{disp}'></center><br>This image was identified as more likely to depict a group 2 term.</span></div> "
return res
def att_bloombergViz(att, numblocks, scores, concept_images, concept_b64s, onRight=False):
viz = bloombergViz(att, numblocks, scores, concept_images, concept_b64s, onRight)
attHTML = f"<div style='border-style:solid;border-color:#999;border-radius:12px'>{att}: %<br>{viz}</div><br>"
return attHTML
def retrieveImgs(concept1, concept2, group1, group2, progress=gr.Progress()):
global MISSING_C, C1_B64s, C2_B64s, C1_PILs, C2_PILs
print(f"concept1: {concept1}. concept2: {concept2}. group1: {group1}. group2: {group2}")
print("RETRIEVE IMAGES CLICKED!")
G_MISSING_SPEC = []
variants = ["secondary","primary","secondary"]
inter = [True, True, False]
tabs = [True, False]
bias_gen_states = [True, False]
bias_gen_label = "Generate New Images"
bias_test_label = "Test Model for Social Bias"
num2gen_update = gr.update(visible=True) #update the number of new sentences to generate
prog_vis = [True]
err_update = updateErrorMsg(False, "")
info_msg_update = gr.Markdown.update(visible=False, value="")
openai_gen_row_update = gr.Row.update(visible=True)
tested_model_dropdown_update = gr.Dropdown.update(visible=False)
tested_model_row_update = gr.Row.update(visible=False)
c1s = concept1.split(',')
c2s = concept2.split(',')
c1s = [c1.strip() for c1 in c1s]
c2s = [c2.strip() for c2 in c2s]
C1_PILs = []
C2_PILs = []
C1_B64s = []
C2_B64s = []
if not c1s or not c2s:
print("No terms entered!")
err_update = updateErrorMsg(True, "Please enter terms!")
variants = ["primary","secondary","secondary"]
inter = [True, False, False]
tabs = [True, False]
prog_vis = [False]
else:
tabs = [False, True]
progress(0, desc="Fetching saved images...")
for c1 in c1s:
_, retrieved, _ = ds_mgr.getSavedSentences(c1)
print(f"retrieved: {retrieved}")
if len(retrieved.index) > 0:
C1_B64s += list(retrieved['b64'])
C1_PILs += decode_b64(list(retrieved['b64']))
print(f"c1_retrieved: {C1_B64s}")
for c2 in c2s:
_, retrieved, _ = ds_mgr.getSavedSentences(c2)
print(f"retrieved: {retrieved}")
if len(retrieved.index) > 0:
C2_B64s += list(retrieved['b64'])
C2_PILs += decode_b64(list(retrieved['b64']))
print(f"c2_retrieved: {C2_B64s}")
if not C1_PILs or not C2_PILs:
err_update = updateErrorMsg(True, "No images were found for one or both concepts. Please enter OpenAI key and use Dall-E to generate new test images or change bias specification!")
if not C1_PILs and not C2_PILs:
MISSING_C = 0
elif not C1_PILs:
MISSING_C = 1
elif not C2_PILs:
MISSING_C = 2
else:
print('there exist images for both!')
bias_gen_states = [False, True]
openai_gen_row_update = gr.Row.update(visible=False)
tested_model_dropdown_update = gr.Dropdown.update(visible=True)
tested_model_row_update = gr.Row.update(visible=True)
print(len(C1_PILs), len(C2_PILs), len(C1_B64s), len(C2_B64s))
print(f"Will these show up?: {concept1}, {concept2}, {group1}, {group2}")
print(f"C1_B64s, C1_PILs: {C1_B64s} || {C1_PILs}")
print(f"C2_B64s, C2_PILs: {C2_B64s} || {C2_PILs}")
return (
err_update, # error message
openai_gen_row_update, # OpenAI generation
num2gen_update, # Number of images to genrate
tested_model_row_update, #Tested Model Row
tested_model_dropdown_update, # Tested Model Dropdown
info_msg_update, # sentences retrieved info update
gr.update(visible=prog_vis), # progress bar top
gr.update(variant=variants[0], interactive=inter[0]), # breadcrumb btn1
gr.update(variant=variants[1], interactive=inter[1]), # breadcrumb btn2
gr.update(variant=variants[2], interactive=inter[2]), # breadcrumb btn3
gr.update(visible=tabs[0]), # tab 1
gr.update(visible=tabs[1]), # tab 2
gr.Accordion.update(visible=bias_gen_states[1], label=f"Test images ({len(C1_PILs) + len(C2_PILs)})"), # accordion
gr.update(visible=True), # Row images
gr.update(value=C1_PILs+C2_PILs), #test images
gr.Button.update(visible=bias_gen_states[0], value=bias_gen_label), # gen btn
gr.Button.update(visible=bias_gen_states[1], value=bias_test_label), # bias test btn
gr.update(value=concept1), # concept1_fixed
gr.update(value=concept2), # concept2_fixed
gr.update(value=group1), # group1_fixed
gr.update(value=group2) # group2_fixed
)
def generateImgs(concept1, concept2, openai_key, num_imgs2gen, progress=gr.Progress()):
global MISSING_C, C1_B64s, C2_B64s, C1_PILs, C2_PILs
err_update = updateErrorMsg(False, "")
bias_test_label = "Test Model Using Imbalanced Images"
if MISSING_C == 0:
bias_gen_states = [True, False]
online_gen_visible = True
test_model_visible = False
elif MISSING_C == 1 or MISSING_C == 2:
bias_gen_states = [True, True]
online_gen_visible = True
test_model_visible = True
info_msg_update = gr.Markdown.update(visible=False, value="")
c1s = concept1.split(',')
c2s = concept2.split(',')
C1_PILs = []
C2_PILs = []
if not c1s or not c2s:
print("No terms entered!")
err_update = updateErrorMsg(True, "Please enter terms!")
variants = ["primary","secondary","secondary"]
inter = [True, False, False]
tabs = [True, False]
prog_vis = [False]
else:
if len(openai_key) == 0:
print("Empty OpenAI key!!!")
err_update = updateErrorMsg(True, "Please enter an OpenAI key!")
elif len(openai_key) < 10:
print("Wrong length OpenAI key!!!")
err_update = updateErrorMsg(True, "Please enter a correct OpenAI key!")
else:
progress(0, desc="Dall-E generation...")
C1_PILs = []
C1_B64s = []
for c1 in c1s:
prompt = c1
PILs, c1_b64s = generate(prompt, openai_key)
C1_PILs += PILs
C1_B64s += c1_b64s
C2_PILs = []
C2_B64s = []
for c2 in c2s:
prompt = c2
PILs, c2_b64s = generate(prompt, openai_key)
C2_PILs += PILs
C2_B64s += c2_b64s
bias_gen_states = [False, True]
online_gen_visible = False
test_model_visible = True
bias_test_label = "Test Model for Social Bias"
return (err_update, # err message if any
info_msg_update, # infor message about the number of imgs and coverage
gr.Row.update(visible=online_gen_visible), # online gen row
gr.Row.update(visible=test_model_visible), # tested model row
gr.Dropdown.update(visible=test_model_visible), # tested model selection dropdown
gr.Accordion.update(visible=test_model_visible, label=f"Test images ({len(C1_PILs)+len(C2_PILs)})"), # accordion
gr.update(visible=True), # Row images
gr.update(value=C1_PILs+C2_PILs), # test images
gr.update(visible=bias_gen_states[0]), # gen btn
gr.update(visible=bias_gen_states[1], value=bias_test_label) # bias btn
)
def startBiasTest(test_imgs, concept1, concept2, group1, group2, model_name, progress=gr.Progress()):
global C1_B64s, C2_B64s, C1_PILs, C2_PILs
variants = ["secondary","secondary","primary"]
inter = [True, True, True]
tabs = [False, False, True]
err_update = updateErrorMsg(False, "")
if len(test_imgs) == 0:
err_update = updateErrorMsg(True, "There are no images! (How'd you get here?)")
progress(0, desc="Starting social bias testing...")
g1 = group1.split(', ')
g2 = group2.split(', ')
avg_probs_imgs1, avg_probs_imgs2 = None, None
if model_name.lower() == 'clip':
avg_probs_imgs1, avg_probs_imgs2 = clip(C1_PILs, C2_PILs, g1, g2)
elif 'vilt' in model_name.lower():
avg_probs_imgs1, avg_probs_imgs2 = vilt_test(C1_PILs, C2_PILs, g1, g2, vilt_model, vilt_processor)
else:
print("that's not right")
c1_html = att_bloombergViz(concept1, len(avg_probs_imgs1), avg_probs_imgs1, C1_PILs, C1_B64s, False)
c2_html = att_bloombergViz(concept2, len(avg_probs_imgs2), avg_probs_imgs2, C2_PILs, C2_B64s, True)
model_bias_dict_n = 0.0
for key in avg_probs_imgs1:
model_bias_dict_n += avg_probs_imgs1[key]['g1']
for key in avg_probs_imgs2:
model_bias_dict_n += avg_probs_imgs2[key]['g2']
model_bias_dict_d = len(avg_probs_imgs1) + len(avg_probs_imgs2)
model_bias_dict = {f'bias score for {model_name} on {len(C1_PILs) + len(C2_PILs)} images': round(model_bias_dict_n/model_bias_dict_d, 2)}
group_labels_html_update = gr.HTML.update(
value=f"<div style='height:20px;width:20px;background-color:#065b41;display:inline-block;vertical-align:top'></div><div style='display:inline-block;vertical-align:top'> Image more likely classified as a Group 1 ({group1}) term </div> <div style='height:20px;width:20px;background-color:#35d4ac;display:inline-block;vertical-align:top'></div><div style='display:inline-block;vertical-align:top'> Image more likely classified as a Group 2 ({group2}) term </div>")
return (err_update, # error message
gr.Markdown.update(visible=True), # bar progress
gr.Button.update(variant=variants[0], interactive=inter[0]), # top breadcrumb button 1
gr.Button.update(variant=variants[1], interactive=inter[1]), # top breadcrumb button 2
gr.Button.update(variant=variants[2], interactive=inter[2]), # top breadcrumb button 3
gr.update(visible=tabs[0]), # content tab/column 1
gr.update(visible=tabs[1]), # content tab/column 2
gr.update(visible=tabs[2]), # content tab/column 3
model_bias_dict, # per model bias score
gr.update(value=c1_html), # c1 bloomberg viz
gr.update(value=c2_html), # c2 bloomberg viz
gr.update(value=concept1), # c1_fixed
gr.update(value=concept2), # c2_fixed
gr.update(value=group1), # g1_fixed
gr.update(value=group2), # g2_fixed
group_labels_html_update# group_labels_html
)
theme = gr.themes.Soft().set(
button_small_radius='*radius_xxs',
background_fill_primary='*neutral_50',
border_color_primary='*primary_50'
)
soft = gr.themes.Soft(
primary_hue="slate",
spacing_size="sm",
radius_size="md"
).set(
# body_background_fill="white",
button_primary_background_fill='*primary_400'
)
css_adds = "#group_row {background: white; border-color: white;} \
#attribute_row {background: white; border-color: white;} \
#tested_model_row {background: white; border-color: white;} \
#button_row {background: white; border-color: white} \
#examples_elem .label {display: none}\
#con1_words {border-color: #E5E7EB;} \
#con2_words {border-color: #E5E7EB;} \
#grp1_words {border-color: #E5E7EB;} \
#grp2_words {border-color: #E5E7EB;} \
#con1_words_fixed {border-color: #E5E7EB;} \
#con2_words_fixed {border-color: #E5E7EB;} \
#grp1_words_fixed {border-color: #E5E7EB;} \
#grp2_words_fixed {border-color: #E5E7EB;} \
#con1_words_fixed input {box-shadow:None; border-width:0} \
#con1_words_fixed .scroll-hide {box-shadow:None; border-width:0} \
#con2_words_fixed input {box-shadow:None; border-width:0} \
#con2_words_fixed .scroll-hide {box-shadow:None; border-width:0} \
#grp1_words_fixed input {box-shadow:None; border-width:0} \
#grp1_words_fixed .scroll-hide {box-shadow:None; border-width:0} \
#grp2_words_fixed input {box-shadow:None; border-width:0} \
#grp2_words_fixed .scroll-hide {box-shadow:None; border-width:0} \
#tested_model_drop {border-color: #E5E7EB;} \
#gen_model_check {border-color: white;} \
#gen_model_check .wrap {border-color: white;} \
#gen_model_check .form {border-color: white;} \
#open_ai_key_box {border-color: #E5E7EB;} \
#gen_col {border-color: white;} \
#gen_col .form {border-color: white;} \
#res_label {background-color: #F8FAFC;} \
#per_attrib_label_elem {background-color: #F8FAFC;} \
#accordion {border-color: #E5E7EB} \
#err_msg_elem p {color: #FF0000; cursor: pointer} \
#res_label .bar {background-color: #35d4ac; } \
#bloomberg_legend {background: white; border-color: white} \
#bloomberg_att1 {background: white; border-color: white} \
#bloomberg_att2 {background: white; border-color: white} \
.tooltiptext_left {visibility: hidden;max-width:50ch;min-width:25ch;top: 100%;left: 0%;background-color: #222;text-align: center;border-radius: 6px;padding: 5px 0;position: absolute;z-index: 1;} \
.tooltiptext_right {visibility: hidden;max-width:50ch;min-width:25ch;top: 100%;right: 0%;background-color: #222;text-align: center;border-radius: 6px;padding: 5px 0;position: absolute;z-index: 1;} \
#filled:hover .tooltiptext_left {visibility: visible;} \
#empty:hover .tooltiptext_left {visibility: visible;} \
#filled:hover .tooltiptext_right {visibility: visible;} \
#empty:hover .tooltiptext_right {visibility: visible;}"
with gr.Blocks(theme=soft, title="Social Bias Testing in Image-To-Text Models",
css=css_adds) as iface:
with gr.Row():
s1_btn = gr.Button(value="Step 1: Bias Specification", variant="primary", visible=True, interactive=True, size='sm')#.style(size='sm')
s2_btn = gr.Button(value="Step 2: Test Images", variant="secondary", visible=True, interactive=False, size='sm')#.style(size='sm')
s3_btn = gr.Button(value="Step 3: Bias Testing", variant="secondary", visible=True, interactive=False, size='sm')#.style(size='sm')
err_message = gr.Markdown("", visible=False, elem_id="err_msg_elem")
bar_progress = gr.Markdown(" ")
# Page 1
with gr.Column(visible=True) as tab1:
with gr.Column():
gr.Markdown("#### Enter concepts to generate") # #group_row
with gr.Row(elem_id ="generation_row"):
concept1 = gr.Textbox(label="Image Generation Concept 1", max_lines=1, elem_id="con1_words", elem_classes="input_words", placeholder="ceo, executive")
concept2 = gr.Textbox(label="Image Generation Concept 2", max_lines=1, elem_id="con2_words", elem_classes="input_words", placeholder="nurse, janitor")
gr.Markdown("#### Enter concepts to test") # #attribute_row
with gr.Row(elem_id="group_row"):
group1 = gr.Textbox(label="Text Caption Concept 1", max_lines=1, elem_id="grp1_words", elem_classes="input_words", placeholder="brother, father")
group2 = gr.Textbox(label="Text Caption Concept 2", max_lines=1, elem_id="grp2_words", elem_classes="input_words", placeholder="sister, mother")
with gr.Row():
gr.Markdown(" ")
get_sent_btn = gr.Button(value="Get Images", variant="primary", visible=True)
gr.Markdown(" ")
# Page 2
with gr.Column(visible=False) as tab2:
info_imgs_found = gr.Markdown(value="", visible=False) # info_sentences_found
gr.Markdown("### Tested Social Bias Specification", visible=True)
with gr.Row():
concept1_fixed = gr.Textbox(label="Image Generation Concept 1", max_lines=1, elem_id="con1_words_fixed", elem_classes="input_words", interactive=False, visible=True) # group1_words_fixed
concept2_fixed = gr.Textbox(label='Image Generation Concept 2', max_lines=1, elem_id="con2_words_fixed", elem_classes="input_words", interactive=False, visible=True) # group2_fixed
with gr.Row():
group1_fixed = gr.Textbox(label='Text Caption Concept 1', max_lines=1, elem_id="grp1_words_fixed", elem_classes="input_words", interactive=False, visible=True) # att1_words_fixed
group2_fixed = gr.Textbox(label='Text Caption Concept 2', max_lines=1, elem_id="grp2_words_fixed", elem_classes="input_words", interactive=False, visible=True) # att2_fixed
with gr.Row():
with gr.Column():
with gr.Row(visible=False) as online_gen_row:
with gr.Column():
gen_title = gr.Markdown("### Generate Additional Images", visible=True)
# OpenAI Key for generator
openai_key = gr.Textbox(lines=1, label="OpenAI API Key", value=None,
placeholder="starts with sk-",
info="Please provide the key for an Open AI account to generate new test images",
visible=True,
interactive=True,
elem_id="open_ai_key_box")
num_imgs2gen = gr.Slider(2, 20, value=2, step=1,
interactive=True,
visible=True,
container=True)
with gr.Row(visible=False) as tested_model_row:
with gr.Column():
gen_title = gr.Markdown("### Select Tested Model", visible=True)
tested_model_name = gr.Dropdown(["CLIP", "ViLT"], value="CLIP",
multiselect=None,
interactive=True,
label="Tested model",
elem_id="tested_model_drop",
visible=True
)
with gr.Row():
gr.Markdown(" ")
gen_btn = gr.Button(value="Generate New Images", variant="primary", visible=True)
bias_btn = gr.Button(value="Test Model for Social Bias", variant="primary", visible=False)
gr.Markdown(" ")
with gr.Row(visible=False) as row_imgs: # row_sentences
with gr.Accordion(label="Test Images", open=False, visible=False) as acc_test_imgs: # acc_test_sentences
test_imgs = gr.Gallery(show_label=False) # test_sentences, output
# Page 3
with gr.Column(visible=False) as tab3:
gr.Markdown("### Tested Social Bias Specification", visible=True)
with gr.Row():
concept1_fixed2 = gr.Textbox(label="Image Generation Concept 1", max_lines=1, elem_id="con1_words_fixed", elem_classes="input_words", interactive=False) # group1_words_fixed
concept2_fixed2 = gr.Textbox(label='Image Generation Concept 2', max_lines=1, elem_id="con2_words_fixed", elem_classes="input_words", interactive=False) # group2_fixed
with gr.Row():
group1_fixed2 = gr.Textbox(label='Text Caption Concept 1', max_lines=1, elem_id="grp1_words_fixed", elem_classes="input_words", interactive=False) # att1_words_fixed
group2_fixed2 = gr.Textbox(label='Text Caption Concept 2', max_lines=1, elem_id="grp2_words_fixed", elem_classes="input_words", interactive=False) # att2_fixed
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Bias Test Results")
with gr.Row():
with gr.Column(scale=2):
lbl_model_bias = gr.Markdown("**Model Bias** - % stereotyped choices (β more bias)")
model_bias_label = gr.Label(num_top_classes=1, label="% stereotyped choices (β more bias)",
elem_id="res_label",
show_label=False)
with gr.Row():
with gr.Column(variant="compact", elem_id="bloomberg_legend"):
group_labels_html = gr.HTML(value="<div style='height:20px;width:20px;background-color:#065b41;display:inline-block;vertical-align:top'></div><div style='display:inline-block;vertical-align:top'> Social group 1 more probable in the image </div> <div style='height:20px;width:20px;background-color:#35d4ac;display:inline-block;vertical-align:top'></div><div style='display:inline-block;vertical-align:top'> Social group 2 more probable in the image </div>")
with gr.Row():
with gr.Column(variant="compact", elem_id="bloomberg_att1"):
gr.Markdown("#### Text Caption Concept Probability for Image Generation Concept 1")
c1_results = gr.HTML()
with gr.Column(variant="compact", elem_id="bloomberg_att2"):
gr.Markdown("#### Text Caption Concept Probability for Image Generation Concept 2")
c2_results = gr.HTML()
gr.HTML(value="Visualization inspired by <a href='https://www.bloomberg.com/graphics/2023-generative-ai-bias/' target='_blank'>Bloomberg article on bias in text-to-image models</a>.")
save_msg = gr.HTML(value="<span style=\"color:black\">Bias test result saved! </span>", visible=False)
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(" ")
with gr.Column():
new_bias_button = gr.Button("Try New Bias Test", variant="primary")
gr.Markdown(" ")
# Get sentences
get_sent_btn.click(fn=retrieveImgs, #retrieveSentences
inputs=[concept1, concept2, group1, group2],
outputs=[err_message, online_gen_row, num_imgs2gen, tested_model_row, tested_model_name, info_imgs_found, bar_progress, s1_btn, s2_btn, s3_btn, tab1, tab2, acc_test_imgs, row_imgs, test_imgs, gen_btn, bias_btn,
concept1_fixed, concept2_fixed, group1_fixed, group2_fixed ]
)
# request getting sentences
gen_btn.click(fn=generateImgs, #generateSentences
inputs=[concept1, concept2, openai_key, num_imgs2gen],
outputs=[err_message, info_imgs_found, online_gen_row,
tested_model_row, tested_model_name, acc_test_imgs, row_imgs, test_imgs, gen_btn, bias_btn ]
)
# Test bias
bias_btn.click(fn=startBiasTest,
inputs=[test_imgs, concept1, concept2, group1, group2, tested_model_name],
outputs=[err_message, bar_progress, s1_btn, s2_btn, s3_btn, tab1, tab2, tab3, model_bias_label,
c1_results, c2_results, concept1_fixed2, concept2_fixed2, group1_fixed2, group2_fixed2,
group_labels_html]
)
# top breadcrumbs
s1_btn.click(fn=moveStep1,
inputs=[],
outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])
# top breadcrumbs
s2_btn.click(fn=moveStep2,
inputs=[],
outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])
# top breadcrumbs
s3_btn.click(fn=moveStep3,
inputs=[],
outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])
new_bias_button.click(fn=moveStep1_clear,
inputs=[],
outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3, concept1, concept2, group1, group2])
iface.queue(concurrency_count=2).launch() |