Spaces:
Sleeping
Sleeping
from flask import Flask, request, jsonify | |
from transformers import ViTFeatureExtractor, ViTForImageClassification | |
from PIL import Image | |
import requests | |
import logging | |
print("Loading models...") | |
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch32-384') | |
model = ViTForImageClassification.from_pretrained('google/vit-base-patch32-384') | |
print("Starting webapp...") | |
app = Flask(__name__) | |
log = logging.getLogger('werkzeug') | |
log.disabled = True | |
app.logger.disabled = True | |
print("Ready") | |
def hello_world(): | |
global feature_extractor, model | |
url = request.args.get('url') | |
if url is None: | |
return jsonify(error="Url is required", url=None, classes=[]) | |
image = Image.open(requests.get(url, stream=True).raw) | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# model predicts one of the 1000 ImageNet classes | |
predicted_class_idx = logits.argmax(-1).item() | |
return jsonify(url=url, classes=model.config.id2label[predicted_class_idx]) |