import gradio as gr import requests import subprocess import os import torch from huggingface_hub import whoami from huggingface_hub import HfApi from huggingface_hub import login import random import time api=HfApi() REPO_TYPES = ["model", "dataset", "space"] def duplicate(source_url_model, source_url_vae, dst_repo, token, new_name, dst_repo_path, repo_type): try: _ = whoami(token) # ^ this will throw if token is invalid # make sure the user fills out the other required paths. if not dst_repo_path[len(dst_repo_path)-1] == '/': raise Exception("Your destination path *must* end with a /") if not source_url_model: raise Exception("You haven't chosen a model file to download!") if not source_url_vae: raise Exception("You haven't chosen a VAE file to download!") if not dst_repo: raise Exception("You haven't chosen a repo to download to") login(token=token) # keep things separate, partly in case people download different files with same name (`download.zip`). Especially, it also allows saving filename to work dir="/home/user/apps/downloads/"+str(int(time.time()))+str(random.getrandbits(8))+"/" subprocess.check_call([r"mkdir","-p",dir]) subprocess.check_call([r"aria2c","-x16","--split=16","-o","source.ckpt",source_url_model,"--dir="+dir]) subprocess.check_call([r"aria2c","-x16","--split=16","-o","vae.ckpt",source_url_vae,"--dir="+dir]) #USE AT YOUR OWN RISK #local path to runwayML SD 1.5 checkpoint (https://huggingface.co/runwayml/stable-diffusion-v1-5) ckpt_15 = dir+"source.ckpt" #local path to StabilityAI finetuned autoencoder (https://huggingface.co/stabilityai/sd-vae-ft-mse) ckpt_vae = dir+"vae.ckpt" #path to save merged model to ckpt_out = dir+"source_vae.ckpt" pl_sd = torch.load(ckpt_15, map_location="cpu") sd = pl_sd["state_dict"] over_sd = torch.load(ckpt_vae,map_location="cpu")["state_dict"] sdk = sd.keys() for key in over_sd.keys(): if "first_stage_model."+key in sdk: sd["first_stage_model."+key] = over_sd[key] print(key,"overwritten") torch.save(pl_sd,ckpt_out) if new_name: dst_repo_path=dst_repo_path else: dst_repo_path=dst_repo_path+"model+vae.ckpt" api.upload_file( path_or_fileobj=dir+"source_vae.ckpt", path_in_repo=dst_repo_path, repo_id=dst_repo, repo_type=repo_type ) # now clean up os.remove(dir+files[0]) os.rmdir(dir) match repo_type: case "space": repo_url=f"https://hf.co/spaces/{dst_repo}" case "dataset": repo_url=f"https://hf.co/datasets/{dst_repo}" case "model": repo_url=f"https://hf.co/{dst_repo}" return ( f'Find your repo here', "sp.jpg", ) except Exception as e: blames=["grandma","my boss","your boss","God","you","you. It's *all* your fault.","the pope"] blameweights=(1,1,1,1,4,2,1) excuses=["I blame it all on "+random.choices(blames,weights=blameweights)[0],"It's my fault, sorry.","I did it on purpose.","That file doesn't want to be downloaded.","You nincompoop!"] excusesweights=(12,1,1,2,3) excuse=random.choices(excuses,weights=excusesweights)[0] return ( f""" ### Error 😢😢😢 {e} """ + excuse+"", None, ) interface = gr.Interface( fn=duplicate, inputs=[ gr.Textbox(placeholder="Source URL for model (e.g. civitai.com/api/download/models/4324322534)"), gr.Textbox(placeholder="Source URL for VAE (e.g. civitai.com/api/download/models/4324322534)"), gr.Textbox(placeholder="Destination repository (e.g. osanseviero/dst)"), gr.Textbox(placeholder="Write access token", type="password"), gr.Textbox(placeholder="Post-download name of your file, if you want it changed (e.g. stupidmodel_stupidvae.safetensors)"), gr.Textbox(placeholder="Destination for your file within your repo. Don't include the filename, end path with a / (e.g. /models/Stable-diffusion/)"), gr.Dropdown(choices=REPO_TYPES, value="model"), ], outputs=[ gr.Markdown(label="output"), gr.Image(show_label=False), ], title="Merge a VAE with a model!", description="Merge a VAE with your model, and export to your Hugging Face repository! You need to specify a write token obtained in https://hf.co/settings/tokens. This Space is a an experimental demo. CKPT format only; I just ripped off someone else's script, I have no idea how this works...", article="
credit to Quasimodo's script
Find your write token at token settings
", allow_flagging="never", live=False, ) interface.launch(enable_queue=True)