AdBind / Zocket_ImageBind.py
Vidushee's picture
Upload 14 files
d41e857 verified
raw
history blame
1.55 kB
from imagebind import data
import torch
from imagebind.models import imagebind_model
from imagebind.models.imagebind_model import ModalityType
import gradio as gr
# command = "pip install git+https://github.com/facebookresearch/pytorchvideo.git@28fe037d212663c6a24f373b94cc5d478c8c1a1d timm==0.6.7 ftfy regex einops fvcore decord==0.6.0"
# process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)
# process.wait()
# print(process.returncode) # should print 0 if installation was successful
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# Instantiate model
model = imagebind_model.imagebind_huge(pretrained=True)
model.eval()
model.to(device)
text_list = ["An Advertisement(branding, text, promotions, lifestyle depiction, contextual cues, and visual composition)","Not an Advertisement"]
image_paths = []
with gr.Blocks() as demo:
image = gr.File()
image_paths.append(image)
gr.Markdown(
"""
Zocket ImageBind made AdBind
""")
inputs = {
ModalityType.TEXT: data.load_and_transform_text(text_list, device),
ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
}
with torch.no_grad():
embeddings = model(inputs)
print(
"Vision x Text: ",
torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1),
)
out = f"""Output = {torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1)}"""
gr.Markdown(out)
demo.launch()
# Load data