File size: 30,539 Bytes
224a33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
from __future__ import annotations

import contextlib
from functools import partial

import attr
import einops
import torch
import torch.nn as nn
from attr import dataclass

from esm.layers.regression_head import RegressionHead
from esm.layers.transformer_stack import TransformerStack
from esm.models.function_decoder import FunctionTokenDecoder
from esm.models.vqvae import (
    StructureTokenDecoder,
    StructureTokenEncoder,
)
from esm.sdk.api import (
    ESM3InferenceClient,
    ESMProtein,
    ESMProteinTensor,
    ForwardAndSampleOutput,
    ForwardConfig,
    ForwardOutput,
    ForwardTrackData,
    GenerationConfig,
    ProteinType,
    ReturnLogitsConfig,
    SamplingConfig,
    SamplingTrackConfig,
)
from esm.tokenization import get_model_tokenizers
from esm.utils import encoding
from esm.utils.constants import esm3 as C
from esm.utils.constants.models import ESM3_OPEN_SMALL
from esm.utils.decoding import decode_protein_tensor
from esm.utils.generation import (
    iterative_sampling_raw,
    iterative_sampling_tokens,
)
from esm.utils.misc import rbf
from esm.utils.sampling import (
    get_default_sampling_config,
    sample_function_logits,
    sample_logits,
    sample_residue_annotation_logits,
)
from esm.utils.structure.affine3d import (
    build_affine3d_from_coordinates,
)


@dataclass
class ESMOutput:
    sequence_logits: torch.Tensor
    structure_logits: torch.Tensor
    secondary_structure_logits: torch.Tensor
    sasa_logits: torch.Tensor
    function_logits: torch.Tensor
    residue_logits: torch.Tensor
    embeddings: torch.Tensor


class EncodeInputs(nn.Module):
    """
    Module for encoding input features in the ESM-3 model.

    Args:
        d_model (int): The dimensionality of the model's hidden states.
    """

    def __init__(self, d_model: int):
        super().__init__()

        # Sequence
        self.sequence_embed = nn.Embedding(64, d_model)
        # Mandatory information
        self.plddt_projection = nn.Linear(16, d_model)
        self.structure_per_res_plddt_projection = nn.Linear(16, d_model)

        # Structure
        self.structure_tokens_embed = nn.Embedding(4096 + 5, d_model)

        # "Structural" features
        self.ss8_embed = nn.Embedding(8 + 3, d_model)
        self.sasa_embed = nn.Embedding(16 + 3, d_model)

        # "Functional" features
        self.function_embed = nn.ModuleList(
            [nn.Embedding(260, d_model // 8, padding_idx=0) for _ in range(8)]
        )

        self.residue_embed = nn.EmbeddingBag(1478, d_model, mode="sum", padding_idx=0)

    def forward(
        self,
        sequence_tokens: torch.Tensor,
        structure_tokens: torch.Tensor,
        average_plddt: torch.Tensor,
        per_res_plddt: torch.Tensor,
        ss8_tokens: torch.Tensor,
        sasa_tokens: torch.Tensor,
        function_tokens: torch.Tensor,
        residue_annotation_tokens: torch.Tensor,
    ) -> torch.Tensor:
        sequence_embed = self.sequence_embed(sequence_tokens)

        rbf_16_fn = partial(rbf, v_min=0.0, v_max=1.0, n_bins=16)
        # the `masked_fill(padding_mask.unsqueeze(2), 0)` for the two below is unnecessary
        # as pad tokens never even interact with the "real" tokens (due to sequence_id)
        plddt_embed = self.plddt_projection(rbf_16_fn(average_plddt))
        structure_per_res_plddt = self.structure_per_res_plddt_projection(
            rbf_16_fn(per_res_plddt)
        )

        # Structure + "structural features" embeds
        structure_embed = self.structure_tokens_embed(structure_tokens)
        ss8_embed = self.ss8_embed(ss8_tokens)
        sasa_embed = self.sasa_embed(sasa_tokens)

        # "Functional" features embeds
        function_embed = torch.cat(
            [
                embed_fn(funcs)
                for embed_fn, funcs in zip(
                    self.function_embed, function_tokens.unbind(-1)
                )
            ],
            -1,
        )

        # Residue embeds
        B, L, N = residue_annotation_tokens.shape
        residue_embed = self.residue_embed(
            einops.rearrange(
                residue_annotation_tokens, "B L N -> (B L) N", B=B, L=L, N=N
            )
        )
        residue_embed = einops.rearrange(residue_embed, "(B L) D -> B L D", B=B, L=L)

        return (
            sequence_embed
            + plddt_embed
            + structure_per_res_plddt
            + structure_embed
            + ss8_embed
            + sasa_embed
            + function_embed
            + residue_embed
        )


class OutputHeads(nn.Module):
    def __init__(self, d_model: int):
        super().__init__()
        self.sequence_head = RegressionHead(d_model, 64)
        self.structure_head = RegressionHead(d_model, 4096)
        self.ss8_head = RegressionHead(d_model, 8 + 3)
        self.sasa_head = RegressionHead(d_model, 16 + 3)
        self.function_head = RegressionHead(d_model, 260 * 8)
        self.residue_head = RegressionHead(d_model, 1478)

    def forward(self, x: torch.Tensor, embed: torch.Tensor) -> ESMOutput:
        sequence_logits = self.sequence_head(x)
        structure_logits = self.structure_head(x)
        secondary_structure_logits = self.ss8_head(x)
        sasa_logits = self.sasa_head(x)
        function_logits = self.function_head(x)
        function_logits = einops.rearrange(
            function_logits,
            "... (k v) -> ... k v",
            k=8,
        )

        residue_logits = self.residue_head(x)

        return ESMOutput(
            sequence_logits=sequence_logits,
            structure_logits=structure_logits,
            secondary_structure_logits=secondary_structure_logits,
            sasa_logits=sasa_logits,
            function_logits=function_logits,
            residue_logits=residue_logits,
            embeddings=embed,
        )


class ESM3(nn.Module, ESM3InferenceClient):
    """
    ESM3 model implementation.

    Args:
        d_model (int): The dimensionality of the input and output feature vectors.
        n_heads (int): The number of attention heads in the transformer layers.
        v_heads (int): The number of attention heads in the variational transformer layers.
        n_layers (int): The number of transformer layers.
    """

    def __init__(
        self,
        d_model: int,
        n_heads: int,
        v_heads: int,
        n_layers: int,
        structure_encoder_name: str,
        structure_decoder_name: str,
        function_decoder_name: str,
    ):
        super().__init__()
        self.encoder = EncodeInputs(d_model)
        self.transformer = TransformerStack(
            d_model,
            n_heads,
            v_heads,
            n_layers,
            mask_and_zero_frameless=True,
        )
        self.output_heads = OutputHeads(d_model)

        self.structure_encoder_name = structure_encoder_name
        self.structure_decoder_name = structure_decoder_name
        self.function_decoder_name = function_decoder_name

        self.structure_encoder: StructureTokenEncoder | None = None  # type: ignore
        self.structure_decoder: StructureTokenDecoder | None = None  # type: ignore
        self.function_decoder: FunctionTokenDecoder | None = None  # type: ignore

        self.tokenizers = get_model_tokenizers(ESM3_OPEN_SMALL)

    @classmethod
    def from_pretrained(
        cls,
        model_name: str = ESM3_OPEN_SMALL,
        device: torch.device | str = "cpu",
    ) -> ESM3:
        from esm.pretrained import load_local_model
        if model_name not in [ESM3_OPEN_SMALL]:
            raise ValueError(f"Model name {model_name} is not a valid ESM3 model name.")
        model: ESM3 = load_local_model(model_name, device=device)  # type: ignore
        return model

    def get_structure_token_encoder(self) -> StructureTokenEncoder:
        if self.structure_encoder is None:
            self.structure_encoder = self.load_model(self.structure_encoder_name)  # type: ignore
        return self.structure_encoder  # type: ignore

    def get_structure_token_decoder(self) -> StructureTokenDecoder:
        if self.structure_decoder is None:
            self.structure_decoder = self.load_model(self.structure_decoder_name)  # type: ignore
        return self.structure_decoder  # type: ignore

    def get_function_token_decoder(self) -> FunctionTokenDecoder:
        if self.function_decoder is None:
            self.function_decoder = self.load_model(self.function_decoder_name)  # type: ignore
        return self.function_decoder  # type: ignore

    def load_model(self, model_name: str):
        # Lazy import from pretrained
        from esm.pretrained import load_local_model

        return load_local_model(model_name, device=next(self.parameters()).device)

    def forward(
        self,
        *,
        sequence_tokens: torch.Tensor | None = None,
        structure_tokens: torch.Tensor | None = None,
        ss8_tokens: torch.Tensor | None = None,
        sasa_tokens: torch.Tensor | None = None,
        function_tokens: torch.Tensor | None = None,
        residue_annotation_tokens: torch.Tensor | None = None,
        average_plddt: torch.Tensor | None = None,
        per_res_plddt: torch.Tensor | None = None,
        structure_coords: torch.Tensor | None = None,
        chain_id: torch.Tensor | None = None,
        sequence_id: torch.Tensor | None = None,
    ) -> ESMOutput:
        """
        Performs forward pass through the ESM3 model. Check utils to see how to tokenize inputs from raw data.

        Args:
            sequence_tokens (torch.Tensor, optional): The amino acid tokens.
            structure_tokens (torch.Tensor, optional): The structure tokens.
            ss8_tokens (torch.Tensor, optional): The secondary structure tokens.
            sasa_tokens (torch.Tensor, optional): The solvent accessible surface area tokens.
            function_tokens (torch.Tensor, optional): The function tokens.
            residue_annotation_tokens (torch.Tensor, optional): The residue annotation tokens.
            average_plddt (torch.Tensor, optional): The average plddt across the entire sequence.
            per_res_plddt (torch.Tensor, optional): The per residue plddt, if you want to specify exact plddts, use this,
                otherwise, use average_plddt.
            structure_coords (torch.Tensor, optional): The structure coordinates, in the form of (B, L, 3, 3).
            chain_id (torch.Tensor, optional): The chain ID
            sequence_id (torch.Tensor, optional): The sequence ID.

        Returns:
            ESMOutput: The output of the ESM3 model.

        Raises:
            ValueError: If at least one of the inputs is None.

        """
        # Reasonable defaults:
        try:
            L, device = next(
                (x.shape[1], x.device)
                for x in [
                    sequence_tokens,
                    structure_tokens,
                    ss8_tokens,
                    sasa_tokens,
                    structure_coords,
                    function_tokens,
                    residue_annotation_tokens,
                ]
                if x is not None
            )
        except StopIteration:
            raise ValueError("At least one of the inputs must be non-None")

        t = self.tokenizers
        defaults = lambda x, tok: (
            torch.full((1, L), tok, dtype=torch.long, device=device) if x is None else x
        )
        sequence_tokens = defaults(sequence_tokens, t.sequence.mask_token_id)
        ss8_tokens = defaults(ss8_tokens, C.SS8_UNK_TOKEN)
        sasa_tokens = defaults(sasa_tokens, C.SASA_UNK_TOKEN)
        average_plddt = defaults(average_plddt, 1).float()
        per_res_plddt = defaults(per_res_plddt, 0).float()
        chain_id = defaults(chain_id, 0)
        sequence_id = defaults(sequence_id, 0)

        if residue_annotation_tokens is None:
            residue_annotation_tokens = torch.full(
                (1, L, 16), C.RESIDUE_PAD_TOKEN, dtype=torch.long, device=device
            )

        if function_tokens is None:
            function_tokens = torch.full(
                (1, L, 8), C.INTERPRO_PAD_TOKEN, dtype=torch.long, device=device
            )

        if structure_coords is None:
            structure_coords = torch.full(
                (1, L, 3, 3), float("nan"), dtype=torch.float, device=device
            )

        structure_coords = structure_coords[
            ..., :3, :
        ]  # In case we pass in an atom14 or atom37 repr
        affine, affine_mask = build_affine3d_from_coordinates(structure_coords)

        if structure_tokens is None:
            _, structure_tokens = self.get_structure_token_encoder().encode(
                structure_coords
            )
        assert structure_tokens is not None
        structure_tokens = (
            structure_tokens.masked_fill(
                (structure_tokens == -1) | ~affine_mask, C.STRUCTURE_MASK_TOKEN
            )
            .masked_fill(sequence_tokens == C.SEQUENCE_BOS_TOKEN, C.STRUCTURE_BOS_TOKEN)
            .masked_fill(sequence_tokens == C.SEQUENCE_PAD_TOKEN, C.STRUCTURE_PAD_TOKEN)
            .masked_fill(sequence_tokens == C.SEQUENCE_EOS_TOKEN, C.STRUCTURE_EOS_TOKEN)
            .masked_fill(
                sequence_tokens == C.SEQUENCE_CHAINBREAK_TOKEN,
                C.STRUCTURE_CHAINBREAK_TOKEN,
            )
        )

        x = self.encoder(
            sequence_tokens,
            structure_tokens,
            average_plddt,
            per_res_plddt,
            ss8_tokens,
            sasa_tokens,
            function_tokens,
            residue_annotation_tokens,
        )
        x, embedding = self.transformer(x, sequence_id, affine, affine_mask, chain_id)
        return self.output_heads(x, embedding)

    # The following methods are for the ESM3InferenceClient interface
    def generate(self, input: ProteinType, config: GenerationConfig) -> ProteinType:
        if isinstance(input, ESMProtein):
            return iterative_sampling_raw(self, input, config)
        elif isinstance(input, ESMProteinTensor):
            return iterative_sampling_tokens(self, input, config, self.tokenizers)
        else:
            raise ValueError("Input must be an ESMProtein or ESMProteinTensor")

    def encode(self, input: ESMProtein) -> ESMProteinTensor:
        input = attr.evolve(input)  # Make a copy

        sequence_tokens = None
        structure_tokens = None
        secondary_structure_tokens = None
        sasa_tokens = None
        function_tokens = None
        residue_annotation_tokens = None

        coordinates = None

        if input.sequence is not None:
            sequence_tokens = encoding.tokenize_sequence(
                input.sequence, self.tokenizers.sequence, add_special_tokens=True
            )
        if input.secondary_structure is not None:
            secondary_structure_tokens = encoding.tokenize_secondary_structure(
                input.secondary_structure,
                self.tokenizers.secondary_structure,
                add_special_tokens=True,
            )
        if input.sasa is not None:
            sasa_tokens = encoding.tokenize_sasa(
                input.sasa, self.tokenizers.sasa, add_special_tokens=True
            )

        # Infer input length
        sequence_length = -1
        if sequence_tokens is not None:
            sequence_length = len(sequence_tokens)
        elif secondary_structure_tokens is not None:
            sequence_length = len(secondary_structure_tokens)
        elif sasa_tokens is not None:
            sequence_length = len(sasa_tokens)

        # Try to infer input length from structure data
        if input.coordinates is not None:
            coordinates, _, structure_tokens = encoding.tokenize_structure(
                input.coordinates,
                self.get_structure_token_encoder(),
                structure_tokenizer=self.tokenizers.structure,
                reference_sequence=input.sequence or "",
                add_special_tokens=True,
            )
            if sequence_length == -1:
                sequence_length = len(structure_tokens)

        if sequence_length == -1:
            raise ValueError(
                "Cannot infer input length from input data. Please provide one of: sequence, structure, secondary_structure, sasa.\n"
                "To condition on sequence length only, use ESM3LocalInferenceClient.get_default_sequence(sequence_length) to generate a default sequence input."
            )

        # Function and Residue annotations
        if input.function_annotations is not None:
            if input.sequence is None:
                reference_sequence = encoding.get_default_sequence(sequence_length - 2)
            else:
                reference_sequence = input.sequence
            (
                function_tokens,
                residue_annotation_tokens,
            ) = encoding.tokenize_function_annotations(
                input.function_annotations,
                reference_sequence=reference_sequence,
                function_tokenizer=self.tokenizers.function,
                residue_annotation_tokenizer=self.tokenizers.residue_annotations,
                add_special_tokens=True,
            )

        return ESMProteinTensor(
            sequence=sequence_tokens,
            structure=structure_tokens,
            secondary_structure=secondary_structure_tokens,
            sasa=sasa_tokens,
            function=function_tokens,
            residue_annotations=residue_annotation_tokens,
            coordinates=coordinates,
        ).to(next(self.parameters()).device)

    def decode(
        self,
        input: ESMProteinTensor,
    ) -> ESMProtein:
        return decode_protein_tensor(
            input=input,
            tokenizers=self.tokenizers,
            structure_token_decoder=self.get_structure_token_decoder(),
            function_token_decoder=self.get_function_token_decoder(),
        )

    def _forward(
        self, input: ESMProteinTensor, config: ForwardConfig = ForwardConfig()
    ) -> ForwardOutput:
        # Default plddt conditioning for inference. 1s where coordinates are provided.
        if input.coordinates is None:
            per_res_plddt = None
        else:
            # 1.0 if all coordinates at specific indices have valid non-nan values.
            per_res_plddt = input.coordinates.isfinite().all(dim=-1).any(dim=-1).float()

        with torch.no_grad() if self.eval else contextlib.nullcontext():
            output = self.forward(
                sequence_tokens=input.sequence,
                structure_tokens=input.structure,
                ss8_tokens=input.secondary_structure,
                sasa_tokens=input.sasa,
                function_tokens=input.function,
                residue_annotation_tokens=input.residue_annotations,
                average_plddt=torch.tensor(1.0, device=input.device),
                per_res_plddt=per_res_plddt,
                structure_coords=input.coordinates,
                chain_id=None,
                sequence_id=None,
            )

            if config.return_logits:
                logits = ForwardTrackData(
                    sequence=output.sequence_logits,
                    structure=output.structure_logits,
                    secondary_structure=output.secondary_structure_logits,
                    sasa=output.sasa_logits,
                    function=output.function_logits,
                )
            else:
                logits = None

            return ForwardOutput(
                logits=logits,
                residue_annotation_logits=output.residue_logits,
                embeddings=output.embeddings if config.return_embeddings else None,
            )

    def forward_and_sample(
        self, input: ESMProteinTensor, sampling_configuration: SamplingConfig
    ) -> ForwardAndSampleOutput:
        protein_tensor = attr.evolve(input)  # Make a copy

        def maybe_clone(x: torch.Tensor | None) -> torch.Tensor | None:
            return x.clone() if x is not None else None

        device = next(self.parameters()).device

        sampling_config = sampling_configuration
        if sampling_config is None:
            sampling_config = get_default_sampling_config(self.tokenizers)

        # Initialize default values for missing tracks
        default_protein_tensor = ESMProteinTensor.empty(
            len(input) - 2, tokenizers=self.tokenizers, device=input.device
        )
        for track in attr.fields(ESMProteinTensor):
            if getattr(protein_tensor, track.name, None) is None:
                setattr(
                    protein_tensor,
                    track.name,
                    getattr(default_protein_tensor, track.name, None),
                )

        # Preprocessing
        sequence_length: int = -1
        for track in [
            "sequence",
            "structure",
            "secondary_structure",
            "sasa",
            "function",
            "residue_annotations",
        ]:
            input_tensor: torch.Tensor | None = getattr(protein_tensor, track, None)
            if input_tensor is not None:
                # Add batch dimension if necessary
                if track in ["sequence", "structure", "secondary_structure", "sasa"]:
                    if len(input_tensor.size()) == 1:
                        input_tensor = input_tensor.unsqueeze(0)  # (L,) -> (1, L)
                elif track in ["function", "residue_annotations"]:
                    if len(input_tensor.size()) == 2:
                        input_tensor = input_tensor.unsqueeze(0)  # (L, O) -> (1, L, O)

                # Check length consistency
                if sequence_length == -1:
                    sequence_length = input_tensor.size(1)
                else:
                    if input_tensor.size(1) != sequence_length:
                        raise ValueError(
                            f"Length mismatch for track {track}. Expected {sequence_length}, got {input_tensor.size(1)}"
                        )

                # Move input tensor to model device
                input_tensor = input_tensor.to(device)
                setattr(protein_tensor, track, input_tensor)

        if protein_tensor.coordinates is not None:
            coordinates = protein_tensor.coordinates
            if len(coordinates.size()) == 3:
                coordinates = coordinates.unsqueeze(0)
            protein_tensor.coordinates = coordinates.to(device)
            sequence_length = coordinates.size(1)

        if sequence_length == -1:
            raise ValueError("No input data provided")

        # Forward pass
        forward_output = self._forward(
            protein_tensor,
            ForwardConfig(
                ReturnLogitsConfig(
                    sequence=True,
                    structure=True,
                    secondary_structure=True,
                    sasa=True,
                    function=True,
                    residue_annotations=True,
                ),
                return_embeddings=True,
            ),
        )

        # Sampling
        tokens_dir = {}
        track_sampling_metadata_dir: dict[str, dict | None] = {}
        for track in ["sequence", "structure", "secondary_structure", "sasa"]:
            config = getattr(sampling_config, track)
            if config is None:
                tokens_dir[track] = maybe_clone(getattr(input, track))
                continue
            sampling_metadata = self._sample_track(
                logits=getattr(forward_output.logits, track)[0, ...],
                tokens=getattr(protein_tensor, track)[0, ...],
                sampling_track_config=config,
                mask_idx=getattr(self.tokenizers, track).mask_token_id,
            )
            tokens_dir[track] = sampling_metadata.pop("sampled_tokens")  # (L,)
            track_sampling_metadata_dir[track] = sampling_metadata

        # Sample function and residue annotations separately
        config = getattr(sampling_config, "function")
        if config is None:
            tokens_dir["function"] = maybe_clone(getattr(input, "function"))
            tokens_dir["residue_annotations"] = maybe_clone(
                getattr(input, "residue_annotations")
            )
        else:
            sampling_metadata = self._sample_function_track(
                tokens=getattr(protein_tensor, "function")[0, ...],
                logits=getattr(forward_output.logits, "function")[0, ...],
                sampling_track_config=config,
            )
            tokens_dir["function"] = sampling_metadata.pop("sampled_tokens")  # (L, D)
            track_sampling_metadata_dir["function"] = sampling_metadata

            sampled_tokens, _ = sample_residue_annotation_logits(
                logits=forward_output.residue_annotation_logits[0, ...]  # type: ignore
            )
            tokens_dir["residue_annotations"] = sampled_tokens  # (L, MAX_R)

        # Format output
        forward_and_sample_output_dir = {}
        forward_and_sample_output_dir["protein_tensor"] = ESMProteinTensor(**tokens_dir)
        for property in [
            "entropy",
            "prob",
            "logprob",
            "top_prob",
            "topk_logprob",
            "topk_tokens",
        ]:
            is_all_none = True
            forward_track_data_dir = {}
            for track in track_sampling_metadata_dir.keys():
                values = track_sampling_metadata_dir[track]
                if values is not None and values.get(property, None) is not None:
                    forward_track_data_dir[track] = values.get(property, None)
                    is_all_none = False
            if not is_all_none:
                forward_and_sample_output_dir[property] = ForwardTrackData(
                    **forward_track_data_dir
                )
            else:
                forward_and_sample_output_dir[property] = None

        perres_embed = (
            forward_output.embeddings[0]  # type: ignore
            if sampling_configuration.return_per_residue_embeddings
            else None
        )
        mean_embedding = (
            forward_output.embeddings[0].mean(1)  # type: ignore
            if sampling_configuration.return_per_residue_embeddings
            else None
        )

        return ForwardAndSampleOutput(
            per_residue_embedding=perres_embed,
            mean_embedding=mean_embedding,
            **forward_and_sample_output_dir,
        )

    def _sample_track(
        self,
        logits: torch.Tensor,
        tokens: torch.Tensor,
        sampling_track_config: SamplingTrackConfig,
        mask_idx: int,
    ) -> dict[str, torch.Tensor]:
        # Sample in all positions
        temperature = sampling_track_config.temperature
        sampled_tokens = sample_logits(
            logits, temperature=temperature, top_p=sampling_track_config.top_p
        )
        log_probs = logits.log_softmax(-1)

        # Do not sample at BOS and EOS tokens
        sampling_mask = torch.ones_like(tokens, dtype=torch.bool)  # (L, )
        sampling_mask[0] = False
        sampling_mask[-1] = False

        # Do not sample at special token positions but allow sampling at mask token
        special_minus_mask = list(set(sampling_track_config.invalid_ids) - {mask_idx})
        if len(special_minus_mask) > 0:
            special_tokens = torch.tensor(special_minus_mask, device=tokens.device)
            assert special_tokens.numel() > 0
            sampling_mask = sampling_mask & (
                tokens[..., None] != special_tokens[None, :]
            ).all(-1)

        # Keep only samples from masked positions (if specified)
        if sampling_track_config.only_sample_masked_tokens:
            masked_tokens = tokens == mask_idx
            sampling_mask = sampling_mask & masked_tokens
        sampled_tokens = torch.where(sampling_mask, sampled_tokens, tokens)

        return self._compute_track_metadata(
            sampled_tokens,
            log_probs,
            sampling_mask,
            top_k=sampling_track_config.topk_logprobs,
        )

    def _sample_function_track(
        self,
        tokens: torch.Tensor,
        logits: torch.Tensor,
        sampling_track_config: SamplingTrackConfig,
    ) -> dict[str, torch.Tensor]:
        # Do not sample at BOS and EOS tokens
        sampling_mask = torch.ones_like(tokens, dtype=torch.bool)
        sampling_mask[0] = False
        sampling_mask[-1] = False

        sampled_tokens, probs = sample_function_logits(
            logits,
            self.tokenizers.function,
            top_p=sampling_track_config.top_p,
            temperature=sampling_track_config.temperature,
        )

        if sampling_track_config.only_sample_masked_tokens:
            raise ValueError(
                "Sampling only masked tokens is undefined for function tokens."
            )

        sampled_tokens = torch.where(sampling_mask, sampled_tokens, tokens)  # (L, D)

        return self._compute_track_metadata(
            sampled_tokens,
            probs,
            sampling_mask,
            top_k=sampling_track_config.topk_logprobs,
        )

    @staticmethod
    def _compute_track_metadata(
        sampled_tokens: torch.Tensor,
        log_probs: torch.Tensor,
        sampling_mask: torch.Tensor,
        top_k: int,
    ) -> dict:
        probs = torch.exp(log_probs)  # (B, L)
        entropy = torch.distributions.Categorical(probs=probs).entropy()  # (B, L)

        # Only compute probabilities for sampled tokens
        sampled_logprob = torch.zeros_like(
            sampled_tokens, dtype=torch.float32
        )  # (B, L)
        sampled_tokens_valid = sampled_tokens[sampling_mask]
        sampled_log_probs_valid = log_probs[sampling_mask, sampled_tokens_valid]
        sampled_logprob[sampling_mask] = sampled_log_probs_valid

        # Calculate extra metadata
        sampled_prob = torch.exp(sampled_logprob)
        top_prob = torch.max(probs, dim=-1).values
        topk_logprobs, topk_tokens = torch.topk(log_probs, top_k, dim=-1)
        topk_logprobs = None if top_k == 0 else topk_logprobs
        topk_tokens = None if top_k == 0 else topk_tokens

        return {
            "entropy": entropy,
            "sampled_tokens": sampled_tokens,
            "prob": sampled_prob,
            "logprob": sampled_logprob,
            "top_prob": top_prob,
            "topk_logprob": topk_logprobs,
            "topk_tokens": topk_tokens,
        }