Spaces:
Running
Running
File size: 16,010 Bytes
224a33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import torch
import torch.nn as nn
from esm.layers.blocks import UnifiedTransformerBlock
from esm.layers.codebook import EMACodebook
from esm.layers.structure_proj import Dim6RotStructureHead
from esm.layers.transformer_stack import TransformerStack
from esm.utils.constants import esm3 as C
from esm.utils.misc import knn_graph
from esm.utils.structure.affine3d import (
Affine3D,
build_affine3d_from_coordinates,
)
from esm.utils.structure.predicted_aligned_error import (
compute_predicted_aligned_error,
compute_tm,
)
class RelativePositionEmbedding(nn.Module):
"""
Embedding layer for relative position embeddings. `bins` is the number of positions relative
to the query position that are considered before clipping. For instance, if `bins=10`, then
the relative position embedding will have 21 positions, [-10, 10].
"""
def __init__(self, bins, embedding_dim, init_std=0.02):
super().__init__()
self.bins = bins
self.embedding = torch.nn.Embedding(2 * bins + 2, embedding_dim)
self.embedding.weight.data.normal_(0, init_std)
def forward(self, query_residue_index, key_residue_index):
"""
Input:
query_residue_index: (B, ) tensor of source indices (dytpe=torch.long)
key_residue_index: (B, L) tensor of target indices (dytpe=torch.long)
Output:
embeddings: B x L x embedding_dim tensor of embeddings
"""
assert query_residue_index.dtype == torch.long
assert key_residue_index.dtype == torch.long
assert query_residue_index.ndim == 1
assert key_residue_index.ndim == 2
diff = key_residue_index - query_residue_index.unsqueeze(1)
diff = diff.clamp(-self.bins, self.bins)
diff = diff + self.bins + 1 # add 1 to adjust for padding index
output = self.embedding(diff)
return output
class PairwisePredictionHead(nn.Module):
def __init__(
self,
input_dim: int,
downproject_dim: int,
hidden_dim: int,
n_bins: int,
bias: bool = True,
pairwise_state_dim: int = 0,
):
super().__init__()
self.downproject = nn.Linear(input_dim, downproject_dim, bias=bias)
self.linear1 = nn.Linear(
downproject_dim + pairwise_state_dim, hidden_dim, bias=bias
)
self.activation_fn = nn.GELU()
self.norm = nn.LayerNorm(hidden_dim)
self.linear2 = nn.Linear(hidden_dim, n_bins, bias=bias)
def forward(self, x, pairwise: torch.Tensor | None = None):
"""
Args:
x: [B x L x D]
Output:
[B x L x L x K]
"""
x = self.downproject(x)
# Let x_i be a vector of size (B, D).
# Input is {x_1, ..., x_L} of size (B, L, D)
# Output is 2D where x_ij = cat([x_i * x_j, x_i - x_j])
q, k = x.chunk(2, dim=-1)
prod = q[:, None, :, :] * k[:, :, None, :]
diff = q[:, None, :, :] - k[:, :, None, :]
x_2d = [
prod,
diff,
]
if pairwise is not None:
x_2d.append(pairwise)
x = torch.cat(x_2d, dim=-1)
x = self.linear1(x)
x = self.activation_fn(x)
x = self.norm(x)
x = self.linear2(x)
return x
class RegressionHead(nn.Module):
def __init__(self, embed_dim: int, output_dim: int):
super().__init__()
self.dense = nn.Linear(embed_dim, embed_dim)
self.activation_fn = nn.GELU()
self.norm = nn.LayerNorm(embed_dim)
self.output = nn.Linear(embed_dim, output_dim)
def forward(self, features):
x = self.dense(features)
x = self.activation_fn(x)
x = self.norm(x)
x = self.output(x)
return x
class CategoricalMixture:
def __init__(self, param, bins=50, start=0, end=1):
# All tensors are of shape ..., bins.
self.logits = param
bins = torch.linspace(
start, end, bins + 1, device=self.logits.device, dtype=torch.float32
)
self.v_bins = (bins[:-1] + bins[1:]) / 2
def log_prob(self, true):
# Shapes are:
# self.probs: ... x bins
# true : ... (floating point # for target)
true_index = (
(true.unsqueeze(-1) - self.v_bins[[None] * true.ndim]).abs().argmin(-1)
)
nll = self.logits.log_softmax(-1)
return torch.take_along_dim(nll, true_index.unsqueeze(-1), dim=-1).squeeze(-1)
def mean(self):
return (
self.logits.to(self.v_bins.dtype).softmax(-1) @ self.v_bins.unsqueeze(1)
).squeeze(-1)
def median(self):
return self.v_bins[self.logits.max(-1).indices]
class GeometricEncoderStack(TransformerStack):
def __init__(self, d_model, n_heads, v_heads, n_layers):
super().__init__(d_model, n_heads, v_heads, 0)
self.blocks = nn.ModuleList(
[
UnifiedTransformerBlock(
d_model,
n_heads,
v_heads=v_heads,
use_geom_attn=True,
use_plain_attn=False,
expansion_ratio=4,
bias=True,
)
for i in range(n_layers)
]
)
self.norm = nn.Identity()
def batched_gather(data, inds, dim=0, no_batch_dims=0):
ranges = []
for i, s in enumerate(data.shape[:no_batch_dims]):
r = torch.arange(s)
r = r.view(*(*((1,) * i), -1, *((1,) * (len(inds.shape) - i - 1))))
ranges.append(r)
remaining_dims = [slice(None) for _ in range(len(data.shape) - no_batch_dims)]
remaining_dims[dim - no_batch_dims if dim >= 0 else dim] = inds
ranges.extend(remaining_dims)
return data[ranges]
def node_gather(s: torch.Tensor, edges: torch.Tensor) -> torch.Tensor:
return batched_gather(s.unsqueeze(-3), edges, -2, no_batch_dims=len(s.shape) - 1)
class StructureTokenEncoder(nn.Module):
def __init__(self, d_model, n_heads, v_heads, n_layers, d_out, n_codes):
super().__init__()
# We only support fully-geometric structure token encoders for now...
# setting n_layers_geom to something that's not n_layers won't work because
# sequence ID isn't supported fully in this repo for plain-old transformers
self.transformer = GeometricEncoderStack(d_model, n_heads, v_heads, n_layers)
self.pre_vq_proj = nn.Linear(d_model, d_out)
self.codebook = EMACodebook(n_codes, d_out)
self.relative_positional_embedding = RelativePositionEmbedding(
32, d_model, init_std=0.02
)
self.knn = 16
def encode_local_structure(
self,
coords: torch.Tensor,
affine: Affine3D,
attention_mask: torch.Tensor,
sequence_id: torch.Tensor | None,
affine_mask: torch.Tensor,
residue_index: torch.Tensor | None = None,
):
"""This function allows for a multi-layered encoder to encode tokens with a local receptive fields. The implementation is as follows:
1. Starting with (B, L) frames, we find the KNN in structure space. This now gives us (B, L, K) where the last dimension is the local
neighborhood of all (B, L) residues.
2. We reshape these frames to (B*L, K) so now we have a large batch of a bunch of local neighborhoods.
3. Pass the (B*L, K) local neighborhoods through a stack of geometric reasoning blocks, effectively getting all to all communication between
all frames in the local neighborhood.
4. This gives (B*L, K, d_model) embeddings, from which we need to get a single embedding per local neighborhood. We do this by simply
taking the embedding corresponding to the query node. This gives us (B*L, d_model) embeddings.
5. Reshape back to (B, L, d_model) embeddings
"""
assert coords.size(-1) == 3 and coords.size(-2) == 3, "need N, CA, C"
with torch.no_grad():
knn_edges, _ = self.find_knn_edges(
coords,
~attention_mask,
coord_mask=affine_mask,
sequence_id=sequence_id,
knn=self.knn,
)
B, L, E = knn_edges.shape
affine_tensor = affine.tensor # for easier manipulation
T_D = affine_tensor.size(-1)
knn_affine_tensor = node_gather(affine_tensor, knn_edges)
knn_affine_tensor = knn_affine_tensor.view(-1, E, T_D).contiguous()
affine = Affine3D.from_tensor(knn_affine_tensor)
knn_sequence_id = (
node_gather(sequence_id.unsqueeze(-1), knn_edges).view(-1, E)
if sequence_id is not None
else torch.zeros(L, E, dtype=torch.int64, device=coords.device)
)
knn_affine_mask = node_gather(affine_mask.unsqueeze(-1), knn_edges).view(
-1, E
)
knn_chain_id = torch.zeros(L, E, dtype=torch.int64, device=coords.device)
if residue_index is None:
res_idxs = knn_edges.view(-1, E)
else:
res_idxs = node_gather(residue_index.unsqueeze(-1), knn_edges).view(
-1, E
)
z = self.relative_positional_embedding(res_idxs[:, 0], res_idxs)
z, _ = self.transformer.forward(
x=z,
sequence_id=knn_sequence_id,
affine=affine,
affine_mask=knn_affine_mask,
chain_id=knn_chain_id,
)
# Unflatten the output and take the query node embedding, which will always be the first one because
# a node has distance 0 with itself and the KNN are sorted.
z = z.view(B, L, E, -1)
z = z[:, :, 0, :]
return z
@staticmethod
def find_knn_edges(
coords,
padding_mask,
coord_mask,
sequence_id: torch.Tensor | None = None,
knn: int | None = None,
) -> tuple:
assert knn is not None, "Must specify a non-null knn to find_knn_edges"
# Coords are N, CA, C
coords = coords.clone()
coords[~coord_mask] = 0
if sequence_id is None:
sequence_id = torch.zeros(
(coords.shape[0], coords.shape[1]), device=coords.device
).long()
with torch.no_grad(), torch.cuda.amp.autocast(enabled=False): # type: ignore
ca = coords[..., 1, :]
edges, edge_mask = knn_graph(
ca,
coord_mask,
padding_mask,
sequence_id,
no_knn=knn,
)
return edges, edge_mask
def encode(
self,
coords: torch.Tensor,
attention_mask: torch.Tensor | None = None,
sequence_id: torch.Tensor | None = None,
residue_index: torch.Tensor | None = None,
):
coords = coords[..., :3, :]
affine, affine_mask = build_affine3d_from_coordinates(coords=coords)
if attention_mask is None:
attention_mask = torch.ones_like(affine_mask, dtype=torch.bool)
attention_mask = attention_mask.bool()
if sequence_id is None:
sequence_id = torch.zeros_like(affine_mask, dtype=torch.int64)
z = self.encode_local_structure(
coords=coords,
affine=affine,
attention_mask=attention_mask,
sequence_id=sequence_id,
affine_mask=affine_mask,
residue_index=residue_index,
)
z = z.masked_fill(~affine_mask.unsqueeze(2), 0)
z = self.pre_vq_proj(z)
z_q, min_encoding_indices, _ = self.codebook(z)
return z_q, min_encoding_indices
class StructureTokenDecoder(nn.Module):
def __init__(
self,
d_model,
n_heads,
n_layers,
):
super().__init__()
self.decoder_channels = d_model
self.vqvae_codebook_size = C.VQVAE_CODEBOOK_SIZE
self.special_tokens = C.VQVAE_SPECIAL_TOKENS
self.max_pae_bin = C.VQVAE_MAX_PAE_BIN
self.embed = nn.Embedding(
self.vqvae_codebook_size + len(self.special_tokens), d_model
)
self.decoder_stack = TransformerStack(
d_model, n_heads, 1, n_layers, scale_residue=False, n_layers_geom=0
)
self.affine_output_projection = Dim6RotStructureHead(
self.decoder_channels, 10, predict_torsion_angles=False
)
direction_loss_bins = C.VQVAE_DIRECTION_LOSS_BINS
pae_bins = C.VQVAE_PAE_BINS
self.pairwise_bins = [
64, # distogram
direction_loss_bins * 6, # direction bins
pae_bins, # predicted aligned error
]
self.pairwise_classification_head = PairwisePredictionHead(
self.decoder_channels,
downproject_dim=128,
hidden_dim=128,
n_bins=sum(self.pairwise_bins),
bias=False,
)
plddt_bins = C.VQVAE_PLDDT_BINS
self.plddt_head = RegressionHead(
embed_dim=self.decoder_channels, output_dim=plddt_bins
)
def decode(
self,
structure_tokens: torch.Tensor,
attention_mask: torch.Tensor | None = None,
sequence_id: torch.Tensor | None = None,
):
if attention_mask is None:
attention_mask = torch.ones_like(structure_tokens, dtype=torch.bool)
attention_mask = attention_mask.bool()
if sequence_id is None:
sequence_id = torch.zeros_like(structure_tokens, dtype=torch.int64)
# not supported for now
chain_id = torch.zeros_like(structure_tokens, dtype=torch.int64)
# check that BOS and EOS are set correctly
assert (
structure_tokens[:, 0].eq(self.special_tokens["BOS"]).all()
), "First token in structure_tokens must be BOS token"
assert (
structure_tokens[
torch.arange(structure_tokens.shape[0]), attention_mask.sum(1) - 1
]
.eq(self.special_tokens["EOS"])
.all()
), "Last token in structure_tokens must be EOS token"
assert (
(structure_tokens < 0).sum() == 0
), "All structure tokens set to -1 should be replaced with BOS, EOS, PAD, or MASK tokens by now, but that isn't the case!"
x = self.embed(structure_tokens)
# !!! NOTE: Attention mask is actually unused here so watch out
x, _ = self.decoder_stack.forward(
x, affine=None, affine_mask=None, sequence_id=sequence_id, chain_id=chain_id
)
tensor7_affine, bb_pred = self.affine_output_projection(
x, affine=None, affine_mask=torch.zeros_like(attention_mask)
)
pae, ptm = None, None
pairwise_logits = self.pairwise_classification_head(x)
_, _, pae_logits = [
(o if o.numel() > 0 else None)
for o in pairwise_logits.split(self.pairwise_bins, dim=-1)
]
special_tokens_mask = structure_tokens >= min(self.special_tokens.values())
pae = compute_predicted_aligned_error(
pae_logits, # type: ignore
aa_mask=~special_tokens_mask,
sequence_id=sequence_id,
max_bin=self.max_pae_bin,
)
# This might be broken for chainbreak tokens? We might align to the chainbreak
ptm = compute_tm(
pae_logits, # type: ignore
aa_mask=~special_tokens_mask,
max_bin=self.max_pae_bin,
)
plddt_logits = self.plddt_head(x)
plddt_value = CategoricalMixture(
plddt_logits, bins=plddt_logits.shape[-1]
).mean()
return dict(
tensor7_affine=tensor7_affine,
bb_pred=bb_pred,
plddt=plddt_value,
ptm=ptm,
predicted_aligned_error=pae,
)
|