Spaces:
Running
Running
File size: 11,027 Bytes
224a33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
from __future__ import annotations
from abc import ABC
from typing import Sequence, TypeVar
import attr
import torch
from attr import define
from esm.tokenization import (
TokenizerCollectionProtocol,
get_model_tokenizers,
)
from esm.utils import encoding
from esm.utils.constants.models import ESM3_OPEN_SMALL
from esm.utils.structure.protein_chain import ProteinChain
from esm.utils.types import (
FunctionAnnotation,
PathLike,
PathOrBuffer,
)
## Basic Types
@define
class ESMProtein:
# Tracks
sequence: str | None = None
secondary_structure: str | None = None
sasa: list[float | str | None] | None = None
function_annotations: list[FunctionAnnotation] | None = None
coordinates: torch.Tensor | None = None
# Metrics
plddt: torch.Tensor | None = None
ptm: torch.Tensor | None = None
def __len__(self):
if self.sequence is not None:
return len(self.sequence)
elif self.secondary_structure is not None:
return len(self.secondary_structure)
elif self.sasa is not None:
return len(self.sasa)
elif self.coordinates is not None:
return self.coordinates.size(0)
else:
raise ValueError("No track to determine length from.")
@classmethod
def from_pdb(
cls,
path: PathOrBuffer,
chain_id: str = "detect",
id: str | None = None,
is_predicted: bool = False,
) -> ESMProtein:
protein_chain = ProteinChain.from_pdb(
path=path, chain_id=chain_id, id=id, is_predicted=is_predicted
)
return cls.from_protein_chain(protein_chain)
@classmethod
def from_protein_chain(
cls, protein_chain: ProteinChain, with_annotations: bool = False
) -> ESMProtein:
# By default, we don't annotate with DSSP / SASA, which are expensive.
# If mkdssp is installed, we can annotate with a flag.
if with_annotations:
return ESMProtein(
sequence=protein_chain.sequence,
secondary_structure=protein_chain.dssp().tolist(),
sasa=protein_chain.sasa().tolist(),
function_annotations=None,
coordinates=torch.tensor(protein_chain.atom37_positions),
)
else:
return ESMProtein(
sequence=protein_chain.sequence,
secondary_structure=None,
sasa=None,
function_annotations=None,
coordinates=torch.tensor(protein_chain.atom37_positions),
)
def to_pdb(self, pdb_path: PathLike) -> None:
protein_chain = self.to_protein_chain()
protein_chain.to_pdb(pdb_path)
def to_pdb_string(self) -> str:
protein_chain = self.to_protein_chain()
return protein_chain.to_pdb_string()
def to_protein_chain(self) -> ProteinChain:
if self.coordinates is None:
raise ValueError("Coordinates are required to convert to a ProteinChain.")
protein_chain = ProteinChain.from_atom37(
atom37_positions=self.coordinates.to("cpu").numpy(),
id=None,
sequence=self.sequence,
chain_id=None,
entity_id=None,
residue_index=None,
insertion_code=None,
confidence=None if self.plddt is None else self.plddt.detach().cpu().numpy(),
)
return protein_chain
@define
class ESMProteinTensor:
sequence: torch.Tensor | None = None
structure: torch.Tensor | None = None
secondary_structure: torch.Tensor | None = None
sasa: torch.Tensor | None = None
function: torch.Tensor | None = None
residue_annotations: torch.Tensor | None = None
coordinates: torch.Tensor | None = None
def __len__(self) -> int:
if self.sequence is not None:
return self.sequence.size(0)
elif self.structure is not None:
return self.structure.size(0)
elif self.secondary_structure is not None:
return self.secondary_structure.size(0)
elif self.sasa is not None:
return self.sasa.size(0)
elif self.coordinates is not None:
return self.coordinates.size(0)
else:
raise ValueError("No track to determine length from.")
@property
def device(self) -> str | torch.device:
device_ = None
tracks = [f.name for f in attr.fields(ESMProteinTensor)]
for track in tracks:
current_track: torch.Tensor | None = getattr(self, track)
if current_track is not None:
if device_ is not None and device_ != current_track.device:
raise ValueError(f"Inconsistent devices for track {track}.")
device_ = getattr(self, track).device
if device_ is None:
raise ValueError("No track to determine device from.")
return device_
def to(self, device: str | torch.device | None) -> ESMProteinTensor:
if device is None:
return self
device = torch.device(device)
def _to(name):
v = getattr(self, name)
if v is not None:
setattr(self, name, v.to(device))
for n in [
"sequence",
"structure",
"secondary_structure",
"sasa",
"function",
"residue_annotations",
"coordinates",
]:
_to(n)
return self
@classmethod
def empty(
cls,
length: int,
tokenizers: TokenizerCollectionProtocol | None = None,
device: torch.device | str = "cpu",
) -> ESMProteinTensor:
if tokenizers is None:
tokenizers = get_model_tokenizers(ESM3_OPEN_SMALL)
return ESMProteinTensor(
sequence=encoding.get_default_sequence_tokens(
length, tokenizers.sequence
).to(device),
structure=encoding.get_default_structure_tokens(
length, tokenizers.structure
).to(device),
secondary_structure=encoding.get_default_secondary_structure_tokens(
length, tokenizers.secondary_structure
).to(device),
sasa=encoding.get_default_sasa_tokens(length, tokenizers.sasa).to(device),
function=encoding.get_default_function_tokens(
length, tokenizers.function
).to(device),
residue_annotations=encoding.get_default_residue_annotation_tokens(
length, tokenizers.residue_annotations
).to(device),
)
## High Level Endpoint Types
@define
class GenerationConfig:
track: str = ""
invalid_ids: Sequence[int] = []
schedule: str = "cosine"
num_steps: int = 8
temperature: float = 1.0
top_p: float = 1.0
condition_on_coordinates_only: bool = True
## Low Level Endpoint Types
@define
class SamplingTrackConfig:
temperature: float = 1.0
top_p: float = 1.0
only_sample_masked_tokens: bool = True
invalid_ids: Sequence[int] = []
topk_logprobs: int = 0
@define
class SamplingConfig:
sequence: SamplingTrackConfig | None = None
structure: SamplingTrackConfig | None = None
secondary_structure: SamplingTrackConfig | None = None
sasa: SamplingTrackConfig | None = None
function: SamplingTrackConfig | None = None
return_per_residue_embeddings: bool = False
return_mean_embedding: bool = False
@define
class ReturnLogitsConfig:
sequence: bool = False
structure: bool = False
secondary_structure: bool = False
sasa: bool = False
function: bool = False
residue_annotations: bool = False
@define
class ForwardConfig:
return_logits: ReturnLogitsConfig = ReturnLogitsConfig()
return_embeddings: bool = False
@define
class ForwardTrackData:
sequence: torch.Tensor | None = None
structure: torch.Tensor | None = None
secondary_structure: torch.Tensor | None = None
sasa: torch.Tensor | None = None
function: torch.Tensor | None = None
@define
class ForwardOutput:
logits: ForwardTrackData | None = None
embeddings: torch.Tensor | None = None
# Residue annotations is multi-hot, so deserves special treatment
# It's not a categorical distribution, but instead a bernoulli, so
# softmax across the last dimension is _wrong_
residue_annotation_logits: torch.Tensor | None = None
@define
class ForwardAndSampleOutput(ForwardOutput):
protein_tensor: ESMProteinTensor = ESMProteinTensor()
entropy: ForwardTrackData | None = None
# Probability of sampled token
prob: ForwardTrackData | None = None
logprob: ForwardTrackData | None = None
# Top probability at this position
top_prob: ForwardTrackData | None = None
topk_logprob: ForwardTrackData | None = None
# Which tokens correspond to top probability
topk_tokens: ForwardTrackData | None = None
per_residue_embedding: torch.Tensor | None = None
mean_embedding: torch.Tensor | None = None
ProteinType = TypeVar("ProteinType", bound=ESMProteinTensor | ESMProtein)
class ESM3InferenceClient(ABC):
def generate(self, input: ProteinType, config: GenerationConfig) -> ProteinType:
# This is the easiest and most flexible way to run ESM3. Generate will
# iteratively sample tokens an provide an output with the track specified
# completely filled out, according to the GenerationConfig provided.
# It is a local function wrapping calls for encode -> iterative_sampling -> decode.
# if a ESMProteinTensor is provided, encode and decode are skipped
raise NotImplementedError
def encode(self, input: ESMProtein) -> ESMProteinTensor:
# Encode allows for encoding RawRepresentation into TokenizedRepresentation.
# This runs the structure_token_encoder, as well as dealing with PDB => atom37 conversion
raise NotImplementedError
def decode(self, input: ESMProteinTensor) -> ESMProtein:
# Decode is the inverse of encode, and runs a structure_token_decoder to output coordinates
raise NotImplementedError
def _forward(
self, input: ESMProteinTensor, config: ForwardConfig = ForwardConfig()
) -> ForwardOutput:
# Our API generally discourages using raw forwards.
# This is because sending logits can be prohibitively expensive.
# Please use forward_and_sample instead.
raise NotImplementedError
def forward_and_sample(
self, input: ESMProteinTensor, sampling_configuration: SamplingConfig
) -> ForwardAndSampleOutput:
# forward_and_sample runs a single model forward, sampling tokens according to `SamplingConfiguration`.
# This is the way for power users to run ESM3. We hope to design this in a way to enable high throughput
# inference, as well as arbitrary chain-of-though invocations of ESM3.
raise NotImplementedError
|