Spaces:
Sleeping
Sleeping
File size: 8,058 Bytes
224a33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
"""Utilities for interacting with InterPro."""
import itertools
import re
from dataclasses import dataclass
from enum import IntEnum, auto
from functools import cached_property
from pathlib import Path
import networkx as nx
import numpy as np
import pandas as pd
from esm.utils.constants import esm3 as C
def parse_go_terms(text: str) -> list[str]:
"""Parses GO terms from a string.
Args:
text: String containing GO terms. Example: "GO:0008309, GO:1902267" Note that GO
terms have exactly 7 digits.
Returns:
All GO terms found in the string. Example: ['GO:0008309', 'GO:1902267']
"""
return re.findall(r"GO:(?:\d{7,})", text)
def _parse_interpro2go(path: str) -> dict[str, list[str]]:
"""Parses InterPro2GO file into map.
NOTE: this file has a very strange, non-standard format.
Args:
path: path to InterPro2GO file from: https://www.ebi.ac.uk/GOA/InterPro2GO
Returns:
Mapping from InterPro to list of associated GO terms.
"""
with Path(path).open("r") as f:
text = f.read()
df = pd.Series(text.split("\n"), name="line").to_frame()
df = df[~df.line.str.startswith("!")]
df["interpro_id"] = df.line.apply(lambda line: re.findall(r"IPR\d+", line))
df["go_ids"] = df.line.apply(parse_go_terms)
df = df[df.go_ids.apply(len).gt(0) & df.interpro_id.apply(len).eq(1)]
df["interpro_id"] = df["interpro_id"].apply(lambda xs: xs[0]) # type: ignore
# Group all mappints together into a single map.
df = (
df.groupby("interpro_id")["go_ids"] # type: ignore
.apply(lambda group: list(itertools.chain.from_iterable(group)))
.reset_index()
)
return dict(zip(df.interpro_id, df.go_ids)) # type: ignore
class InterProEntryType(IntEnum):
"""InterPro types and representation counts:
Family 21,942
Domain 14,053
Homologous_superfamily 3,446
Conserved_site 728
Repeat 374
Active_site 133
Binding_site 75
PTM 17
"""
ACTIVE_SITE = 0
BINDING_SITE = auto()
CONSERVED_SITE = auto()
DOMAIN = auto()
FAMILY = auto()
HOMOLOGOUS_SUPERFAMILY = auto()
PTM = auto()
REPEAT = auto()
UNKNOWN = auto()
@dataclass
class InterProEntry:
"""Represents an InterPro entry."""
id: str # Example: IPR000006
type: InterProEntryType
name: str # Example: "Metallothionein, vertebrate"
description: str | None = None
@dataclass(frozen=True)
class InterProRangeAnnotation:
"""Represents a InterPro annotation along a range of residues in a protein."""
interpro_accession: str
start_idx: int
end_idx: int
class InterPro:
"""Convenience class interacting with InterPro ontology/data."""
def __init__(
self,
entries_path: str | None = None,
hierarchy_path: str | None = None,
interpro2go_path: str | None = None,
):
"""Constructs interface to query InterPro entries."""
default = lambda x, d: x if x is not None else d
self.entries_path = default(entries_path, str(C.data_root() / C.INTERPRO_ENTRY))
self.hierarchy_graph_path = default(
hierarchy_path, str(C.data_root() / C.INTERPRO_HIERARCHY)
)
self.interpro2go_path = default(
interpro2go_path, str(C.data_root() / C.INTERPRO2GO)
)
@cached_property
def interpro2go(self) -> dict[str, list[str]]:
"""Reads the InterPro to GO term mapping."""
assert self.interpro2go_path is not None
return _parse_interpro2go(self.interpro2go_path)
@cached_property
def entries_frame(self) -> pd.DataFrame:
"""Loads full InterPro entry set as a DataFrame.
Colums are
- "id": str interpro accession /id as
- "type": InterProEntryType representing the type of annotation.
- "name": Short name of the entry.
"""
with Path(self.entries_path).open("r") as f:
df = pd.read_csv(f, sep="\t")
assert all(
col in df.columns for col in ["ENTRY_AC", "ENTRY_TYPE", "ENTRY_NAME"]
)
df.rename(
columns={
"ENTRY_AC": "id",
"ENTRY_TYPE": "type",
"ENTRY_NAME": "name",
},
inplace=True,
)
df["type"] = df.type.str.upper().apply(
lambda type_name: InterProEntryType[type_name]
)
return df
@cached_property
def entries(self) -> dict[str, InterProEntry]:
"""Returns all InterPro entries."""
return {
row.id: InterProEntry( # type: ignore
id=row.id, # type: ignore
type=row.type, # type: ignore
name=row.name, # type: ignore
)
for row in self.entries_frame.itertuples()
}
def lookup_name(self, interpro_id: str) -> str | None:
"""Short name / title for an interpro id."""
if interpro_id not in self.entries:
return None
return self.entries[interpro_id].name
def lookup_entry_type(self, interpro_id: str) -> InterProEntryType:
"""Looks up entry-type for an interpro id."""
if interpro_id in self.entries:
return self.entries[interpro_id].type
else:
return InterProEntryType.UNKNOWN
@cached_property
def graph(self) -> nx.DiGraph:
"""Reads the InterPro hierarchy of InterPro."""
graph = nx.DiGraph()
with Path(self.hierarchy_graph_path).open("r") as f:
parents = []
for line in f:
ipr = line.split("::", maxsplit=1)[0]
ipr_strip = ipr.lstrip("-")
level = (len(ipr) - len(ipr_strip)) // 2
parents = parents[:level]
graph.add_node(ipr_strip)
if parents:
graph.add_edge(ipr_strip, parents[-1])
parents.append(ipr_strip)
return graph
def parse_interpro_features(
interpro_accessions: list[str],
interpro_starts: list[int],
interpro_ends: list[int],
) -> list[InterProRangeAnnotation]:
"""Parses raw InterPro ranges.
Args:
interpro_accessions: list of InterPro accessions
interpro_starts: list of one-indexed inclusive residue locations where the
annotation from `interpro_accesisons` begin.
interpro_ends: list of one-indexed *inclusive* residue locations where the
annotation from `interpro_accesisons` end.
Returns:
Collated InterProRangeAnnotations. NOTE that index conversion will convert range
bounds to zero-indexed [inclusive, exclusive) start/end indices.
"""
assert len(interpro_accessions) == len(interpro_starts) == len(interpro_ends)
# Residue locations from Uniprot/InterPro are [inclusive, inclusive] and 1-index.
start_idcs = np.array(interpro_starts).astype(int)
end_idcs = np.array(interpro_ends).astype(int)
# We want to use Python's convention of [inclusive, exclusive) and 0-indexing.
# Interpro residue indices are [inclusive, inclusive] and 1-indexing.
# The conversion ends up being:
# ```python
# end_idcs += 1 # [inclusive, inclusive] -> [inclusive, exclusive)
# start_idcs -= 1 # 1 -> 0 indexing
# end_idcs -= 1 # 1 -> 0 indexing
# ```
# Which simply results in:
start_idcs -= 1
ranges = []
for interpro_accession, start_idx, end_idx in zip(
interpro_accessions, start_idcs, end_idcs
):
# NOTE: Skip unintegrated Interpro labels, for now.
if interpro_accession == "-":
continue
ranges.append(
InterProRangeAnnotation(
interpro_accession=interpro_accession,
start_idx=start_idx,
end_idx=end_idx,
)
)
return ranges
|