File size: 8,154 Bytes
224a33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import math
from typing import ContextManager, Sequence, TypeVar

import numpy as np
import torch

MAX_SUPPORTED_DISTANCE = 1e6


TSequence = TypeVar("TSequence", bound=Sequence)


def slice_python_object_as_numpy(
    obj: TSequence, idx: int | list[int] | slice | np.ndarray
) -> TSequence:
    """
    Slice a python object (like a list, string, or tuple) as if it was a numpy object.

    Example:
        >>> obj = "ABCDE"
        >>> slice_python_object_as_numpy(obj, [1, 3, 4])
        "BDE"

        >>> obj = [1, 2, 3, 4, 5]
        >>> slice_python_object_as_numpy(obj, np.arange(5) < 3)
        [1, 2, 3]
    """
    if isinstance(idx, int):
        idx = [idx]

    if isinstance(idx, np.ndarray) and idx.dtype == bool:
        sliced_obj = [obj[i] for i in np.where(idx)[0]]
    elif isinstance(idx, slice):
        sliced_obj = obj[idx]
    else:
        sliced_obj = [obj[i] for i in idx]

    match obj, sliced_obj:
        case str(), list():
            sliced_obj = "".join(sliced_obj)
        case _:
            sliced_obj = obj.__class__(sliced_obj)  # type: ignore

    return sliced_obj  # type: ignore


def rbf(values, v_min, v_max, n_bins=16):
    """
    Returns RBF encodings in a new dimension at the end.
    """
    rbf_centers = torch.linspace(
        v_min, v_max, n_bins, device=values.device, dtype=values.dtype
    )
    rbf_centers = rbf_centers.view([1] * len(values.shape) + [-1])
    rbf_std = (v_max - v_min) / n_bins
    z = (values.unsqueeze(-1) - rbf_centers) / rbf_std
    return torch.exp(-(z**2))


def batched_gather(data, inds, dim=0, no_batch_dims=0):
    ranges = []
    for i, s in enumerate(data.shape[:no_batch_dims]):
        r = torch.arange(s)
        r = r.view(*(*((1,) * i), -1, *((1,) * (len(inds.shape) - i - 1))))
        ranges.append(r)

    remaining_dims = [slice(None) for _ in range(len(data.shape) - no_batch_dims)]
    remaining_dims[dim - no_batch_dims if dim >= 0 else dim] = inds
    ranges.extend(remaining_dims)
    return data[ranges]


def node_gather(s: torch.Tensor, edges: torch.Tensor) -> torch.Tensor:
    return batched_gather(s.unsqueeze(-3), edges, -2, no_batch_dims=len(s.shape) - 1)


def knn_graph(
    coords: torch.Tensor,
    coord_mask: torch.Tensor,
    padding_mask: torch.Tensor,
    sequence_id: torch.Tensor,
    *,
    no_knn: int,
):
    L = coords.shape[-2]
    num_by_dist = min(no_knn, L)
    device = coords.device

    coords = coords.nan_to_num()
    coord_mask = ~(coord_mask[..., None, :] & coord_mask[..., :, None])
    padding_pairwise_mask = padding_mask[..., None, :] | padding_mask[..., :, None]
    if sequence_id is not None:
        padding_pairwise_mask |= torch.unsqueeze(sequence_id, 1) != torch.unsqueeze(
            sequence_id, 2
        )
    dists = (coords.unsqueeze(-2) - coords.unsqueeze(-3)).norm(dim=-1)
    arange = torch.arange(L, device=device)
    seq_dists = (arange.unsqueeze(-1) - arange.unsqueeze(-2)).abs()
    # We only support up to a certain distance, above that, we use sequence distance
    # instead. This is so that when a large portion of the structure is masked out,
    # the edges are built according to sequence distance.
    max_dist = MAX_SUPPORTED_DISTANCE
    torch._assert_async((dists[~coord_mask] < max_dist).all())
    struct_then_seq_dist = (
        seq_dists.to(dists.dtype)
        .mul(1e2)
        .add(max_dist)
        .where(coord_mask, dists)
        .masked_fill(padding_pairwise_mask, torch.inf)
    )
    dists, edges = struct_then_seq_dist.sort(dim=-1, descending=False)
    # This is a L x L tensor, where we index by rows first,
    # and columns are the edges we should pick.
    chosen_edges = edges[..., :num_by_dist]
    chosen_mask = dists[..., :num_by_dist].isfinite()
    return chosen_edges, chosen_mask


def stack_variable_length_tensors(
    sequences: Sequence[torch.Tensor],
    constant_value: int | float = 0,
    dtype: torch.dtype | None = None,
) -> torch.Tensor:
    """Automatically stack tensors together, padding variable lengths with the
    value in constant_value. Handles an arbitrary number of dimensions.

    Examples:
        >>> tensor1, tensor2 = torch.ones([2]), torch.ones([5])
        >>> stack_variable_length_tensors(tensor1, tensor2)
        tensor of shape [2, 5]. First row is [1, 1, 0, 0, 0]. Second row is all ones.

        >>> tensor1, tensor2 = torch.ones([2, 4]), torch.ones([5, 3])
        >>> stack_variable_length_tensors(tensor1, tensor2)
        tensor of shape [2, 5, 4]
    """
    batch_size = len(sequences)
    shape = [batch_size] + np.max([seq.shape for seq in sequences], 0).tolist()

    if dtype is None:
        dtype = sequences[0].dtype
    device = sequences[0].device

    array = torch.full(shape, constant_value, dtype=dtype, device=device)
    for arr, seq in zip(array, sequences):
        arrslice = tuple(slice(dim) for dim in seq.shape)
        arr[arrslice] = seq

    return array


def unbinpack(
    tensor: torch.Tensor, sequence_id: torch.Tensor | None, pad_value: int | float
):
    """
    Args:
        tensor (Tensor): [B, L, ...]

    Returns:
        Tensor: [B_unbinpacked, L_unbinpack, ...]
    """
    if sequence_id is None:
        return tensor

    unpacked_tensors = []
    num_sequences = sequence_id.max(dim=-1).values + 1
    for batch_idx, (batch_seqid, batch_num_sequences) in enumerate(
        zip(sequence_id, num_sequences)
    ):
        for seqid in range(batch_num_sequences):
            mask = batch_seqid == seqid
            unpacked = tensor[batch_idx, mask]
            unpacked_tensors.append(unpacked)
    return stack_variable_length_tensors(unpacked_tensors, pad_value)


def fp32_autocast_context(device_type: str) -> ContextManager[torch.amp.autocast]:
    """
    Returns an autocast context manager that disables downcasting by AMP.

    Args:
        device_type: The device type ('cpu' or 'cuda')

    Returns:
        An autocast context manager with the specified behavior.
    """
    if device_type == "cpu":
        return torch.amp.autocast(device_type, enabled=False)
    elif device_type == "cuda":
        return torch.amp.autocast(device_type, dtype=torch.float32)
    else:
        raise ValueError(f"Unsupported device type: {device_type}")


def merge_ranges(ranges: list[range], merge_gap_max: int | None = None) -> list[range]:
    """Merge overlapping ranges into sorted, non-overlapping segments.

    Args:
        ranges: collection of ranges to merge.
        merge_gap_max: optionally merge neighboring ranges that are separated by a gap
          no larger than this size.
    Returns:
        non-overlapping ranges merged from the inputs, sorted by position.
    """
    ranges = sorted(ranges, key=lambda r: r.start)
    merge_gap_max = merge_gap_max if merge_gap_max is not None else 0
    assert merge_gap_max >= 0, f"Invalid merge_gap_max: {merge_gap_max}"

    merged = []
    for r in ranges:
        if not merged:
            merged.append(r)
        else:
            last = merged[-1]
            if last.stop + merge_gap_max >= r.start:
                merged[-1] = range(last.start, max(last.stop, r.stop))
            else:
                merged.append(r)
    return merged


def list_nan_to_none(l: list) -> list:
    if l is None:
        return None  # type: ignore
    elif isinstance(l, float):
        return None if math.isnan(l) else l  # type: ignore
    elif isinstance(l, list):
        return [list_nan_to_none(x) for x in l]
    else:
        # Don't go into other structures.
        return l


def list_none_to_nan(l: list) -> list:
    if l is None:
        return math.nan  # type: ignore
    elif isinstance(l, list):
        return [list_none_to_nan(x) for x in l]
    else:
        return l


def maybe_tensor(x, convert_none_to_nan: bool = False) -> torch.Tensor | None:
    if x is None:
        return None
    if convert_none_to_nan:
        x = list_none_to_nan(x)
    return torch.tensor(x)


def maybe_list(x, convert_nan_to_none: bool = False) -> list | None:
    if x is None:
        return None
    x = x.tolist()
    if convert_nan_to_none:
        x = list_nan_to_none(x)
    return x