Spaces:
Running
Running
File size: 30,852 Bytes
224a33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
from __future__ import annotations
import io
from dataclasses import asdict, dataclass, replace
from functools import cached_property
from pathlib import Path
from typing import Sequence, TypeVar, Union
import biotite.structure as bs
import brotli
import msgpack
import msgpack_numpy
import numpy as np
import torch
from Bio.Data import PDBData
from biotite.application.dssp import DsspApp
from biotite.database import rcsb
from biotite.structure.io.npz import NpzFile
from biotite.structure.io.pdb import PDBFile
from scipy.spatial.distance import pdist, squareform
from torch import Tensor
from esm.utils import residue_constants as RC
from esm.utils.constants import esm3 as C
from esm.utils.misc import slice_python_object_as_numpy
from esm.utils.structure.affine3d import Affine3D
from esm.utils.structure.aligner import Aligner
from esm.utils.structure.lddt import compute_lddt_ca
from esm.utils.structure.normalize_coordinates import (
apply_frame_to_coords,
get_protein_normalization_frame,
normalize_coordinates,
)
msgpack_numpy.patch()
CHAIN_ID_CONST = "A"
ArrayOrTensor = TypeVar("ArrayOrTensor", np.ndarray, Tensor)
PathLike = Union[str, Path]
PathOrBuffer = Union[PathLike, io.StringIO]
def index_by_atom_name(
atom37: ArrayOrTensor, atom_names: str | list[str], dim: int = -2
) -> ArrayOrTensor:
squeeze = False
if isinstance(atom_names, str):
atom_names = [atom_names]
squeeze = True
indices = [RC.atom_order[atom_name] for atom_name in atom_names]
dim = dim % atom37.ndim
index = tuple(slice(None) if dim != i else indices for i in range(atom37.ndim))
result = atom37[index] # type: ignore
if squeeze:
result = result.squeeze(dim)
return result
def infer_CB(C, N, Ca, L: float = 1.522, A: float = 1.927, D: float = -2.143):
"""
Inspired by a util in trDesign:
https://github.com/gjoni/trDesign/blob/f2d5930b472e77bfacc2f437b3966e7a708a8d37/02-GD/utils.py#L92
input: 3 coords (a,b,c), (L)ength, (A)ngle, and (D)ihedral
output: 4th coord
"""
norm = lambda x: x / np.sqrt(np.square(x).sum(-1, keepdims=True) + 1e-8)
with np.errstate(invalid="ignore"): # inf - inf = nan is ok here
vec_bc = N - Ca
vec_ba = N - C
bc = norm(vec_bc)
n = norm(np.cross(vec_ba, bc))
m = [bc, np.cross(n, bc), n]
d = [L * np.cos(A), L * np.sin(A) * np.cos(D), -L * np.sin(A) * np.sin(D)]
return Ca + sum([m * d for m, d in zip(m, d)])
class AtomIndexer:
def __init__(self, structure: ProteinChain, property: str, dim: int):
self.structure = structure
self.property = property
self.dim = dim
def __getitem__(self, atom_names: str | list[str]) -> np.ndarray:
return index_by_atom_name(
getattr(self.structure, self.property), atom_names, self.dim
)
@dataclass
class ProteinChain:
"""Dataclass with atom37 representation of a single protein chain."""
id: str
sequence: str
chain_id: str # author chain id
entity_id: int | None
residue_index: np.ndarray
insertion_code: np.ndarray
atom37_positions: np.ndarray
atom37_mask: np.ndarray
confidence: np.ndarray
def __post_init__(self):
self.atom37_mask = self.atom37_mask.astype(bool)
assert self.atom37_positions.shape[0] == len(self.sequence), (
self.atom37_positions.shape,
len(self.sequence),
)
assert self.atom37_mask.shape[0] == len(self.sequence), (
self.atom37_mask.shape,
len(self.sequence),
)
assert self.residue_index.shape[0] == len(self.sequence), (
self.residue_index.shape,
len(self.sequence),
)
assert self.insertion_code.shape[0] == len(self.sequence), (
self.insertion_code.shape,
len(self.sequence),
)
assert self.confidence.shape[0] == len(self.sequence), (
self.confidence.shape,
len(self.sequence),
)
@cached_property
def atoms(self) -> AtomIndexer:
return AtomIndexer(self, property="atom37_positions", dim=-2)
@cached_property
def atom_mask(self) -> AtomIndexer:
return AtomIndexer(self, property="atom37_mask", dim=-1)
@cached_property
def atom_array(self) -> bs.AtomArray:
atoms = []
for res_name, res_idx, ins_code, positions, mask, conf in zip(
self.sequence,
self.residue_index,
self.insertion_code,
self.atom37_positions,
self.atom37_mask.astype(bool),
self.confidence,
):
for i, pos in zip(np.where(mask)[0], positions[mask]):
atom = bs.Atom(
coord=pos,
chain_id="A" if self.chain_id is None else self.chain_id,
res_id=res_idx,
ins_code=ins_code,
res_name=RC.restype_1to3.get(res_name, "UNK"),
hetero=False,
atom_name=RC.atom_types[i],
element=RC.atom_types[i][0],
b_factor=conf,
)
atoms.append(atom)
return bs.array(atoms)
@cached_property
def residue_index_no_insertions(self) -> np.ndarray:
return self.residue_index + np.cumsum(self.insertion_code != "")
@cached_property
def atom_array_no_insertions(self) -> bs.AtomArray:
atoms = []
for res_idx, (res_name, positions, mask, conf) in enumerate(
zip(
self.sequence,
self.atom37_positions,
self.atom37_mask.astype(bool),
self.confidence,
)
):
for i, pos in zip(np.where(mask)[0], positions[mask]):
atom = bs.Atom(
coord=pos,
# hard coded to as we currently only support single chain structures
chain_id=CHAIN_ID_CONST,
res_id=res_idx + 1,
res_name=RC.restype_1to3.get(res_name, "UNK"),
hetero=False,
atom_name=RC.atom_types[i],
element=RC.atom_types[i][0],
b_factor=conf,
)
atoms.append(atom)
return bs.array(atoms)
def __getitem__(self, idx: int | list[int] | slice | np.ndarray):
if isinstance(idx, int):
idx = [idx]
sequence = slice_python_object_as_numpy(self.sequence, idx)
return replace(
self,
sequence=sequence,
residue_index=self.residue_index[..., idx],
insertion_code=self.insertion_code[..., idx],
atom37_positions=self.atom37_positions[..., idx, :, :],
atom37_mask=self.atom37_mask[..., idx, :],
confidence=self.confidence[..., idx],
)
def __len__(self):
return len(self.sequence)
def cbeta_contacts(self, distance_threshold: float = 8.0) -> np.ndarray:
distance = self.pdist_CB
contacts = (distance < distance_threshold).astype(np.int64)
contacts[np.isnan(distance)] = -1
contacts = squareform(contacts)
np.fill_diagonal(contacts, -1)
return contacts
def to_npz(self, path: PathOrBuffer):
f = NpzFile()
f.set_structure(self.atom_array)
f.write(path)
def to_npz_string(self):
f = NpzFile()
f.set_structure(self.atom_array)
buf = io.BytesIO()
f.write(buf)
return buf.getvalue()
def to_structure_encoder_inputs(
self,
should_normalize_coordinates: bool = True,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
coords = torch.tensor(self.atom37_positions, dtype=torch.float32)
plddt = torch.tensor(self.confidence, dtype=torch.float32)
residue_index = torch.tensor(self.residue_index, dtype=torch.long)
if should_normalize_coordinates:
coords = normalize_coordinates(coords)
return coords.unsqueeze(0), plddt.unsqueeze(0), residue_index.unsqueeze(0)
def to_pdb(self, path: PathOrBuffer, include_insertions: bool = True):
"""Dssp works better w/o insertions."""
f = PDBFile()
if not include_insertions:
f.set_structure(self.atom_array_no_insertions)
else:
f.set_structure(self.atom_array)
f.write(path)
def to_pdb_string(self, include_insertions: bool = True) -> str:
buf = io.StringIO()
self.to_pdb(buf, include_insertions=include_insertions)
buf.seek(0)
return buf.read()
def state_dict(self, backbone_only=False):
"""This state dict is optimized for storage, so it turns things to fp16 whenever
possible. Note that we also only support int32 residue indices, I'm hoping we don't
need more than 2**32 residues..."""
dct = {k: v for k, v in asdict(self).items()}
for k, v in dct.items():
if isinstance(v, np.ndarray):
match v.dtype:
case np.int64:
dct[k] = v.astype(np.int32)
case np.float64 | np.float32:
dct[k] = v.astype(np.float16)
case _:
pass
if backbone_only:
dct["atom37_mask"][:, 3:] = False
dct["atom37_positions"] = dct["atom37_positions"][dct["atom37_mask"]]
return dct
def to_blob(self, backbone_only=False) -> bytes:
return brotli.compress(msgpack.dumps(self.state_dict(backbone_only)))
@classmethod
def from_state_dict(cls, dct):
atom37 = np.full((*dct["atom37_mask"].shape, 3), np.nan)
atom37[dct["atom37_mask"]] = dct["atom37_positions"]
dct["atom37_positions"] = atom37
dct = {
k: (v.astype(np.float32) if k in ["atom37_positions", "confidence"] else v)
for k, v in dct.items()
}
return cls(**dct)
@classmethod
def from_blob(cls, input: Path | str | io.BytesIO | bytes):
"""NOTE: blob + sparse coding + brotli + fp16 reduces memory
of chains from 52G/1M chains to 20G/1M chains, I think this is a good first
shot at compressing and dumping chains to disk. I'm sure there's better ways."""
match input:
case Path() | str():
bytes = Path(input).read_bytes()
case io.BytesIO():
bytes = input.getvalue()
case _:
bytes = input
return cls.from_state_dict(msgpack.loads(brotli.decompress(bytes)))
def dssp(self):
dssp = DsspApp.annotate_sse(self.atom_array_no_insertions)
full_dssp = np.full(len(self.sequence), "X", dtype="<U1")
full_dssp[self.atom37_mask.any(-1)] = dssp
return full_dssp
def sasa(self):
arr = self.atom_array_no_insertions
sasa_per_atom = bs.sasa(arr) # type: ignore
# Sum per-atom SASA into residue "bins", with np.bincount.
assert arr.res_id is not None
assert np.array_equal(
np.sort(np.unique(arr.res_id)), np.arange(1, arr.res_id.max() + 1)
), "SASA calculation expected contiguous res_ids in range(1, len(chain)+1)"
# NOTE: arr.res_id is 1-indexed, but np.bincount returns a sum for bin 0, so we strip.
sasa_per_residue = np.bincount(arr.res_id, weights=sasa_per_atom)[1:]
assert len(sasa_per_residue) == len(self)
return sasa_per_residue
def align(
self,
target: ProteinChain,
mobile_inds: list[int] | np.ndarray | None = None,
target_inds: list[int] | np.ndarray | None = None,
only_use_backbone: bool = False,
):
"""
Aligns the current protein to the provided target.
Args:
target (ProteinChain): The target protein to align to.
mobile_inds (list[int], np.ndarray, optional): The indices of the mobile atoms to align. These are NOT residue indices
target_inds (list[int], np.ndarray, optional): The indices of the target atoms to align. These are NOT residue indices
only_use_backbone (bool, optional): If True, only align the backbone atoms.
"""
aligner = Aligner(
self if mobile_inds is None else self[mobile_inds],
target if target_inds is None else target[target_inds],
only_use_backbone,
)
return aligner.apply(self)
def rmsd(
self,
target: ProteinChain,
also_check_reflection: bool = False,
mobile_inds: list[int] | np.ndarray | None = None,
target_inds: list[int] | np.ndarray | None = None,
only_compute_backbone_rmsd: bool = False,
):
"""
Compute the RMSD between this protein chain and another.
Args:
target (ProteinChain): The target (other) protein chain to compare to.
also_check_reflection (bool, optional): If True, also check if the reflection of the mobile atoms has a lower RMSD.
mobile_inds (list[int], optional): The indices of the mobile atoms to align. These are NOT residue indices
target_inds (list[int], optional): The indices of the target atoms to align. These are NOT residue indices
only_compute_backbone_rmsd (bool, optional): If True, only compute the RMSD of the backbone atoms.
"""
if isinstance(target, bs.AtomArray):
raise ValueError(
"Support for bs.AtomArray removed, use "
"ProteinChain.from_atomarry for ProteinChain."
)
aligner = Aligner(
self if mobile_inds is None else self[mobile_inds],
target if target_inds is None else target[target_inds],
only_compute_backbone_rmsd,
)
avg_rmsd = aligner.rmsd
if not also_check_reflection:
return avg_rmsd
aligner = Aligner(
self if mobile_inds is None else self[mobile_inds],
target if target_inds is None else target[target_inds],
only_compute_backbone_rmsd,
use_reflection=True,
)
avg_rmsd_neg = aligner.rmsd
return min(avg_rmsd, avg_rmsd_neg)
def lddt_ca(
self,
target: ProteinChain,
mobile_inds: list[int] | np.ndarray | None = None,
target_inds: list[int] | np.ndarray | None = None,
**kwargs,
) -> float | np.ndarray:
"""Compute the LDDT between this protein chain and another.
Arguments:
target (ProteinChain): The other protein chain to compare to.
mobile_inds (list[int], np.ndarray, optional): The indices of the mobile atoms to align. These are NOT residue indices
target_inds (list[int], np.ndarray, optional): The indices of the target atoms to align. These are NOT residue indices
Returns:
float | np.ndarray: The LDDT score between the two protein chains, either
a single float or per-residue LDDT scores if `per_residue` is True.
"""
lddt = compute_lddt_ca(
torch.tensor(self.atom37_positions[mobile_inds]).unsqueeze(0),
torch.tensor(target.atom37_positions[target_inds]).unsqueeze(0),
torch.tensor(self.atom37_mask[mobile_inds]).unsqueeze(0),
**kwargs,
)
return float(lddt) if lddt.numel() == 1 else lddt.numpy().flatten()
@classmethod
def from_atom37(
cls,
atom37_positions: np.ndarray | torch.Tensor,
*,
id: str | None = None,
sequence: str | None = None,
chain_id: str | None = None,
entity_id: int | None = None,
residue_index: np.ndarray | torch.Tensor | None = None,
insertion_code: np.ndarray | None = None,
confidence: np.ndarray | torch.Tensor | None = None,
):
if isinstance(atom37_positions, torch.Tensor):
atom37_positions = atom37_positions.cpu().numpy()
if atom37_positions.ndim == 4:
if atom37_positions.shape[0] != 1:
raise ValueError(
f"Cannot handle batched inputs, atom37_positions has shape {atom37_positions.shape}"
)
atom37_positions = atom37_positions[0]
assert isinstance(atom37_positions, np.ndarray)
seqlen = atom37_positions.shape[0]
atom_mask = np.isfinite(atom37_positions).all(-1)
if id is None:
id = ""
if sequence is None:
sequence = "A" * seqlen
if chain_id is None:
chain_id = "A"
if residue_index is None:
residue_index = np.arange(1, seqlen + 1)
elif isinstance(residue_index, torch.Tensor):
residue_index = residue_index.cpu().numpy()
assert isinstance(residue_index, np.ndarray)
if residue_index.ndim == 2:
if residue_index.shape[0] != 1:
raise ValueError(
f"Cannot handle batched inputs, residue_index has shape {residue_index.shape}"
)
residue_index = residue_index[0]
assert isinstance(residue_index, np.ndarray)
if insertion_code is None:
insertion_code = np.array(["" for _ in range(seqlen)])
if confidence is None:
confidence = np.ones(seqlen, dtype=np.float32)
elif isinstance(confidence, torch.Tensor):
confidence = confidence.cpu().numpy()
assert isinstance(confidence, np.ndarray)
if confidence.ndim == 2:
if confidence.shape[0] != 1:
raise ValueError(
f"Cannot handle batched inputs, confidence has shape {confidence.shape}"
)
confidence = confidence[0]
assert isinstance(confidence, np.ndarray)
return cls(
id=id,
sequence=sequence,
chain_id=chain_id,
entity_id=entity_id,
atom37_positions=atom37_positions,
atom37_mask=atom_mask,
residue_index=residue_index,
insertion_code=insertion_code,
confidence=confidence,
)
@classmethod
def from_backbone_atom_coordinates(
cls,
backbone_atom_coordinates: np.ndarray | torch.Tensor,
**kwargs,
):
"""Create a ProteinChain from a set of backbone atom coordinates.
This function simply expands the seqlen x 3 x 3 array of backbone atom
coordinates to a seqlen x 37 x 3 array of all atom coordinates, with the padded
positions set to infinity. This allows us to use from_atom37 to create the
appropriate ProteinChain object with the appropriate atom37_mask.
This function passes all kwargs to from_atom37.
"""
if isinstance(backbone_atom_coordinates, torch.Tensor):
backbone_atom_coordinates = backbone_atom_coordinates.cpu().numpy()
if backbone_atom_coordinates.ndim == 4:
if backbone_atom_coordinates.shape[0] != 1:
raise ValueError(
f"Cannot handle batched inputs, backbone_atom_coordinates has "
f"shape {backbone_atom_coordinates.shape}"
)
backbone_atom_coordinates = backbone_atom_coordinates[0]
assert isinstance(backbone_atom_coordinates, np.ndarray)
assert backbone_atom_coordinates.ndim == 3
assert backbone_atom_coordinates.shape[-2] == 3
assert backbone_atom_coordinates.shape[-1] == 3
atom37_positions = np.full(
(backbone_atom_coordinates.shape[0], 37, 3),
np.inf,
dtype=backbone_atom_coordinates.dtype,
)
atom37_positions[:, :3, :] = backbone_atom_coordinates
return cls.from_atom37(
atom37_positions=atom37_positions,
**kwargs,
)
@classmethod
def from_pdb(
cls,
path: PathOrBuffer,
chain_id: str = "detect",
id: str | None = None,
is_predicted: bool = False,
) -> "ProteinChain":
"""Return a ProteinStructure object from an pdb file.
Args:
path (str | Path | io.TextIO): Path or buffer to read pdb file from. Should be uncompressed.
id (str, optional): String identifier to assign to structure. Will attempt to infer otherwise.
is_predicted (bool): If True, reads b factor as the confidence readout. Default: False.
chain_id (str, optional): Select a chain corresponding to (author) chain id. "detect" uses the
first detected chain
"""
if id is not None:
file_id = id
else:
match path:
case Path() | str():
file_id = Path(path).with_suffix("").name
case _:
file_id = "null"
atom_array = PDBFile.read(path).get_structure(
model=1, extra_fields=["b_factor"]
)
if chain_id == "detect":
chain_id = atom_array.chain_id[0]
atom_array = atom_array[
bs.filter_amino_acids(atom_array)
& ~atom_array.hetero
& (atom_array.chain_id == chain_id)
]
entity_id = 1 # Not supplied in PDBfiles
sequence = "".join(
(
r
if len(r := PDBData.protein_letters_3to1.get(monomer[0].res_name, "X"))
== 1
else "X"
)
for monomer in bs.residue_iter(atom_array)
)
num_res = len(sequence)
atom_positions = np.full(
[num_res, RC.atom_type_num, 3],
np.nan,
dtype=np.float32,
)
atom_mask = np.full(
[num_res, RC.atom_type_num],
False,
dtype=bool,
)
residue_index = np.full([num_res], -1, dtype=np.int64)
insertion_code = np.full([num_res], "", dtype="<U4")
confidence = np.ones(
[num_res],
dtype=np.float32,
)
for i, res in enumerate(bs.residue_iter(atom_array)):
chain = atom_array[atom_array.chain_id == chain_id]
assert isinstance(chain, bs.AtomArray)
res_index = res[0].res_id
residue_index[i] = res_index
insertion_code[i] = res[0].ins_code
# Atom level features
for atom in res:
atom_name = atom.atom_name
if atom_name == "SE" and atom.res_name == "MSE":
# Put the coords of the selenium atom in the sulphur column
atom_name = "SD"
if atom_name in RC.atom_order:
atom_positions[i, RC.atom_order[atom_name]] = atom.coord
atom_mask[i, RC.atom_order[atom_name]] = True
if is_predicted and atom_name == "CA":
confidence[i] = atom.b_factor
assert all(sequence), "Some residue name was not specified correctly"
return cls(
id=file_id,
sequence=sequence,
chain_id=chain_id,
entity_id=entity_id,
atom37_positions=atom_positions,
atom37_mask=atom_mask,
residue_index=residue_index,
insertion_code=insertion_code,
confidence=confidence,
)
@classmethod
def from_rcsb(
cls,
pdb_id: str,
chain_id: str = "detect",
):
f: io.StringIO = rcsb.fetch(pdb_id, "pdb") # type: ignore
return cls.from_pdb(f, chain_id=chain_id, id=pdb_id)
@classmethod
def from_atomarray(
cls,
atom_array: bs.AtomArray,
id: str | None = None,
) -> "ProteinChain":
"""A simple converter from bs.AtomArray -> ProteinChain.
Uses PDB file format as intermediate."""
pdb_file = bs.io.pdb.PDBFile() # pyright: ignore
pdb_file.set_structure(atom_array)
buf = io.StringIO()
pdb_file.write(buf)
buf.seek(0)
return cls.from_pdb(buf, id=id)
def get_normalization_frame(self) -> Affine3D:
"""Given a set of coordinates, compute a single frame.
Specifically, we compute the average position of the N, CA, and C atoms use those 3 points to construct a frame using the Gram-Schmidt algorithm. The average CA position is used as the origin of the frame.
Returns:
Affine3D: [] tensor of Affine3D frame
"""
coords = torch.from_numpy(self.atom37_positions)
frame = get_protein_normalization_frame(coords)
return frame
def apply_frame(self, frame: Affine3D) -> ProteinChain:
"""Given a frame, apply the frame to the protein's coordinates.
Args:
frame (Affine3D): [] tensor of Affine3D frame
Returns:
ProteinChain: Transformed protein chain
"""
coords = torch.from_numpy(self.atom37_positions).to(frame.trans.dtype)
coords = apply_frame_to_coords(coords, frame)
atom37_positions = coords.numpy()
return replace(self, atom37_positions=atom37_positions)
def normalize_coordinates(self) -> ProteinChain:
"""Normalize the coordinates of the protein chain."""
return self.apply_frame(self.get_normalization_frame())
def infer_oxygen(self) -> ProteinChain:
"""Oxygen position is fixed given N, CA, C atoms. Infer it if not provided."""
O_vector = torch.tensor([0.6240, -1.0613, 0.0103], dtype=torch.float32)
N, CA, C = torch.from_numpy(self.atoms[["N", "CA", "C"]]).float().unbind(dim=1)
N = torch.roll(N, -3)
N[..., -1, :] = torch.nan
# Get the frame defined by the CA-C-N atom
frames = Affine3D.from_graham_schmidt(CA, C, N)
O = frames.apply(O_vector)
atom37_positions = self.atom37_positions.copy()
atom37_mask = self.atom37_mask.copy()
atom37_positions[:, RC.atom_order["O"]] = O.numpy()
atom37_mask[:, RC.atom_order["O"]] = ~np.isnan(
atom37_positions[:, RC.atom_order["O"]]
).any(-1)
new_chain = replace(
self, atom37_positions=atom37_positions, atom37_mask=atom37_mask
)
return new_chain
@cached_property
def inferred_cbeta(self) -> np.ndarray:
"""Infer cbeta positions based on N, C, CA."""
N, CA, C = np.moveaxis(self.atoms[["N", "CA", "C"]], 1, 0)
# See usage in trDesign codebase.
# https://github.com/gjoni/trDesign/blob/f2d5930b472e77bfacc2f437b3966e7a708a8d37/02-GD/utils.py#L140
CB = infer_CB(C, N, CA, 1.522, 1.927, -2.143)
return CB
def infer_cbeta(self, infer_cbeta_for_glycine: bool = False) -> ProteinChain:
"""Return a new chain with inferred CB atoms at all residues except GLY.
Args:
infer_cbeta_for_glycine (bool): If True, infers a beta carbon for glycine
residues, even though that residue doesn't have one. Default off.
NOTE: The reason for having this switch in the first place
is that sometimes we want a (inferred) CB coordinate for every residue,
for example for making a pairwise distance matrix, or doing an RMSD
calculation between two designs for a given structural template, w/
CB atoms.
"""
atom37_positions = self.atom37_positions.copy()
atom37_mask = self.atom37_mask.copy()
inferred_cbeta_positions = self.inferred_cbeta
if not infer_cbeta_for_glycine:
inferred_cbeta_positions[np.array(list(self.sequence)) == "G", :] = np.NAN
atom37_positions[:, RC.atom_order["CB"]] = inferred_cbeta_positions
atom37_mask[:, RC.atom_order["CB"]] = ~np.isnan(
atom37_positions[:, RC.atom_order["CB"]]
).any(-1)
new_chain = replace(
self, atom37_positions=atom37_positions, atom37_mask=atom37_mask
)
return new_chain
@cached_property
def pdist_CA(self) -> np.ndarray:
CA = self.atoms["CA"]
pdist_CA = squareform(pdist(CA))
return pdist_CA
@cached_property
def pdist_CB(self) -> np.ndarray:
pdist_CB = squareform(pdist(self.inferred_cbeta))
return pdist_CB
@classmethod
def as_complex(cls, chains: Sequence[ProteinChain]):
raise RuntimeError(
".as_complex() has been deprecated in favor of .concat(). "
".concat() will eventually be deprecated in favor of ProteinComplex..."
)
@classmethod
def concat(cls, chains: Sequence[ProteinChain]):
def join_arrays(arrays: Sequence[np.ndarray], sep: np.ndarray):
full_array = []
for array in arrays:
full_array.append(array)
full_array.append(sep)
full_array = full_array[:-1]
return np.concatenate(full_array, 0)
sep_tokens = {
"residue_index": np.array([-1]),
"insertion_code": np.array([""]),
"atom37_positions": np.full([1, 37, 3], np.inf),
"atom37_mask": np.zeros([1, 37]),
"confidence": np.array([0]),
}
array_args: dict[str, np.ndarray] = {
name: join_arrays([getattr(chain, name) for chain in chains], sep)
for name, sep in sep_tokens.items()
}
return cls(
id=chains[0].id,
sequence=C.CHAIN_BREAK_STR.join(chain.sequence for chain in chains),
chain_id="A",
entity_id=None,
**array_args,
)
def select_residue_indices(
self, indices: list[int | str], ignore_x_mismatch: bool = False
) -> ProteinChain:
numeric_indices = [
idx if isinstance(idx, int) else int(idx[1:]) for idx in indices
]
mask = np.isin(self.residue_index, numeric_indices)
new = self[mask]
mismatches = []
for aa, idx in zip(new.sequence, indices):
if isinstance(idx, int):
continue
if aa == "X" and ignore_x_mismatch:
continue
if aa != idx[0]:
mismatches.append((aa, idx))
if mismatches:
mismatch_str = "; ".join(
f"Position {idx[1:]}, Expected: {idx[0]}, Received: {aa}"
for aa, idx in mismatches
)
raise RuntimeError(mismatch_str)
return new
|