File size: 9,648 Bytes
224a33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from __future__ import annotations

from typing import Tuple, TypeVar

import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.cuda.amp import autocast  # type: ignore

from esm.utils import residue_constants
from esm.utils.misc import unbinpack
from esm.utils.structure.affine3d import Affine3D

ArrayOrTensor = TypeVar("ArrayOrTensor", np.ndarray, Tensor)


def index_by_atom_name(
    atom37: ArrayOrTensor, atom_names: str | list[str], dim: int = -2
) -> ArrayOrTensor:
    squeeze = False
    if isinstance(atom_names, str):
        atom_names = [atom_names]
        squeeze = True
    indices = [residue_constants.atom_order[atom_name] for atom_name in atom_names]
    dim = dim % atom37.ndim
    index = tuple(slice(None) if dim != i else indices for i in range(atom37.ndim))
    result = atom37[index]  # type: ignore
    if squeeze:
        result = result.squeeze(dim)
    return result


def infer_cbeta_from_atom37(
    atom37: ArrayOrTensor, L: float = 1.522, A: float = 1.927, D: float = -2.143
):
    """
    Inspired by a util in trDesign:
    https://github.com/gjoni/trDesign/blob/f2d5930b472e77bfacc2f437b3966e7a708a8d37/02-GD/utils.py#L92

    input:  atom37, (L)ength, (A)ngle, and (D)ihedral
    output: 4th coord
    """
    N = index_by_atom_name(atom37, "N", dim=-2)
    CA = index_by_atom_name(atom37, "CA", dim=-2)
    C = index_by_atom_name(atom37, "C", dim=-2)

    if isinstance(atom37, np.ndarray):

        def normalize(x: ArrayOrTensor):
            return x / np.linalg.norm(x, axis=-1, keepdims=True)

        cross = np.cross
    else:
        normalize = F.normalize  # type: ignore
        cross = torch.cross

    with np.errstate(invalid="ignore"):  # inf - inf = nan is ok here
        vec_nca = N - CA
        vec_nc = N - C
    nca = normalize(vec_nca)
    n = normalize(cross(vec_nc, nca))  # type: ignore
    m = [nca, cross(n, nca), n]
    d = [L * np.cos(A), L * np.sin(A) * np.cos(D), -L * np.sin(A) * np.sin(D)]
    return CA + sum([m * d for m, d in zip(m, d)])


@torch.no_grad()
@autocast(enabled=False)
def compute_alignment_tensors(
    mobile: torch.Tensor,
    target: torch.Tensor,
    atom_exists_mask: torch.Tensor | None = None,
    sequence_id: torch.Tensor | None = None,
):
    """
    Align two batches of structures with support for masking invalid atoms using PyTorch.

    Args:
    - mobile (torch.Tensor): Batch of coordinates of structure to be superimposed in shape (B, N, 3)
    - target (torch.Tensor): Batch of coordinates of structure that is fixed in shape (B, N, 3)
    - atom_exists_mask (torch.Tensor, optional): Mask for Whether an atom exists of shape (B, N)
    - sequence_id (torch.Tensor, optional): Sequence id tensor for binpacking.

    Returns:
    - centered_mobile (torch.Tensor): Batch of coordinates of structure centered mobile (B, N, 3)
    - centroid_mobile (torch.Tensor): Batch of coordinates of mobile centeroid (B, 3)
    - centered_target (torch.Tensor): Batch of coordinates of structure centered target (B, N, 3)
    - centroid_target (torch.Tensor): Batch of coordinates of target centeroid (B, 3)
    - rotation_matrix (torch.Tensor): Batch of coordinates of rotation matrix (B, 3, 3)
    - num_valid_atoms (torch.Tensor): Batch of number of valid atoms for alignment (B,)
    """

    # Ensure both batches have the same number of structures, atoms, and dimensions
    if sequence_id is not None:
        mobile = unbinpack(mobile, sequence_id, pad_value=torch.nan)
        target = unbinpack(target, sequence_id, pad_value=torch.nan)
        if atom_exists_mask is not None:
            atom_exists_mask = unbinpack(atom_exists_mask, sequence_id, pad_value=0)
        else:
            atom_exists_mask = torch.isfinite(target).all(-1)

    assert mobile.shape == target.shape, "Batch structure shapes do not match!"

    # Number of structures in the batch
    batch_size = mobile.shape[0]

    # if [B, Nres, Natom, 3], resize
    if mobile.dim() == 4:
        mobile = mobile.view(batch_size, -1, 3)
    if target.dim() == 4:
        target = target.view(batch_size, -1, 3)
    if atom_exists_mask is not None and atom_exists_mask.dim() == 3:
        atom_exists_mask = atom_exists_mask.view(batch_size, -1)

    # Number of atoms
    num_atoms = mobile.shape[1]

    # Apply masks if provided
    if atom_exists_mask is not None:
        mobile = mobile.masked_fill(~atom_exists_mask.unsqueeze(-1), 0)
        target = target.masked_fill(~atom_exists_mask.unsqueeze(-1), 0)
    else:
        atom_exists_mask = torch.ones(
            batch_size, num_atoms, dtype=torch.bool, device=mobile.device
        )

    num_valid_atoms = atom_exists_mask.sum(dim=-1, keepdim=True)
    # Compute centroids for each batch
    centroid_mobile = mobile.sum(dim=-2, keepdim=True) / num_valid_atoms.unsqueeze(-1)
    centroid_target = target.sum(dim=-2, keepdim=True) / num_valid_atoms.unsqueeze(-1)

    # Handle potential division by zero if all atoms are invalid in a structure
    centroid_mobile[num_valid_atoms == 0] = 0
    centroid_target[num_valid_atoms == 0] = 0

    # Center structures by subtracting centroids
    centered_mobile = mobile - centroid_mobile
    centered_target = target - centroid_target

    centered_mobile = centered_mobile.masked_fill(~atom_exists_mask.unsqueeze(-1), 0)
    centered_target = centered_target.masked_fill(~atom_exists_mask.unsqueeze(-1), 0)

    # Compute covariance matrix for each batch
    covariance_matrix = torch.matmul(centered_mobile.transpose(1, 2), centered_target)

    # Singular Value Decomposition for each batch
    u, _, v = torch.svd(covariance_matrix)

    # Calculate rotation matrices for each batch
    rotation_matrix = torch.matmul(u, v.transpose(1, 2))

    return (
        centered_mobile,
        centroid_mobile,
        centered_target,
        centroid_target,
        rotation_matrix,
        num_valid_atoms,
    )


@torch.no_grad()
@autocast(enabled=False)
def compute_rmsd_no_alignment(
    aligned: torch.Tensor,
    target: torch.Tensor,
    num_valid_atoms: torch.Tensor,
    reduction: str = "batch",
) -> torch.Tensor:
    """
    Compute RMSD between two batches of structures without alignment.

    Args:
    - mobile (torch.Tensor): Batch of coordinates of structure to be superimposed in shape (B, N, 3)
    - target (torch.Tensor): Batch of coordinates of structure that is fixed in shape (B, N, 3)
    - num_valid_atoms (torch.Tensor): Batch of number of valid atoms for alignment (B,)
    - reduction (str): One of "batch", "per_sample", "per_residue".

    Returns:

    If reduction == "batch":
        (torch.Tensor): 0-dim, Average Root Mean Square Deviation between the structures for each batch
    If reduction == "per_sample":
        (torch.Tensor): (B,)-dim, Root Mean Square Deviation between the structures for each batch
    If reduction == "per_residue":
        (torch.Tensor): (B, N)-dim, Root Mean Square Deviation between the structures for residue in the batch
    """
    if reduction not in ("per_residue", "per_sample", "batch"):
        raise ValueError("Unrecognized reduction: '{reduction}'")
    # Compute RMSD for each batch
    diff = aligned - target
    if reduction == "per_residue":
        mean_squared_error = diff.square().view(diff.size(0), -1, 9).mean(dim=-1)
    else:
        mean_squared_error = diff.square().sum(dim=(1, 2)) / (
            num_valid_atoms.squeeze(-1) * 3
        )

    rmsd = torch.sqrt(mean_squared_error)
    if reduction in ("per_sample", "per_residue"):
        return rmsd
    elif reduction == "batch":
        avg_rmsd = rmsd.masked_fill(num_valid_atoms.squeeze(-1) == 0, 0).sum() / (
            (num_valid_atoms > 0).sum() + 1e-8
        )
        return avg_rmsd
    else:
        raise ValueError(reduction)


@torch.no_grad()
@autocast(enabled=False)
def compute_affine_and_rmsd(
    mobile: torch.Tensor,
    target: torch.Tensor,
    atom_exists_mask: torch.Tensor | None = None,
    sequence_id: torch.Tensor | None = None,
) -> Tuple[Affine3D, torch.Tensor]:
    """
    Compute RMSD between two batches of structures with support for masking invalid atoms using PyTorch.

    Args:
    - mobile (torch.Tensor): Batch of coordinates of structure to be superimposed in shape (B, N, 3)
    - target (torch.Tensor): Batch of coordinates of structure that is fixed in shape (B, N, 3)
    - atom_exists_mask (torch.Tensor, optional): Mask for Whether an atom exists of shape (B, N)
    - sequence_id (torch.Tensor, optional): Sequence id tensor for binpacking.

    Returns:
    - affine (Affine3D): Transformation between mobile and target structure
    - avg_rmsd (torch.Tensor): Average Root Mean Square Deviation between the structures for each batch
    """

    (
        centered_mobile,
        centroid_mobile,
        centered_target,
        centroid_target,
        rotation_matrix,
        num_valid_atoms,
    ) = compute_alignment_tensors(
        mobile=mobile,
        target=target,
        atom_exists_mask=atom_exists_mask,
        sequence_id=sequence_id,
    )

    # Apply rotation to mobile centroid
    translation = torch.matmul(-centroid_mobile, rotation_matrix) + centroid_target
    affine = Affine3D.from_tensor_pair(
        translation, rotation_matrix.unsqueeze(dim=-3).transpose(-2, -1)
    )

    # Apply transformation to centered structure to compute rmsd
    rotated_mobile = torch.matmul(centered_mobile, rotation_matrix)
    avg_rmsd = compute_rmsd_no_alignment(
        rotated_mobile,
        centered_target,
        num_valid_atoms,
        reduction="batch",
    )

    return affine, avg_rmsd