File size: 15,795 Bytes
224a33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import torch
from torch import nn, einsum, broadcast_tensors
import torch.nn.functional as F

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

# helper functions

def exists(val):
    return val is not None

def safe_div(num, den, eps = 1e-8):
    res = num.div(den.clamp(min = eps))
    res.masked_fill_(den == 0, 0.)
    return res

def batched_index_select(values, indices, dim = 1):
    value_dims = values.shape[(dim + 1):]
    values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
    indices = indices[(..., *((None,) * len(value_dims)))]
    indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
    value_expand_len = len(indices_shape) - (dim + 1)
    values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]

    value_expand_shape = [-1] * len(values.shape)
    expand_slice = slice(dim, (dim + value_expand_len))
    value_expand_shape[expand_slice] = indices.shape[expand_slice]
    values = values.expand(*value_expand_shape)

    dim += value_expand_len
    return values.gather(dim, indices)

def fourier_encode_dist(x, num_encodings = 4, include_self = True):
    x = x.unsqueeze(-1)
    device, dtype, orig_x = x.device, x.dtype, x
    scales = 2 ** torch.arange(num_encodings, device = device, dtype = dtype)
    x = x / scales
    x = torch.cat([x.sin(), x.cos()], dim=-1)
    x = torch.cat((x, orig_x), dim = -1) if include_self else x
    return x

def embedd_token(x, dims, layers):
    stop_concat = -len(dims)
    to_embedd = x[:, stop_concat:].long()
    for i,emb_layer in enumerate(layers):
        # the portion corresponding to `to_embedd` part gets dropped
        x = torch.cat([ x[:, :stop_concat], 
                        emb_layer( to_embedd[:, i] ) 
                      ], dim=-1)
        stop_concat = x.shape[-1]
    return x

# swish activation fallback

class Swish_(nn.Module):
    def forward(self, x):
        return x * x.sigmoid()

SiLU = nn.SiLU if hasattr(nn, 'SiLU') else Swish_

# helper classes

# this follows the same strategy for normalization as done in SE3 Transformers
# https://github.com/lucidrains/se3-transformer-pytorch/blob/main/se3_transformer_pytorch/se3_transformer_pytorch.py#L95

class CoorsNorm(nn.Module):
    def __init__(self, eps = 1e-8, scale_init = 1.):
        super().__init__()
        self.eps = eps
        scale = torch.zeros(1).fill_(scale_init)
        self.scale = nn.Parameter(scale)

    def forward(self, coors):
        norm = coors.norm(dim = -1, keepdim = True)
        normed_coors = coors / norm.clamp(min = self.eps)
        return normed_coors * self.scale

# global linear attention

class Attention(nn.Module):
    def __init__(self, dim, heads = 8, dim_head = 64):
        super().__init__()
        inner_dim = heads * dim_head
        self.heads = heads
        self.scale = dim_head ** -0.5

        self.to_q = nn.Linear(dim, inner_dim, bias = False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
        self.to_out = nn.Linear(inner_dim, dim)

    def forward(self, x, context, mask = None):
        h = self.heads

        q = self.to_q(x)
        kv = self.to_kv(context).chunk(2, dim = -1)

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, *kv))
        dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale

        if exists(mask):
            mask_value = -torch.finfo(dots.dtype).max
            mask = rearrange(mask, 'b n -> b () () n')
            dots.masked_fill_(~mask, mask_value)

        attn = dots.softmax(dim = -1)
        out = einsum('b h i j, b h j d -> b h i d', attn, v)

        out = rearrange(out, 'b h n d -> b n (h d)', h = h)
        return self.to_out(out)

class GlobalLinearAttention(nn.Module):
    def __init__(
        self,
        *,
        dim,
        heads = 8,
        dim_head = 64
    ):
        super().__init__()
        self.norm_seq = nn.LayerNorm(dim)
        self.norm_queries = nn.LayerNorm(dim)
        self.attn1 = Attention(dim, heads, dim_head)
        self.attn2 = Attention(dim, heads, dim_head)

        self.ff = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, dim * 4),
            nn.GELU(),
            nn.Linear(dim * 4, dim)
        )

    def forward(self, x, queries, mask = None):
        res_x, res_queries = x, queries
        x, queries = self.norm_seq(x), self.norm_queries(queries)

        induced = self.attn1(queries, x, mask = mask)
        out     = self.attn2(x, induced)

        x =  out + res_x
        queries = induced + res_queries

        x = self.ff(x) + x
        return x, queries

# classes

class EGNN(nn.Module):
    def __init__(
        self,
        dim,
        edge_dim = 0,
        m_dim = 16,
        fourier_features = 0,
        num_nearest_neighbors = 0,
        dropout = 0.0,
        init_eps = 1e-3,
        norm_feats = False,
        norm_coors = False,
        norm_coors_scale_init = 1e-2,
        update_feats = True,
        update_coors = True,
        only_sparse_neighbors = False,
        valid_radius = float('inf'),
        m_pool_method = 'sum',
        soft_edges = False,
        coor_weights_clamp_value = None
    ):
        super().__init__()
        assert m_pool_method in {'sum', 'mean'}, 'pool method must be either sum or mean'
        assert update_feats or update_coors, 'you must update either features, coordinates, or both'

        self.fourier_features = fourier_features

        edge_input_dim = (fourier_features * 2) + (dim * 2) + edge_dim + 1
        dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()

        self.edge_mlp = nn.Sequential(
            nn.Linear(edge_input_dim, edge_input_dim * 2),
            dropout,
            SiLU(),
            nn.Linear(edge_input_dim * 2, m_dim),
            SiLU()
        )

        self.edge_gate = nn.Sequential(
            nn.Linear(m_dim, 1),
            nn.Sigmoid()
        ) if soft_edges else None

        self.node_norm = nn.LayerNorm(dim) if norm_feats else nn.Identity()
        self.coors_norm = CoorsNorm(scale_init = norm_coors_scale_init) if norm_coors else nn.Identity()

        self.m_pool_method = m_pool_method

        self.node_mlp = nn.Sequential(
            nn.Linear(dim + m_dim, dim * 2),
            dropout,
            SiLU(),
            nn.Linear(dim * 2, dim),
        ) if update_feats else None

        self.coors_mlp = nn.Sequential(
            nn.Linear(m_dim, m_dim * 4),
            dropout,
            SiLU(),
            nn.Linear(m_dim * 4, 1)
        ) if update_coors else None

        self.num_nearest_neighbors = num_nearest_neighbors
        self.only_sparse_neighbors = only_sparse_neighbors
        self.valid_radius = valid_radius

        self.coor_weights_clamp_value = coor_weights_clamp_value

        self.init_eps = init_eps
        self.apply(self.init_)

    def init_(self, module):
        if type(module) in {nn.Linear}:
            # seems to be needed to keep the network from exploding to NaN with greater depths
            nn.init.normal_(module.weight, std = self.init_eps)

    def forward(self, feats, coors, edges = None, mask = None, adj_mat = None):
        b, n, d, device, fourier_features, num_nearest, valid_radius, only_sparse_neighbors = *feats.shape, feats.device, self.fourier_features, self.num_nearest_neighbors, self.valid_radius, self.only_sparse_neighbors

        if exists(mask):
            num_nodes = mask.sum(dim = -1)

        use_nearest = num_nearest > 0 or only_sparse_neighbors

        rel_coors = rearrange(coors, 'b i d -> b i () d') - rearrange(coors, 'b j d -> b () j d')
        rel_dist = (rel_coors ** 2).sum(dim = -1, keepdim = True)

        i = j = n

        if use_nearest:
            ranking = rel_dist[..., 0].clone()

            if exists(mask):
                rank_mask = mask[:, :, None] * mask[:, None, :]
                ranking.masked_fill_(~rank_mask, 1e5)

            if exists(adj_mat):
                if len(adj_mat.shape) == 2:
                    adj_mat = repeat(adj_mat.clone(), 'i j -> b i j', b = b)

                if only_sparse_neighbors:
                    num_nearest = int(adj_mat.float().sum(dim = -1).max().item())
                    valid_radius = 0

                self_mask = rearrange(torch.eye(n, device = device, dtype = torch.bool), 'i j -> () i j')

                adj_mat = adj_mat.masked_fill(self_mask, False)
                ranking.masked_fill_(self_mask, -1.)
                ranking.masked_fill_(adj_mat, 0.)

            nbhd_ranking, nbhd_indices = ranking.topk(num_nearest, dim = -1, largest = False)

            nbhd_mask = nbhd_ranking <= valid_radius

            rel_coors = batched_index_select(rel_coors, nbhd_indices, dim = 2)
            rel_dist = batched_index_select(rel_dist, nbhd_indices, dim = 2)

            if exists(edges):
                edges = batched_index_select(edges, nbhd_indices, dim = 2)

            j = num_nearest

        if fourier_features > 0:
            rel_dist = fourier_encode_dist(rel_dist, num_encodings = fourier_features)
            rel_dist = rearrange(rel_dist, 'b i j () d -> b i j d')

        if use_nearest:
            feats_j = batched_index_select(feats, nbhd_indices, dim = 1)
        else:
            feats_j = rearrange(feats, 'b j d -> b () j d')

        feats_i = rearrange(feats, 'b i d -> b i () d')
        feats_i, feats_j = broadcast_tensors(feats_i, feats_j)

        edge_input = torch.cat((feats_i, feats_j, rel_dist), dim = -1)

        if exists(edges):
            edge_input = torch.cat((edge_input, edges), dim = -1)

        m_ij = self.edge_mlp(edge_input)

        if exists(self.edge_gate):
            m_ij = m_ij * self.edge_gate(m_ij)

        if exists(mask):
            mask_i = rearrange(mask, 'b i -> b i ()')

            if use_nearest:
                mask_j = batched_index_select(mask, nbhd_indices, dim = 1)
                mask = (mask_i * mask_j) & nbhd_mask
            else:
                mask_j = rearrange(mask, 'b j -> b () j')
                mask = mask_i * mask_j

        if exists(self.coors_mlp):
            coor_weights = self.coors_mlp(m_ij)
            coor_weights = rearrange(coor_weights, 'b i j () -> b i j')

            rel_coors = self.coors_norm(rel_coors)

            if exists(mask):
                coor_weights.masked_fill_(~mask, 0.)

            if exists(self.coor_weights_clamp_value):
                clamp_value = self.coor_weights_clamp_value
                coor_weights.clamp_(min = -clamp_value, max = clamp_value)

            coors_out = einsum('b i j, b i j c -> b i c', coor_weights, rel_coors) + coors
        else:
            coors_out = coors

        if exists(self.node_mlp):
            if exists(mask):
                m_ij_mask = rearrange(mask, '... -> ... ()')
                m_ij = m_ij.masked_fill(~m_ij_mask, 0.)

            if self.m_pool_method == 'mean':
                if exists(mask):
                    # masked mean
                    mask_sum = m_ij_mask.sum(dim = -2)
                    m_i = safe_div(m_ij.sum(dim = -2), mask_sum)
                else:
                    m_i = m_ij.mean(dim = -2)

            elif self.m_pool_method == 'sum':
                m_i = m_ij.sum(dim = -2)

            normed_feats = self.node_norm(feats)
            node_mlp_input = torch.cat((normed_feats, m_i), dim = -1)
            node_out = self.node_mlp(node_mlp_input) + feats
        else:
            node_out = feats

        return node_out, coors_out

class EGNN_Network(nn.Module):
    def __init__(
        self,
        *,
        depth,
        dim,
        num_tokens = None,
        num_edge_tokens = None,
        num_positions = None,
        edge_dim = 0,
        num_adj_degrees = None,
        adj_dim = 0,
        global_linear_attn_every = 0,
        global_linear_attn_heads = 8,
        global_linear_attn_dim_head = 64,
        num_global_tokens = 4,
        **kwargs
    ):
        super().__init__()
        assert not (exists(num_adj_degrees) and num_adj_degrees < 1), 'make sure adjacent degrees is greater than 1'
        self.num_positions = num_positions

        self.token_emb = nn.Embedding(num_tokens, dim) if exists(num_tokens) else None
        self.pos_emb = nn.Embedding(num_positions, dim) if exists(num_positions) else None
        self.edge_emb = nn.Embedding(num_edge_tokens, edge_dim) if exists(num_edge_tokens) else None
        self.has_edges = edge_dim > 0

        self.num_adj_degrees = num_adj_degrees
        self.adj_emb = nn.Embedding(num_adj_degrees + 1, adj_dim) if exists(num_adj_degrees) and adj_dim > 0 else None

        edge_dim = edge_dim if self.has_edges else 0
        adj_dim = adj_dim if exists(num_adj_degrees) else 0

        has_global_attn = global_linear_attn_every > 0
        self.global_tokens = None
        if has_global_attn:
            self.global_tokens = nn.Parameter(torch.randn(num_global_tokens, dim))

        self.layers = nn.ModuleList([])
        for ind in range(depth):
            is_global_layer = has_global_attn and (ind % global_linear_attn_every) == 0

            self.layers.append(nn.ModuleList([
                GlobalLinearAttention(dim = dim, heads = global_linear_attn_heads, dim_head = global_linear_attn_dim_head) if is_global_layer else None,
                EGNN(dim = dim, edge_dim = (edge_dim + adj_dim), norm_feats = True, **kwargs),
            ]))

    def forward(
        self,
        feats,
        coors,
        adj_mat = None,
        edges = None,
        mask = None,
        return_coor_changes = False
    ):
        b, device = feats.shape[0], feats.device

        if exists(self.token_emb):
            feats = self.token_emb(feats)

        if exists(self.pos_emb):
            n = feats.shape[1]
            assert n <= self.num_positions, f'given sequence length {n} must be less than the number of positions {self.num_positions} set at init'
            pos_emb = self.pos_emb(torch.arange(n, device = device))
            feats += rearrange(pos_emb, 'n d -> () n d')

        if exists(edges) and exists(self.edge_emb):
            edges = self.edge_emb(edges)

        # create N-degrees adjacent matrix from 1st degree connections
        if exists(self.num_adj_degrees):
            assert exists(adj_mat), 'adjacency matrix must be passed in (keyword argument adj_mat)'

            if len(adj_mat.shape) == 2:
                adj_mat = repeat(adj_mat.clone(), 'i j -> b i j', b = b)

            adj_indices = adj_mat.clone().long()

            for ind in range(self.num_adj_degrees - 1):
                degree = ind + 2

                next_degree_adj_mat = (adj_mat.float() @ adj_mat.float()) > 0
                next_degree_mask = (next_degree_adj_mat.float() - adj_mat.float()).bool()
                adj_indices.masked_fill_(next_degree_mask, degree)
                adj_mat = next_degree_adj_mat.clone()

            if exists(self.adj_emb):
                adj_emb = self.adj_emb(adj_indices)
                edges = torch.cat((edges, adj_emb), dim = -1) if exists(edges) else adj_emb

        # setup global attention

        global_tokens = None
        if exists(self.global_tokens):
            global_tokens = repeat(self.global_tokens, 'n d -> b n d', b = b)

        # go through layers

        coor_changes = [coors]

        for global_attn, egnn in self.layers:
            if exists(global_attn):
                feats, global_tokens = global_attn(feats, global_tokens, mask = mask)

            feats, coors = egnn(feats, coors, adj_mat = adj_mat, edges = edges, mask = mask)
            coor_changes.append(coors)

        if return_coor_changes:
            return feats, coors, coor_changes

        return feats, coors