Spaces:
Running
Running
File size: 15,795 Bytes
224a33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
import torch
from torch import nn, einsum, broadcast_tensors
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helper functions
def exists(val):
return val is not None
def safe_div(num, den, eps = 1e-8):
res = num.div(den.clamp(min = eps))
res.masked_fill_(den == 0, 0.)
return res
def batched_index_select(values, indices, dim = 1):
value_dims = values.shape[(dim + 1):]
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
indices = indices[(..., *((None,) * len(value_dims)))]
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
value_expand_len = len(indices_shape) - (dim + 1)
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]
value_expand_shape = [-1] * len(values.shape)
expand_slice = slice(dim, (dim + value_expand_len))
value_expand_shape[expand_slice] = indices.shape[expand_slice]
values = values.expand(*value_expand_shape)
dim += value_expand_len
return values.gather(dim, indices)
def fourier_encode_dist(x, num_encodings = 4, include_self = True):
x = x.unsqueeze(-1)
device, dtype, orig_x = x.device, x.dtype, x
scales = 2 ** torch.arange(num_encodings, device = device, dtype = dtype)
x = x / scales
x = torch.cat([x.sin(), x.cos()], dim=-1)
x = torch.cat((x, orig_x), dim = -1) if include_self else x
return x
def embedd_token(x, dims, layers):
stop_concat = -len(dims)
to_embedd = x[:, stop_concat:].long()
for i,emb_layer in enumerate(layers):
# the portion corresponding to `to_embedd` part gets dropped
x = torch.cat([ x[:, :stop_concat],
emb_layer( to_embedd[:, i] )
], dim=-1)
stop_concat = x.shape[-1]
return x
# swish activation fallback
class Swish_(nn.Module):
def forward(self, x):
return x * x.sigmoid()
SiLU = nn.SiLU if hasattr(nn, 'SiLU') else Swish_
# helper classes
# this follows the same strategy for normalization as done in SE3 Transformers
# https://github.com/lucidrains/se3-transformer-pytorch/blob/main/se3_transformer_pytorch/se3_transformer_pytorch.py#L95
class CoorsNorm(nn.Module):
def __init__(self, eps = 1e-8, scale_init = 1.):
super().__init__()
self.eps = eps
scale = torch.zeros(1).fill_(scale_init)
self.scale = nn.Parameter(scale)
def forward(self, coors):
norm = coors.norm(dim = -1, keepdim = True)
normed_coors = coors / norm.clamp(min = self.eps)
return normed_coors * self.scale
# global linear attention
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = heads * dim_head
self.heads = heads
self.scale = dim_head ** -0.5
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.to_out = nn.Linear(inner_dim, dim)
def forward(self, x, context, mask = None):
h = self.heads
q = self.to_q(x)
kv = self.to_kv(context).chunk(2, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, *kv))
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
if exists(mask):
mask_value = -torch.finfo(dots.dtype).max
mask = rearrange(mask, 'b n -> b () () n')
dots.masked_fill_(~mask, mask_value)
attn = dots.softmax(dim = -1)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)', h = h)
return self.to_out(out)
class GlobalLinearAttention(nn.Module):
def __init__(
self,
*,
dim,
heads = 8,
dim_head = 64
):
super().__init__()
self.norm_seq = nn.LayerNorm(dim)
self.norm_queries = nn.LayerNorm(dim)
self.attn1 = Attention(dim, heads, dim_head)
self.attn2 = Attention(dim, heads, dim_head)
self.ff = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim * 4),
nn.GELU(),
nn.Linear(dim * 4, dim)
)
def forward(self, x, queries, mask = None):
res_x, res_queries = x, queries
x, queries = self.norm_seq(x), self.norm_queries(queries)
induced = self.attn1(queries, x, mask = mask)
out = self.attn2(x, induced)
x = out + res_x
queries = induced + res_queries
x = self.ff(x) + x
return x, queries
# classes
class EGNN(nn.Module):
def __init__(
self,
dim,
edge_dim = 0,
m_dim = 16,
fourier_features = 0,
num_nearest_neighbors = 0,
dropout = 0.0,
init_eps = 1e-3,
norm_feats = False,
norm_coors = False,
norm_coors_scale_init = 1e-2,
update_feats = True,
update_coors = True,
only_sparse_neighbors = False,
valid_radius = float('inf'),
m_pool_method = 'sum',
soft_edges = False,
coor_weights_clamp_value = None
):
super().__init__()
assert m_pool_method in {'sum', 'mean'}, 'pool method must be either sum or mean'
assert update_feats or update_coors, 'you must update either features, coordinates, or both'
self.fourier_features = fourier_features
edge_input_dim = (fourier_features * 2) + (dim * 2) + edge_dim + 1
dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
self.edge_mlp = nn.Sequential(
nn.Linear(edge_input_dim, edge_input_dim * 2),
dropout,
SiLU(),
nn.Linear(edge_input_dim * 2, m_dim),
SiLU()
)
self.edge_gate = nn.Sequential(
nn.Linear(m_dim, 1),
nn.Sigmoid()
) if soft_edges else None
self.node_norm = nn.LayerNorm(dim) if norm_feats else nn.Identity()
self.coors_norm = CoorsNorm(scale_init = norm_coors_scale_init) if norm_coors else nn.Identity()
self.m_pool_method = m_pool_method
self.node_mlp = nn.Sequential(
nn.Linear(dim + m_dim, dim * 2),
dropout,
SiLU(),
nn.Linear(dim * 2, dim),
) if update_feats else None
self.coors_mlp = nn.Sequential(
nn.Linear(m_dim, m_dim * 4),
dropout,
SiLU(),
nn.Linear(m_dim * 4, 1)
) if update_coors else None
self.num_nearest_neighbors = num_nearest_neighbors
self.only_sparse_neighbors = only_sparse_neighbors
self.valid_radius = valid_radius
self.coor_weights_clamp_value = coor_weights_clamp_value
self.init_eps = init_eps
self.apply(self.init_)
def init_(self, module):
if type(module) in {nn.Linear}:
# seems to be needed to keep the network from exploding to NaN with greater depths
nn.init.normal_(module.weight, std = self.init_eps)
def forward(self, feats, coors, edges = None, mask = None, adj_mat = None):
b, n, d, device, fourier_features, num_nearest, valid_radius, only_sparse_neighbors = *feats.shape, feats.device, self.fourier_features, self.num_nearest_neighbors, self.valid_radius, self.only_sparse_neighbors
if exists(mask):
num_nodes = mask.sum(dim = -1)
use_nearest = num_nearest > 0 or only_sparse_neighbors
rel_coors = rearrange(coors, 'b i d -> b i () d') - rearrange(coors, 'b j d -> b () j d')
rel_dist = (rel_coors ** 2).sum(dim = -1, keepdim = True)
i = j = n
if use_nearest:
ranking = rel_dist[..., 0].clone()
if exists(mask):
rank_mask = mask[:, :, None] * mask[:, None, :]
ranking.masked_fill_(~rank_mask, 1e5)
if exists(adj_mat):
if len(adj_mat.shape) == 2:
adj_mat = repeat(adj_mat.clone(), 'i j -> b i j', b = b)
if only_sparse_neighbors:
num_nearest = int(adj_mat.float().sum(dim = -1).max().item())
valid_radius = 0
self_mask = rearrange(torch.eye(n, device = device, dtype = torch.bool), 'i j -> () i j')
adj_mat = adj_mat.masked_fill(self_mask, False)
ranking.masked_fill_(self_mask, -1.)
ranking.masked_fill_(adj_mat, 0.)
nbhd_ranking, nbhd_indices = ranking.topk(num_nearest, dim = -1, largest = False)
nbhd_mask = nbhd_ranking <= valid_radius
rel_coors = batched_index_select(rel_coors, nbhd_indices, dim = 2)
rel_dist = batched_index_select(rel_dist, nbhd_indices, dim = 2)
if exists(edges):
edges = batched_index_select(edges, nbhd_indices, dim = 2)
j = num_nearest
if fourier_features > 0:
rel_dist = fourier_encode_dist(rel_dist, num_encodings = fourier_features)
rel_dist = rearrange(rel_dist, 'b i j () d -> b i j d')
if use_nearest:
feats_j = batched_index_select(feats, nbhd_indices, dim = 1)
else:
feats_j = rearrange(feats, 'b j d -> b () j d')
feats_i = rearrange(feats, 'b i d -> b i () d')
feats_i, feats_j = broadcast_tensors(feats_i, feats_j)
edge_input = torch.cat((feats_i, feats_j, rel_dist), dim = -1)
if exists(edges):
edge_input = torch.cat((edge_input, edges), dim = -1)
m_ij = self.edge_mlp(edge_input)
if exists(self.edge_gate):
m_ij = m_ij * self.edge_gate(m_ij)
if exists(mask):
mask_i = rearrange(mask, 'b i -> b i ()')
if use_nearest:
mask_j = batched_index_select(mask, nbhd_indices, dim = 1)
mask = (mask_i * mask_j) & nbhd_mask
else:
mask_j = rearrange(mask, 'b j -> b () j')
mask = mask_i * mask_j
if exists(self.coors_mlp):
coor_weights = self.coors_mlp(m_ij)
coor_weights = rearrange(coor_weights, 'b i j () -> b i j')
rel_coors = self.coors_norm(rel_coors)
if exists(mask):
coor_weights.masked_fill_(~mask, 0.)
if exists(self.coor_weights_clamp_value):
clamp_value = self.coor_weights_clamp_value
coor_weights.clamp_(min = -clamp_value, max = clamp_value)
coors_out = einsum('b i j, b i j c -> b i c', coor_weights, rel_coors) + coors
else:
coors_out = coors
if exists(self.node_mlp):
if exists(mask):
m_ij_mask = rearrange(mask, '... -> ... ()')
m_ij = m_ij.masked_fill(~m_ij_mask, 0.)
if self.m_pool_method == 'mean':
if exists(mask):
# masked mean
mask_sum = m_ij_mask.sum(dim = -2)
m_i = safe_div(m_ij.sum(dim = -2), mask_sum)
else:
m_i = m_ij.mean(dim = -2)
elif self.m_pool_method == 'sum':
m_i = m_ij.sum(dim = -2)
normed_feats = self.node_norm(feats)
node_mlp_input = torch.cat((normed_feats, m_i), dim = -1)
node_out = self.node_mlp(node_mlp_input) + feats
else:
node_out = feats
return node_out, coors_out
class EGNN_Network(nn.Module):
def __init__(
self,
*,
depth,
dim,
num_tokens = None,
num_edge_tokens = None,
num_positions = None,
edge_dim = 0,
num_adj_degrees = None,
adj_dim = 0,
global_linear_attn_every = 0,
global_linear_attn_heads = 8,
global_linear_attn_dim_head = 64,
num_global_tokens = 4,
**kwargs
):
super().__init__()
assert not (exists(num_adj_degrees) and num_adj_degrees < 1), 'make sure adjacent degrees is greater than 1'
self.num_positions = num_positions
self.token_emb = nn.Embedding(num_tokens, dim) if exists(num_tokens) else None
self.pos_emb = nn.Embedding(num_positions, dim) if exists(num_positions) else None
self.edge_emb = nn.Embedding(num_edge_tokens, edge_dim) if exists(num_edge_tokens) else None
self.has_edges = edge_dim > 0
self.num_adj_degrees = num_adj_degrees
self.adj_emb = nn.Embedding(num_adj_degrees + 1, adj_dim) if exists(num_adj_degrees) and adj_dim > 0 else None
edge_dim = edge_dim if self.has_edges else 0
adj_dim = adj_dim if exists(num_adj_degrees) else 0
has_global_attn = global_linear_attn_every > 0
self.global_tokens = None
if has_global_attn:
self.global_tokens = nn.Parameter(torch.randn(num_global_tokens, dim))
self.layers = nn.ModuleList([])
for ind in range(depth):
is_global_layer = has_global_attn and (ind % global_linear_attn_every) == 0
self.layers.append(nn.ModuleList([
GlobalLinearAttention(dim = dim, heads = global_linear_attn_heads, dim_head = global_linear_attn_dim_head) if is_global_layer else None,
EGNN(dim = dim, edge_dim = (edge_dim + adj_dim), norm_feats = True, **kwargs),
]))
def forward(
self,
feats,
coors,
adj_mat = None,
edges = None,
mask = None,
return_coor_changes = False
):
b, device = feats.shape[0], feats.device
if exists(self.token_emb):
feats = self.token_emb(feats)
if exists(self.pos_emb):
n = feats.shape[1]
assert n <= self.num_positions, f'given sequence length {n} must be less than the number of positions {self.num_positions} set at init'
pos_emb = self.pos_emb(torch.arange(n, device = device))
feats += rearrange(pos_emb, 'n d -> () n d')
if exists(edges) and exists(self.edge_emb):
edges = self.edge_emb(edges)
# create N-degrees adjacent matrix from 1st degree connections
if exists(self.num_adj_degrees):
assert exists(adj_mat), 'adjacency matrix must be passed in (keyword argument adj_mat)'
if len(adj_mat.shape) == 2:
adj_mat = repeat(adj_mat.clone(), 'i j -> b i j', b = b)
adj_indices = adj_mat.clone().long()
for ind in range(self.num_adj_degrees - 1):
degree = ind + 2
next_degree_adj_mat = (adj_mat.float() @ adj_mat.float()) > 0
next_degree_mask = (next_degree_adj_mat.float() - adj_mat.float()).bool()
adj_indices.masked_fill_(next_degree_mask, degree)
adj_mat = next_degree_adj_mat.clone()
if exists(self.adj_emb):
adj_emb = self.adj_emb(adj_indices)
edges = torch.cat((edges, adj_emb), dim = -1) if exists(edges) else adj_emb
# setup global attention
global_tokens = None
if exists(self.global_tokens):
global_tokens = repeat(self.global_tokens, 'n d -> b n d', b = b)
# go through layers
coor_changes = [coors]
for global_attn, egnn in self.layers:
if exists(global_attn):
feats, global_tokens = global_attn(feats, global_tokens, mask = mask)
feats, coors = egnn(feats, coors, adj_mat = adj_mat, edges = edges, mask = mask)
coor_changes.append(coors)
if return_coor_changes:
return feats, coors, coor_changes
return feats, coors
|