Spaces:
Running
Running
File size: 19,246 Bytes
224a33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import torch
from torch import nn
from einops import rearrange
from typing import List
import torch_geometric
from torch_geometric.nn import MessagePassing
from torch_geometric.typing import Adj, Size, OptTensor, Tensor
from .egnn_pytorch import *
# global linear attention
class Attention_Sparse(Attention):
def __init__(self, dim, heads = 8, dim_head = 64):
""" Wraps the attention class to operate with pytorch-geometric inputs. """
super(Attention_Sparse, self).__init__(dim, heads = 8, dim_head = 64)
def sparse_forward(self, x, context, batch=None, batch_uniques=None, mask=None):
assert batch is not None or batch_uniques is not None, "Batch/(uniques) must be passed for block_sparse_attn"
if batch_uniques is None:
batch_uniques = torch.unique(batch, return_counts=True)
# only one example in batch - do dense - faster
if batch_uniques[0].shape[0] == 1:
x, context = map(lambda t: rearrange(t, 'h d -> () h d'), (x, context))
return self.forward(x, context, mask=None).squeeze() # get rid of batch dim
# multiple examples in batch - do block-sparse by dense loop
else:
x_list = []
aux_count = 0
for bi,n_idxs in zip(*batch_uniques):
x_list.append(
self.sparse_forward(
x[aux_count:aux_count+n_idxs],
context[aux_count:aux_count+n_idxs],
batch_uniques = (bi.unsqueeze(-1), n_idxs.unsqueeze(-1))
)
)
return torch.cat(x_list, dim=0)
class GlobalLinearAttention_Sparse(nn.Module):
def __init__(
self,
*,
dim,
heads = 8,
dim_head = 64
):
super().__init__()
self.norm_seq = torch_geometric.nn.norm.LayerNorm(dim)
self.norm_queries = torch_geometric.nn.norm.LayerNorm(dim)
self.attn1 = Attention_Sparse(dim, heads, dim_head)
self.attn2 = Attention_Sparse(dim, heads, dim_head)
# can't concat pyg norms with torch sequentials
self.ff_norm = torch_geometric.nn.norm.LayerNorm(dim)
self.ff = nn.Sequential(
nn.Linear(dim, dim * 4),
nn.GELU(),
nn.Linear(dim * 4, dim)
)
def forward(self, x, queries, batch=None, batch_uniques=None, mask = None):
res_x, res_queries = x, queries
x, queries = self.norm_seq(x, batch=batch), self.norm_queries(queries, batch=batch)
induced = self.attn1.sparse_forward(queries, x, batch=batch, batch_uniques=batch_uniques, mask = mask)
out = self.attn2.sparse_forward(x, induced, batch=batch, batch_uniques=batch_uniques)
x = out + res_x
queries = induced + res_queries
x_norm = self.ff_norm(x, batch=batch)
x = self.ff(x_norm) + x_norm
return x, queries
# define pytorch-geometric equivalents
class EGNN_Sparse(MessagePassing):
""" Different from the above since it separates the edge assignment
from the computation (this allows for great reduction in time and
computations when the graph is locally or sparse connected).
* aggr: one of ["add", "mean", "max"]
"""
def __init__(
self,
feats_dim,
pos_dim=3,
edge_attr_dim = 0,
m_dim = 16,
fourier_features = 0,
soft_edge = 0,
norm_feats = False,
norm_coors = False,
norm_coors_scale_init = 1e-2,
update_feats = True,
update_coors = False,
dropout = 0.,
coor_weights_clamp_value = None,
aggr = "add",
mlp_num = 2,
**kwargs
):
assert aggr in {'add', 'sum', 'max', 'mean'}, 'pool method must be a valid option'
assert update_feats or update_coors, 'you must update either features, coordinates, or both'
kwargs.setdefault('aggr', aggr)
super(EGNN_Sparse, self).__init__(**kwargs)
# model params
self.fourier_features = fourier_features
self.feats_dim = feats_dim
self.pos_dim = pos_dim
self.m_dim = m_dim
self.soft_edge = soft_edge
self.norm_feats = norm_feats
self.norm_coors = norm_coors
self.update_coors = update_coors
self.update_feats = update_feats
self.coor_weights_clamp_value = None
self.mlp_num = mlp_num
self.edge_input_dim = (fourier_features * 2) + edge_attr_dim + 1 + (feats_dim * 2)
self.dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
# EDGES
if self.mlp_num >2:
self.edge_mlp = nn.Sequential(
nn.Linear(self.edge_input_dim, self.edge_input_dim * 8),
self.dropout,
SiLU(),
nn.Linear(self.edge_input_dim * 8, self.edge_input_dim * 4),
self.dropout,
SiLU(),
nn.Linear(self.edge_input_dim * 4, self.edge_input_dim * 2),
self.dropout,
SiLU(),
nn.Linear(self.edge_input_dim * 2, m_dim),
SiLU(),
) if update_feats else None
else:
self.edge_mlp = nn.Sequential(
nn.Linear(self.edge_input_dim, self.edge_input_dim * 2),
self.dropout,
SiLU(),
nn.Linear(self.edge_input_dim * 2, m_dim),
SiLU()
)
self.edge_weight = nn.Sequential(nn.Linear(m_dim, 1),
nn.Sigmoid()
) if soft_edge else None
# NODES - can't do identity in node_norm bc pyg expects 2 inputs, but identity expects 1.
self.node_norm = torch_geometric.nn.norm.LayerNorm(feats_dim) if norm_feats else None
self.coors_norm = CoorsNorm(scale_init = norm_coors_scale_init) if norm_coors else nn.Identity()
if self.mlp_num >2:
self.node_mlp = nn.Sequential(
nn.Linear(feats_dim + m_dim, feats_dim * 8),
self.dropout,
SiLU(),
nn.Linear(feats_dim * 8, feats_dim * 4),
self.dropout,
SiLU(),
nn.Linear(feats_dim * 4, feats_dim * 2),
self.dropout,
SiLU(),
nn.Linear(feats_dim * 2, feats_dim),
) if update_feats else None
else:
self.node_mlp = nn.Sequential(
nn.Linear(feats_dim + m_dim, feats_dim * 2),
self.dropout,
SiLU(),
nn.Linear(feats_dim * 2, feats_dim),
) if update_feats else None
# COORS
self.coors_mlp = nn.Sequential(
nn.Linear(m_dim, m_dim * 4),
self.dropout,
SiLU(),
nn.Linear(self.m_dim * 4, 1)
) if update_coors else None
self.apply(self.init_)
def init_(self, module):
if type(module) in {nn.Linear}:
# seems to be needed to keep the network from exploding to NaN with greater depths
nn.init.xavier_normal_(module.weight)
nn.init.zeros_(module.bias)
def forward(self, x: Tensor, edge_index: Adj,
edge_attr: OptTensor = None, batch: Adj = None,
angle_data: List = None, size: Size = None) -> Tensor:
""" Inputs:
* x: (n_points, d) where d is pos_dims + feat_dims
* edge_index: (2, n_edges)
* edge_attr: tensor (n_edges, n_feats) excluding basic distance feats.
* batch: (n_points,) long tensor. specifies xloud belonging for each point
* angle_data: list of tensors (levels, n_edges_i, n_length_path) long tensor.
* size: None
"""
coors, feats = x[:, :self.pos_dim], x[:, self.pos_dim:]
rel_coors = coors[edge_index[0]] - coors[edge_index[1]]
rel_dist = (rel_coors ** 2).sum(dim=-1, keepdim=True)
if self.fourier_features > 0:
rel_dist = fourier_encode_dist(rel_dist, num_encodings = self.fourier_features)
rel_dist = rearrange(rel_dist, 'n () d -> n d')
if exists(edge_attr):
edge_attr_feats = torch.cat([edge_attr, rel_dist], dim=-1)
else:
edge_attr_feats = rel_dist
hidden_out, coors_out = self.propagate(edge_index, x=feats, edge_attr=edge_attr_feats,
coors=coors, rel_coors=rel_coors,
batch=batch)
return torch.cat([coors_out, hidden_out], dim=-1)
def message(self, x_i, x_j, edge_attr) -> Tensor:
m_ij = self.edge_mlp(torch.cat([x_i, x_j, edge_attr], dim=-1) )
return m_ij
def propagate(self, edge_index: Adj, size: Size = None, **kwargs):
"""The initial call to start propagating messages.
Args:
`edge_index` holds the indices of a general (sparse)
assignment matrix of shape :obj:`[N, M]`.
size (tuple, optional) if none, the size will be inferred
and assumed to be quadratic.
**kwargs: Any additional data which is needed to construct and
aggregate messages, and to update node embeddings.
"""
size = self._check_input(edge_index, size)
coll_dict = self._collect(self._user_args, edge_index, size, kwargs)
msg_kwargs = self.inspector.collect_param_data('message', coll_dict)
aggr_kwargs = self.inspector.collect_param_data('aggregate', coll_dict)
update_kwargs = self.inspector.collect_param_data('update', coll_dict)
# get messages
m_ij = self.message(**msg_kwargs)
# update coors if specified
if self.update_coors:
coor_wij = self.coors_mlp(m_ij)
# clamp if arg is set
if self.coor_weights_clamp_value:
coor_weights_clamp_value = self.coor_weights_clamp_value
# coor_weights.clamp_(min = -clamp_value, max = clamp_value)
# normalize if needed
kwargs["rel_coors"] = self.coors_norm(kwargs["rel_coors"])
mhat_i = self.aggregate(coor_wij * kwargs["rel_coors"], **aggr_kwargs)
coors_out = kwargs["coors"] + mhat_i
else:
coors_out = kwargs["coors"]
# update feats if specified
if self.update_feats:
# weight the edges if arg is passed
if self.soft_edge:
m_ij = m_ij * self.edge_weight(m_ij)
m_i = self.aggregate(m_ij, **aggr_kwargs)
hidden_feats = self.node_norm(kwargs["x"], kwargs["batch"]) if self.node_norm else kwargs["x"]
hidden_out = self.node_mlp( torch.cat([hidden_feats, m_i], dim = -1) )
hidden_out = kwargs["x"] + hidden_out
else:
hidden_out = kwargs["x"]
# return tuple
return self.update((hidden_out, coors_out), **update_kwargs)
def __repr__(self):
dict_print = {}
return "E(n)-GNN Layer for Graphs " + str(self.__dict__)
class EGNN_Sparse_Network(nn.Module):
r"""Sample GNN model architecture that uses the EGNN-Sparse
message passing layer to learn over point clouds.
Main MPNN layer introduced in https://arxiv.org/abs/2102.09844v1
Inputs will be standard GNN: x, edge_index, edge_attr, batch, ...
Args:
* n_layers: int. number of MPNN layers
* ... : same interpretation as the base layer.
* embedding_nums: list. number of unique keys to embedd. for points
1 entry per embedding needed.
* embedding_dims: list. point - number of dimensions of
the resulting embedding. 1 entry per embedding needed.
* edge_embedding_nums: list. number of unique keys to embedd. for edges.
1 entry per embedding needed.
* edge_embedding_dims: list. point - number of dimensions of
the resulting embedding. 1 entry per embedding needed.
* recalc: int. Recalculate edge feats every `recalc` MPNN layers. 0 for no recalc
* verbose: bool. verbosity level.
-----
Diff with normal layer: one has to do preprocessing before (radius, global token, ...)
"""
def __init__(self, n_layers, feats_dim,
pos_dim = 3,
edge_attr_dim = 0,
m_dim = 16,
fourier_features = 0,
soft_edge = 0,
embedding_nums=[],
embedding_dims=[],
edge_embedding_nums=[],
edge_embedding_dims=[],
update_coors=True,
update_feats=True,
norm_feats=True,
norm_coors=False,
norm_coors_scale_init = 1e-2,
dropout=0.,
coor_weights_clamp_value=None,
aggr="add",
global_linear_attn_every = 0,
global_linear_attn_heads = 8,
global_linear_attn_dim_head = 64,
num_global_tokens = 4,
recalc=0 ,):
super().__init__()
self.n_layers = n_layers
# Embeddings? solve here
self.embedding_nums = embedding_nums
self.embedding_dims = embedding_dims
self.emb_layers = nn.ModuleList()
self.edge_embedding_nums = edge_embedding_nums
self.edge_embedding_dims = edge_embedding_dims
self.edge_emb_layers = nn.ModuleList()
# instantiate point and edge embedding layers
for i in range( len(self.embedding_dims) ):
self.emb_layers.append(nn.Embedding(num_embeddings = embedding_nums[i],
embedding_dim = embedding_dims[i]))
feats_dim += embedding_dims[i] - 1
for i in range( len(self.edge_embedding_dims) ):
self.edge_emb_layers.append(nn.Embedding(num_embeddings = edge_embedding_nums[i],
embedding_dim = edge_embedding_dims[i]))
edge_attr_dim += edge_embedding_dims[i] - 1
# rest
self.mpnn_layers = nn.ModuleList()
self.feats_dim = feats_dim
self.pos_dim = pos_dim
self.edge_attr_dim = edge_attr_dim
self.m_dim = m_dim
self.fourier_features = fourier_features
self.soft_edge = soft_edge
self.norm_feats = norm_feats
self.norm_coors = norm_coors
self.norm_coors_scale_init = norm_coors_scale_init
self.update_feats = update_feats
self.update_coors = update_coors
self.dropout = dropout
self.coor_weights_clamp_value = coor_weights_clamp_value
self.recalc = recalc
self.has_global_attn = global_linear_attn_every > 0
self.global_tokens = None
self.global_linear_attn_every = global_linear_attn_every
if self.has_global_attn:
self.global_tokens = nn.Parameter(torch.randn(num_global_tokens, self.feats_dim))
# instantiate layers
for i in range(n_layers):
layer = EGNN_Sparse(feats_dim = feats_dim,
pos_dim = pos_dim,
edge_attr_dim = edge_attr_dim,
m_dim = m_dim,
fourier_features = fourier_features,
soft_edge = soft_edge,
norm_feats = norm_feats,
norm_coors = norm_coors,
norm_coors_scale_init = norm_coors_scale_init,
update_feats = update_feats,
update_coors = update_coors,
dropout = dropout,
coor_weights_clamp_value = coor_weights_clamp_value)
# global attention case
is_global_layer = self.has_global_attn and (i % self.global_linear_attn_every) == 0
if is_global_layer:
attn_layer = GlobalLinearAttention_Sparse(dim = self.feats_dim,
heads = global_linear_attn_heads,
dim_head = global_linear_attn_dim_head)
self.mpnn_layers.append(nn.ModuleList([attn_layer,layer]))
# normal case
else:
self.mpnn_layers.append(layer)
def forward(self, x, edge_index, batch, edge_attr,
bsize=None, recalc_edge=None, verbose=0):
""" Recalculate edge features every `self.recalc_edge` with the
`recalc_edge` function if self.recalc_edge is set.
* x: (N, pos_dim+feats_dim) will be unpacked into coors, feats.
"""
# NODES - Embedd each dim to its target dimensions:
x = embedd_token(x, self.embedding_dims, self.emb_layers)
# regulates wether to embedd edges each layer
edges_need_embedding = False
for i,layer in enumerate(self.mpnn_layers):
# EDGES - Embedd each dim to its target dimensions:
if edges_need_embedding:
edge_attr = embedd_token(edge_attr, self.edge_embedding_dims, self.edge_emb_layers)
edges_need_embedding = False
# attn tokens
self.global_tokens = None
if exists(self.global_tokens):
unique, amounts = torch.unique(batch, return_counts=True)
num_idxs = torch.cat([torch.arange(num_idxs_i,device=self.global_tokens.device) for num_idxs_i in amounts], dim=-1)
global_tokens = self.global_tokens[num_idxs]
# pass layers
is_global_layer = self.has_global_attn and (i % self.global_linear_attn_every) == 0
if not is_global_layer:
x = layer(x, edge_index, edge_attr, batch=batch, size=bsize)
else:
# only pass feats to the attn layer
# unique, amounts = torch.unique(batch, return_counts=True)
x_attn = layer[0](x[:, self.pos_dim:], x[:, self.pos_dim:],batch)[0]#global_tokens
# merge attn-ed feats and coords
x = torch.cat( (x[:, :self.pos_dim], x_attn), dim=-1)
x = layer[-1](x, edge_index, edge_attr, batch=batch, size=bsize)
# recalculate edge info - not needed if last layer
if self.recalc and ((i%self.recalc == 0) and not (i == len(self.mpnn_layers)-1)) :
edge_index, edge_attr, _ = recalc_edge(x) # returns attr, idx, any_other_info
edges_need_embedding = True
return x
def __repr__(self):
return 'EGNN_Sparse_Network of: {0} layers'.format(len(self.mpnn_layers)) |