File size: 5,514 Bytes
224a33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn


from model.egnn import EGNN_Sparse
from model.egnn.utils import get_edge_feature_dims, get_node_feature_dims
from utils.util_functions import get_emb_dim


class nodeEncoder(torch.nn.Module):

    def __init__(self, emb_dim):
        super(nodeEncoder, self).__init__()

        self.atom_embedding_list = torch.nn.ModuleList()
        self.node_feature_dim = get_node_feature_dims()
        for i, dim in enumerate(self.node_feature_dim):
            emb = torch.nn.Linear(dim, emb_dim)
            torch.nn.init.xavier_uniform_(emb.weight.data)
            self.atom_embedding_list.append(emb)

    def forward(self, x):
        x_embedding = 0
        feature_dim_count = 0
        for i in range(len(self.node_feature_dim)):
            x_embedding += self.atom_embedding_list[i](
                x[:, feature_dim_count:feature_dim_count + self.node_feature_dim[i]])
            feature_dim_count += self.node_feature_dim[i]
        return x_embedding


class edgeEncoder(torch.nn.Module):
    def __init__(self, emb_dim):
        super(edgeEncoder, self).__init__()
        self.atom_embedding_list = torch.nn.ModuleList()
        self.edge_feature_dims = get_edge_feature_dims()
        for i, dim in enumerate(self.edge_feature_dims):
            emb = torch.nn.Linear(dim, emb_dim)
            torch.nn.init.xavier_uniform_(emb.weight.data)
            self.atom_embedding_list.append(emb)

    def forward(self, x):
        x_embedding = 0
        feature_dim_count = 0
        for i in range(len(self.edge_feature_dims)):
            x_embedding += self.atom_embedding_list[i](
                x[:, feature_dim_count:feature_dim_count + self.edge_feature_dims[i]])
            feature_dim_count += self.edge_feature_dims[i]
        return x_embedding


class GNNClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, hidden_size, hidden_dropout_prob):
        super().__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.dropout = nn.Dropout(hidden_dropout_prob)
        self.out_proj = nn.Linear(hidden_size, 1)

    def forward(self, features, batch):
        features = features.reshape(max(batch)+1, -1, features.shape[-1])
        x = torch.mean(features, dim=1)  # average pool over the tokens
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x
    

class ActiveSiteHead(nn.Module):
    
    def __init__(self, input_dim, output_dim, dropout):
        super(ActiveSiteHead, self).__init__()
        dims = [4**i for i in range(1, 7)]
        lin_dims = [output_dim] + [x for x in dims if output_dim < x < input_dim][1:-1] + [input_dim]
        layers = []
        for in_dim in lin_dims[::-1][:-1]:
            layers.append(nn.Linear(in_dim, lin_dims[lin_dims.index(in_dim) - 1]))
            layers.append(nn.Dropout(dropout))
            layers.append(nn.SiLU())
        layers.pop(); layers.pop()
        self.dense = nn.Sequential(*layers)
        
    def forward(self, x):
        x = self.dense(x)
        return x


class EGNN(nn.Module):
    def __init__(self, config):
        super(EGNN, self).__init__()
        self.config = config
        self.gnn_config = config.egnn
        self.esm_dim = get_emb_dim(config.model.esm_version)
        # self.input_dim = self.esm_dim + config.dataset.property_dim
        self.input_dim = config.dataset.property_dim
        self.mpnn_layes = nn.ModuleList([
            EGNN_Sparse(
                self.input_dim, 
                m_dim=int(self.gnn_config["hidden_channels"]), 
                edge_attr_dim=int(self.gnn_config["edge_attr_dim"]), 
                dropout=int(self.gnn_config["dropout"]), 
                mlp_num=int(self.gnn_config["mlp_num"]))
            for _ in range(int(self.gnn_config["n_layers"]))])

        if self.gnn_config["embedding"]:
            self.node_embedding = nodeEncoder(self.input_dim)
            self.edge_embedding = edgeEncoder(self.input_dim)

        self.pred_head = ActiveSiteHead(self.input_dim, self.gnn_config['output_dim'], self.gnn_config['dropout'])
        # self.lin = nn.Linear(input_dim, self.gnn_config['output_dim'])
        # self.droplayer = nn.Dropout(int(self.gnn_config["dropout"]))


    def forward(self, data):
        x, pos, edge_index, edge_attr, batch, esm_rep, prop = (
            data.x, data.pos, 
            data.edge_index,
            data.edge_attr, data.batch,
            data.esm_rep, data.prop
        )

        # 把prop中的第35列和第56列(表示氨基酸类型的one-hot向量)去掉
        if self.config.dataset.property_dim == 41:
            prop = torch.cat([prop[:,:35], prop[:,56:]], dim=1)
        input_x = torch.cat([pos, prop], dim=1)
        # input_x = torch.cat([pos, esm_rep, prop], dim=1)
        # input_x = torch.cat([pos, input_x], dim=1)

        if self.gnn_config['embedding']:
            input_x = self.node_embedding(input_x)
            edge_attr = self.edge_embedding(edge_attr)

        for i, layer in enumerate(self.mpnn_layes):
            h = layer(input_x, edge_index, edge_attr, batch)
            if self.gnn_config['residual']:
                input_x = input_x + h
            else:
                input_x = h

        x = input_x[:, 3:]
        x = self.pred_head(x)
        # x = self.droplayer(x)
        # x = self.lin(x)
        # return x, input_x[:, 3:]
        return x