File size: 11,359 Bytes
224a33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from Bio.PDB import PDBParser
from Bio.PDB.DSSP import DSSP
from Bio.PDB.vectors import calc_dihedral
from hadder import AddHydrogen
import numpy as np
import mdtraj as md
import os
from tqdm import tqdm
import json
import shutil


def get_ss8_dim9(struture, pdb_path):
    """
    Calculate the secondary structure of a protein using DSSP and return it as an 8-class one-hot vector.
    Returns a 2D numpy array with shape (n_residues, 9).
    """
    dssp = DSSP(struture[0], pdb_path)
    ss8 = []
    for key in dssp.keys():
        ss = dssp[key][2] # Secondary structure
        ss_onehot = [0] * 9
        if ss == 'H':
            ss_onehot[0] = 1
        elif ss == 'B':
            ss_onehot[1] = 1
        elif ss == 'E':
            ss_onehot[2] = 1
        elif ss == 'G':
            ss_onehot[3] = 1
        elif ss == 'I':
            ss_onehot[4] = 1
        elif ss == 'T':
            ss_onehot[5] = 1
        elif ss == 'S':
            ss_onehot[6] = 1
        elif ss == '-':
            ss_onehot[7] = 1
        else:
            ss_onehot[8] = 1
        ss8.append(ss_onehot)
    return np.array(ss8)


def get_atom(residue, atom_name):
    """ Helper function to safely get an atom from a residue """
    return residue[atom_name] if atom_name in residue else None


def calculate_chi_angles(residue):
    """
    Calculate Chi1, Chi2, Chi3, Chi4, and Chi5 angles for a given residue.
    If an angle cannot be calculated, use 0 as a placeholder.
    """
    chi_angles = [0, 0, 0, 0, 0]

    # Common atoms for all chi angles
    n = get_atom(residue, 'N')
    ca = get_atom(residue, 'CA')
    cb = get_atom(residue, 'CB')

    # Chi1: N-CA-CB-CG (or equivalent)
    if residue.resname in ['ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU', 'HIS', 'ILE', 'LEU', 'LYS', 'MET', 'PHE', 'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL']:
        if residue.resname in ['ILE', 'VAL']:
            cg = get_atom(residue, 'CG1')
        else:
            cg = get_atom(residue, 'CG')
        
        if n and ca and cb and cg:
            chi1 = calc_dihedral(n.get_vector(), ca.get_vector(), cb.get_vector(), cg.get_vector())
            chi_angles[0] = chi1

    # Chi2: CA-CB-CG-CD (or equivalent)
    if residue.resname in ['ARG', 'GLN', 'GLU', 'HIS', 'LEU', 'LYS', 'MET', 'PHE', 'TRP', 'TYR']:
        cd = get_atom(residue, 'CD')
        if ca and cb and cg and cd:
            chi2 = calc_dihedral(ca.get_vector(), cb.get_vector(), cg.get_vector(), cd.get_vector())
            chi_angles[1] = chi2
        elif residue.resname in ['GLN', 'GLU']:
            cd = get_atom(residue, 'CD')
            if ca and cb and cg and cd:
                chi2 = calc_dihedral(ca.get_vector(), cb.get_vector(), cg.get_vector(), cd.get_vector())
                chi_angles[1] = chi2

    # Chi3: CB-CG-CD-CE (or equivalent)
    if residue.resname in ['ARG', 'GLN', 'GLU', 'LYS', 'MET']:
        ce = get_atom(residue, 'CE')
        if cb and cg and cd and ce:
            chi3 = calc_dihedral(cb.get_vector(), cg.get_vector(), cd.get_vector(), ce.get_vector())
            chi_angles[2] = chi3

    # Chi4: CG-CD-CE-NZ (or equivalent)
    if residue.resname in ['ARG', 'LYS']:
        nz = get_atom(residue, 'NZ')
        if cg and cd and ce and nz:
            chi4 = calc_dihedral(cg.get_vector(), cd.get_vector(), ce.get_vector(), nz.get_vector())
            chi_angles[3] = chi4

    # Chi5: CD-CE-NZ (only for ARG)
    if residue.resname == 'ARG':
        ne = get_atom(residue, 'NE')
        if cd and ce and nz and ne:
            chi5 = calc_dihedral(cd.get_vector(), ce.get_vector(), nz.get_vector(), ne.get_vector())
            chi_angles[4] = chi5

    return chi_angles


def get_dihedrals_dim16(structure, pdb_path):
    angles_matrix = []
    
    # Calculate Phi and Psi angles
    dssp = DSSP(structure[0], pdb_path)
    for key in dssp.keys():
        res = dssp[key]
        phi, psi = res[4], res[5]
        angles_matrix.append([
            np.sin(phi*np.pi/180), np.cos(phi*np.pi/180), np.sin(psi*np.pi/180), np.cos(psi*np.pi/180)
        ])

    # Calculate Omega angles
    angles_matrix[0] += [np.sin(0), np.cos(0)]
    residues = list(structure[0]['A'].get_residues())
    for i in range(1, len(residues)):
        c1 = get_atom(residues[i-1], 'C')
        n2 = get_atom(residues[i], 'N')
        ca2 = get_atom(residues[i], 'CA')
        c2 = get_atom(residues[i], 'C')
        omega_angle = calc_dihedral(c1.get_vector(), n2.get_vector(), ca2.get_vector(), c2.get_vector())
        angles_matrix[i] += [np.sin(omega_angle), np.cos(omega_angle)]

    # Calculate Chi angles
    for i, residue in enumerate(structure[0]['A']):
        chi_angles = calculate_chi_angles(residue)
        sin_cos_angles = []
        for angle in chi_angles:
            sin_cos_angles.append(np.sin(angle))
            sin_cos_angles.append(np.cos(angle))
        angles_matrix[i] += sin_cos_angles
        
    return np.array(angles_matrix)


def get_atom_features_dim7(structure):
    """
    Calculate atomic mass, B-factor, whether it is a residue side-chain atom, electronic charge, the number of hydrogen 
    atoms bonded to it, whether it is in a ring and the van der Waals radius of the atom.
    """
    atomic_masses = {'H': 1.008, 'He': 4.0026, 'Li': 6.94, 'Be': 9.0122, 'B': 10.81, 'C': 12.011, 'N': 14.007, 'O': 15.999, 'F': 18.998, 'Ne': 20.180, 'Na': 22.990, 'Mg': 24.305, 'Al': 26.982, 
                    'Si': 28.085, 'P': 30.974, 'S': 32.06, 'Cl': 35.45, 'Ar': 39.948, 'K': 39.098, 'Ca': 40.078, 'Fe': 55.845, 'Cu': 63.546, 'Zn': 65.38, 'Ag': 107.87, 'Sn': 118.71, 'I': 126.90, 
                    'Au': 196.97, 'Pb': 207.2, 'U': 238.03}
    electronic_charges = { 'H': 1, 'He': 2, 'Li': 3, 'Be': 4, 'B': 5, 'C': 6, 'N': 7, 'O': 8, 'F': 9, 'Ne': 10, 'Na': 11, 'Mg': 12, 'Al': 13, 'Si': 14, 'P': 15, 'S': 16, 'Cl': 17, 'Ar': 18, 'K': 19, 
                        'Ca': 20, 'Fe': 26, 'Cu': 29, 'Zn': 30, 'Ag': 47, 'Sn': 50, 'I': 53, 'Au': 79, 'Pb': 82, 'U': 92}
    vdw_radii = {'H': 1.20, 'He': 1.40, 'Li': 1.82, 'Be': 1.53, 'B': 1.92, 'C': 1.70, 'N': 1.55, 'O': 1.52, 'F': 1.47, 'Ne': 1.54, 'Na': 2.27, 'Mg': 1.73, 'Al': 1.84, 'Si': 2.10, 'P': 1.80, 'S': 1.80, 
                'Cl': 1.75, 'Ar': 1.88, 'K': 2.75, 'Ca': 2.31, 'Fe': 1.93, 'Cu': 1.96, 'Zn': 1.87, 'Ag': 1.72, 'Sn': 2.17, 'I': 1.98, 'Au': 1.66, 'Pb': 2.02, 'U': 1.86}
    ring_atoms = {'HIS': ['ND1', 'CE1', 'NE2', 'CD2'],
                'PHE': ['CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ'],
                'TYR': ['CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ'],
                'TRP': ['CG', 'CD1', 'CD2', 'CE3', 'NE1', 'CE2', 'CZ2', 'CH2']}

    residue_features = []
    for residue in structure[0]['A']:
        atom_features = []
        for atom in residue:
            if atom.element == 'H':
                continue
            atom_features.append([
                atomic_masses.get(atom.element, 0.0),
                atom.bfactor,
                int(atom.name not in residue.child_dict),
                electronic_charges.get(atom.element, 0),
                len([neighbor for neighbor in atom.get_parent() if neighbor.element == 'H']),
                int(residue.resname in ring_atoms and atom.name in ring_atoms[residue.resname]),
                vdw_radii.get(atom.element, 0.0)
            ])
        residue_features.append(np.mean(atom_features, axis=0).tolist())
    return np.array(residue_features)


def get_hbond_features_dim2(pdb_file):
    """
    Calculate hydrogen bond features using MDtraj.
    """
    traj = md.load(pdb_file)
    hbonds = md.kabsch_sander(traj)
    ax0 = hbonds[0].toarray().mean(axis=0)
    ax1 = hbonds[0].toarray().mean(axis=1)
    return np.column_stack((ax0, ax1))


def get_centroids(structure):
    """
    Calculate the centroid of each residue's side chain.
    """
    centroids = []
    for model in structure:
        for chain in model:
            for residue in chain:
                side_chain_atoms = [atom for atom in residue.get_atoms() if atom.get_id() not in ['N', 'CA', 'C', 'O']]
                atom_coords = np.array([atom.get_coord() for atom in side_chain_atoms])
                centroid = np.mean(atom_coords, axis=0)
                centroids.append(centroid.tolist())
    return np.array(centroids)


def get_pef_features_dim1(structure, reference_index=0, r=1.0):
    """
    Calculate pseudo position embedding features.
    """
    centroids = get_centroids(structure)
    reference_coords = centroids[reference_index]
    distances = np.linalg.norm(centroids - reference_coords, axis=1)  # 欧几里得距离
    pseudo_position_embedding = distances / r
    return pseudo_position_embedding.reshape(-1, 1)


def get_residue_features_dim27(structure):
    """
    Calculate residue features including hydrophobicity, polarity, charge, pKa, volume, and mass.
    """
    category = ['ALA', 'ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU', 'GLY', 'HIS', 'ILE', 'LEU', 'LYS', 'MET', 'PHE', 'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL', 'UNK']
    hydrophobicity = {'ALA': 1.8, 'ARG': -4.5, 'ASN': -3.5, 'ASP': -3.5, 'CYS': 2.5, 'GLN': -3.5, 'GLU': -3.5, 'GLY': -0.4, 'HIS': -3.2, 'ILE': 4.5, 
                      'LEU': 3.8, 'LYS': -3.9, 'MET': 1.9, 'PHE': 2.8, 'PRO': -1.6, 'SER': -0.8, 'THR': -0.7, 'TRP': -0.9, 'TYR': -1.3, 'VAL': 4.2}
    polar = {'ALA': 0, 'ARG': 1, 'ASN': 1, 'ASP': 1, 'CYS': 0, 'GLN': 1, 'GLU': 1, 'GLY': 0, 'HIS': 1, 'ILE': 0,
             'LEU': 0, 'LYS': 1, 'MET': 0, 'PHE': 0, 'PRO': 0, 'SER': 1, 'THR': 1, 'TRP': 0, 'TYR': 0, 'VAL': 0}
    charge = {'ALA': 0, 'ARG': 1, 'ASN': 0, 'ASP': -1, 'CYS': 0, 'GLN': 0, 'GLU': -1, 'GLY': 0, 'HIS': 0.1, 'ILE': 0,
              'LEU': 0, 'LYS': 1, 'MET': 0, 'PHE': 0, 'PRO': 0, 'SER': 0, 'THR': 0, 'TRP': 0, 'TYR': 0, 'VAL': 0}
    pKa = {'ALA': 2.34, 'ARG': 9.04, 'ASN': 2.02, 'ASP': 1.88, 'CYS': 1.96, 'GLN': 2.17, 'GLU': 2.19, 'GLY': 2.34, 'HIS': 1.82, 'ILE': 2.36,
           'LEU': 2.36, 'LYS': 2.18, 'MET': 2.28, 'PHE': 1.83, 'PRO': 1.99, 'SER': 2.21, 'THR': 2.15, 'TRP': 2.83, 'TYR': 2.20, 'VAL': 2.32}
    volume = {'ALA': 88.6, 'ARG': 173.4, 'ASN': 114.1, 'ASP': 111.1, 'CYS': 108.5, 'GLN': 143.8, 'GLU': 138.4, 'GLY': 60.1, 'HIS': 153.2, 'ILE': 166.7,
              'LEU': 166.7, 'LYS': 168.6, 'MET': 162.9, 'PHE': 189.9, 'PRO': 112.7, 'SER': 89.0, 'THR': 116.1, 'TRP': 227.8, 'TYR': 193.6, 'VAL': 140.0}
    mass = {'ALA': 89.1, 'ARG': 174.2, 'ASN': 132.1, 'ASP': 133.1, 'CYS': 121.2, 'GLN': 146.2, 'GLU': 147.1, 'GLY': 75.1, 'HIS': 155.2, 'ILE': 131.2,
            'LEU': 131.2, 'LYS': 146.2, 'MET': 149.2, 'PHE': 165.2, 'PRO': 115.1, 'SER': 105.1, 'THR': 119.1, 'TRP': 204.2, 'TYR': 181.2, 'VAL': 117.1}

    categories, hydrophobicities, polarities, charges, pKas, volumes, masses = [], [], [], [], [], [], []
    for residue in structure[0]['A']:
        resname = residue.resname
        cat = np.zeros(len(category))
        cat[category.index(resname) if resname in category else -1] = 1
        categories.append(cat)
        hydrophobicities.append(hydrophobicity.get(resname, 0))
        polarities.append(polar.get(resname, 0))
        charges.append(charge.get(resname, 0))
        pKas.append(pKa.get(resname, 0))
        volumes.append(volume.get(resname, 0))
        masses.append(mass.get(resname, 0))
    return np.column_stack((categories, hydrophobicities, polarities, charges, pKas, volumes, masses))