Spaces:
Running
Running
File size: 11,359 Bytes
224a33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
from Bio.PDB import PDBParser
from Bio.PDB.DSSP import DSSP
from Bio.PDB.vectors import calc_dihedral
from hadder import AddHydrogen
import numpy as np
import mdtraj as md
import os
from tqdm import tqdm
import json
import shutil
def get_ss8_dim9(struture, pdb_path):
"""
Calculate the secondary structure of a protein using DSSP and return it as an 8-class one-hot vector.
Returns a 2D numpy array with shape (n_residues, 9).
"""
dssp = DSSP(struture[0], pdb_path)
ss8 = []
for key in dssp.keys():
ss = dssp[key][2] # Secondary structure
ss_onehot = [0] * 9
if ss == 'H':
ss_onehot[0] = 1
elif ss == 'B':
ss_onehot[1] = 1
elif ss == 'E':
ss_onehot[2] = 1
elif ss == 'G':
ss_onehot[3] = 1
elif ss == 'I':
ss_onehot[4] = 1
elif ss == 'T':
ss_onehot[5] = 1
elif ss == 'S':
ss_onehot[6] = 1
elif ss == '-':
ss_onehot[7] = 1
else:
ss_onehot[8] = 1
ss8.append(ss_onehot)
return np.array(ss8)
def get_atom(residue, atom_name):
""" Helper function to safely get an atom from a residue """
return residue[atom_name] if atom_name in residue else None
def calculate_chi_angles(residue):
"""
Calculate Chi1, Chi2, Chi3, Chi4, and Chi5 angles for a given residue.
If an angle cannot be calculated, use 0 as a placeholder.
"""
chi_angles = [0, 0, 0, 0, 0]
# Common atoms for all chi angles
n = get_atom(residue, 'N')
ca = get_atom(residue, 'CA')
cb = get_atom(residue, 'CB')
# Chi1: N-CA-CB-CG (or equivalent)
if residue.resname in ['ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU', 'HIS', 'ILE', 'LEU', 'LYS', 'MET', 'PHE', 'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL']:
if residue.resname in ['ILE', 'VAL']:
cg = get_atom(residue, 'CG1')
else:
cg = get_atom(residue, 'CG')
if n and ca and cb and cg:
chi1 = calc_dihedral(n.get_vector(), ca.get_vector(), cb.get_vector(), cg.get_vector())
chi_angles[0] = chi1
# Chi2: CA-CB-CG-CD (or equivalent)
if residue.resname in ['ARG', 'GLN', 'GLU', 'HIS', 'LEU', 'LYS', 'MET', 'PHE', 'TRP', 'TYR']:
cd = get_atom(residue, 'CD')
if ca and cb and cg and cd:
chi2 = calc_dihedral(ca.get_vector(), cb.get_vector(), cg.get_vector(), cd.get_vector())
chi_angles[1] = chi2
elif residue.resname in ['GLN', 'GLU']:
cd = get_atom(residue, 'CD')
if ca and cb and cg and cd:
chi2 = calc_dihedral(ca.get_vector(), cb.get_vector(), cg.get_vector(), cd.get_vector())
chi_angles[1] = chi2
# Chi3: CB-CG-CD-CE (or equivalent)
if residue.resname in ['ARG', 'GLN', 'GLU', 'LYS', 'MET']:
ce = get_atom(residue, 'CE')
if cb and cg and cd and ce:
chi3 = calc_dihedral(cb.get_vector(), cg.get_vector(), cd.get_vector(), ce.get_vector())
chi_angles[2] = chi3
# Chi4: CG-CD-CE-NZ (or equivalent)
if residue.resname in ['ARG', 'LYS']:
nz = get_atom(residue, 'NZ')
if cg and cd and ce and nz:
chi4 = calc_dihedral(cg.get_vector(), cd.get_vector(), ce.get_vector(), nz.get_vector())
chi_angles[3] = chi4
# Chi5: CD-CE-NZ (only for ARG)
if residue.resname == 'ARG':
ne = get_atom(residue, 'NE')
if cd and ce and nz and ne:
chi5 = calc_dihedral(cd.get_vector(), ce.get_vector(), nz.get_vector(), ne.get_vector())
chi_angles[4] = chi5
return chi_angles
def get_dihedrals_dim16(structure, pdb_path):
angles_matrix = []
# Calculate Phi and Psi angles
dssp = DSSP(structure[0], pdb_path)
for key in dssp.keys():
res = dssp[key]
phi, psi = res[4], res[5]
angles_matrix.append([
np.sin(phi*np.pi/180), np.cos(phi*np.pi/180), np.sin(psi*np.pi/180), np.cos(psi*np.pi/180)
])
# Calculate Omega angles
angles_matrix[0] += [np.sin(0), np.cos(0)]
residues = list(structure[0]['A'].get_residues())
for i in range(1, len(residues)):
c1 = get_atom(residues[i-1], 'C')
n2 = get_atom(residues[i], 'N')
ca2 = get_atom(residues[i], 'CA')
c2 = get_atom(residues[i], 'C')
omega_angle = calc_dihedral(c1.get_vector(), n2.get_vector(), ca2.get_vector(), c2.get_vector())
angles_matrix[i] += [np.sin(omega_angle), np.cos(omega_angle)]
# Calculate Chi angles
for i, residue in enumerate(structure[0]['A']):
chi_angles = calculate_chi_angles(residue)
sin_cos_angles = []
for angle in chi_angles:
sin_cos_angles.append(np.sin(angle))
sin_cos_angles.append(np.cos(angle))
angles_matrix[i] += sin_cos_angles
return np.array(angles_matrix)
def get_atom_features_dim7(structure):
"""
Calculate atomic mass, B-factor, whether it is a residue side-chain atom, electronic charge, the number of hydrogen
atoms bonded to it, whether it is in a ring and the van der Waals radius of the atom.
"""
atomic_masses = {'H': 1.008, 'He': 4.0026, 'Li': 6.94, 'Be': 9.0122, 'B': 10.81, 'C': 12.011, 'N': 14.007, 'O': 15.999, 'F': 18.998, 'Ne': 20.180, 'Na': 22.990, 'Mg': 24.305, 'Al': 26.982,
'Si': 28.085, 'P': 30.974, 'S': 32.06, 'Cl': 35.45, 'Ar': 39.948, 'K': 39.098, 'Ca': 40.078, 'Fe': 55.845, 'Cu': 63.546, 'Zn': 65.38, 'Ag': 107.87, 'Sn': 118.71, 'I': 126.90,
'Au': 196.97, 'Pb': 207.2, 'U': 238.03}
electronic_charges = { 'H': 1, 'He': 2, 'Li': 3, 'Be': 4, 'B': 5, 'C': 6, 'N': 7, 'O': 8, 'F': 9, 'Ne': 10, 'Na': 11, 'Mg': 12, 'Al': 13, 'Si': 14, 'P': 15, 'S': 16, 'Cl': 17, 'Ar': 18, 'K': 19,
'Ca': 20, 'Fe': 26, 'Cu': 29, 'Zn': 30, 'Ag': 47, 'Sn': 50, 'I': 53, 'Au': 79, 'Pb': 82, 'U': 92}
vdw_radii = {'H': 1.20, 'He': 1.40, 'Li': 1.82, 'Be': 1.53, 'B': 1.92, 'C': 1.70, 'N': 1.55, 'O': 1.52, 'F': 1.47, 'Ne': 1.54, 'Na': 2.27, 'Mg': 1.73, 'Al': 1.84, 'Si': 2.10, 'P': 1.80, 'S': 1.80,
'Cl': 1.75, 'Ar': 1.88, 'K': 2.75, 'Ca': 2.31, 'Fe': 1.93, 'Cu': 1.96, 'Zn': 1.87, 'Ag': 1.72, 'Sn': 2.17, 'I': 1.98, 'Au': 1.66, 'Pb': 2.02, 'U': 1.86}
ring_atoms = {'HIS': ['ND1', 'CE1', 'NE2', 'CD2'],
'PHE': ['CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ'],
'TYR': ['CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ'],
'TRP': ['CG', 'CD1', 'CD2', 'CE3', 'NE1', 'CE2', 'CZ2', 'CH2']}
residue_features = []
for residue in structure[0]['A']:
atom_features = []
for atom in residue:
if atom.element == 'H':
continue
atom_features.append([
atomic_masses.get(atom.element, 0.0),
atom.bfactor,
int(atom.name not in residue.child_dict),
electronic_charges.get(atom.element, 0),
len([neighbor for neighbor in atom.get_parent() if neighbor.element == 'H']),
int(residue.resname in ring_atoms and atom.name in ring_atoms[residue.resname]),
vdw_radii.get(atom.element, 0.0)
])
residue_features.append(np.mean(atom_features, axis=0).tolist())
return np.array(residue_features)
def get_hbond_features_dim2(pdb_file):
"""
Calculate hydrogen bond features using MDtraj.
"""
traj = md.load(pdb_file)
hbonds = md.kabsch_sander(traj)
ax0 = hbonds[0].toarray().mean(axis=0)
ax1 = hbonds[0].toarray().mean(axis=1)
return np.column_stack((ax0, ax1))
def get_centroids(structure):
"""
Calculate the centroid of each residue's side chain.
"""
centroids = []
for model in structure:
for chain in model:
for residue in chain:
side_chain_atoms = [atom for atom in residue.get_atoms() if atom.get_id() not in ['N', 'CA', 'C', 'O']]
atom_coords = np.array([atom.get_coord() for atom in side_chain_atoms])
centroid = np.mean(atom_coords, axis=0)
centroids.append(centroid.tolist())
return np.array(centroids)
def get_pef_features_dim1(structure, reference_index=0, r=1.0):
"""
Calculate pseudo position embedding features.
"""
centroids = get_centroids(structure)
reference_coords = centroids[reference_index]
distances = np.linalg.norm(centroids - reference_coords, axis=1) # 欧几里得距离
pseudo_position_embedding = distances / r
return pseudo_position_embedding.reshape(-1, 1)
def get_residue_features_dim27(structure):
"""
Calculate residue features including hydrophobicity, polarity, charge, pKa, volume, and mass.
"""
category = ['ALA', 'ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU', 'GLY', 'HIS', 'ILE', 'LEU', 'LYS', 'MET', 'PHE', 'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL', 'UNK']
hydrophobicity = {'ALA': 1.8, 'ARG': -4.5, 'ASN': -3.5, 'ASP': -3.5, 'CYS': 2.5, 'GLN': -3.5, 'GLU': -3.5, 'GLY': -0.4, 'HIS': -3.2, 'ILE': 4.5,
'LEU': 3.8, 'LYS': -3.9, 'MET': 1.9, 'PHE': 2.8, 'PRO': -1.6, 'SER': -0.8, 'THR': -0.7, 'TRP': -0.9, 'TYR': -1.3, 'VAL': 4.2}
polar = {'ALA': 0, 'ARG': 1, 'ASN': 1, 'ASP': 1, 'CYS': 0, 'GLN': 1, 'GLU': 1, 'GLY': 0, 'HIS': 1, 'ILE': 0,
'LEU': 0, 'LYS': 1, 'MET': 0, 'PHE': 0, 'PRO': 0, 'SER': 1, 'THR': 1, 'TRP': 0, 'TYR': 0, 'VAL': 0}
charge = {'ALA': 0, 'ARG': 1, 'ASN': 0, 'ASP': -1, 'CYS': 0, 'GLN': 0, 'GLU': -1, 'GLY': 0, 'HIS': 0.1, 'ILE': 0,
'LEU': 0, 'LYS': 1, 'MET': 0, 'PHE': 0, 'PRO': 0, 'SER': 0, 'THR': 0, 'TRP': 0, 'TYR': 0, 'VAL': 0}
pKa = {'ALA': 2.34, 'ARG': 9.04, 'ASN': 2.02, 'ASP': 1.88, 'CYS': 1.96, 'GLN': 2.17, 'GLU': 2.19, 'GLY': 2.34, 'HIS': 1.82, 'ILE': 2.36,
'LEU': 2.36, 'LYS': 2.18, 'MET': 2.28, 'PHE': 1.83, 'PRO': 1.99, 'SER': 2.21, 'THR': 2.15, 'TRP': 2.83, 'TYR': 2.20, 'VAL': 2.32}
volume = {'ALA': 88.6, 'ARG': 173.4, 'ASN': 114.1, 'ASP': 111.1, 'CYS': 108.5, 'GLN': 143.8, 'GLU': 138.4, 'GLY': 60.1, 'HIS': 153.2, 'ILE': 166.7,
'LEU': 166.7, 'LYS': 168.6, 'MET': 162.9, 'PHE': 189.9, 'PRO': 112.7, 'SER': 89.0, 'THR': 116.1, 'TRP': 227.8, 'TYR': 193.6, 'VAL': 140.0}
mass = {'ALA': 89.1, 'ARG': 174.2, 'ASN': 132.1, 'ASP': 133.1, 'CYS': 121.2, 'GLN': 146.2, 'GLU': 147.1, 'GLY': 75.1, 'HIS': 155.2, 'ILE': 131.2,
'LEU': 131.2, 'LYS': 146.2, 'MET': 149.2, 'PHE': 165.2, 'PRO': 115.1, 'SER': 105.1, 'THR': 119.1, 'TRP': 204.2, 'TYR': 181.2, 'VAL': 117.1}
categories, hydrophobicities, polarities, charges, pKas, volumes, masses = [], [], [], [], [], [], []
for residue in structure[0]['A']:
resname = residue.resname
cat = np.zeros(len(category))
cat[category.index(resname) if resname in category else -1] = 1
categories.append(cat)
hydrophobicities.append(hydrophobicity.get(resname, 0))
polarities.append(polar.get(resname, 0))
charges.append(charge.get(resname, 0))
pKas.append(pKa.get(resname, 0))
volumes.append(volume.get(resname, 0))
masses.append(mass.get(resname, 0))
return np.column_stack((categories, hydrophobicities, polarities, charges, pKas, volumes, masses)) |