M3Site / esm /utils /structure /affine3d.py
anonymousforpaper's picture
Upload 103 files
224a33f verified
from __future__ import annotations
import typing as T
from dataclasses import dataclass
import torch
from typing_extensions import Self
from esm.utils.misc import fp32_autocast_context
def maybe_compile(func, x: torch.Tensor):
# Sometimes, torch compile seems to give issues for CPU tensors...
return torch.compile(func) if x.device.type == "cuda" else func
@T.runtime_checkable
class Rotation(T.Protocol):
@classmethod
def identity(cls, shape: tuple[int, ...], **tensor_kwargs) -> Self:
...
@classmethod
def random(cls, shape: tuple[int, ...], **tensor_kwargs) -> Self:
...
def __getitem__(self, idx: T.Any) -> Self:
...
@property
def tensor(self) -> torch.Tensor:
# We claim that this should be zero-cost abstraction that returns the raw tensor backing this
# object. The raw tensor should always have exactly 1 more dim than self.shape, which should be
# implemented using reshaping
...
@property
def shape(self) -> torch.Size:
# The "shape" of the rotation, as if it was a torch.tensor object
# This means that 1x4 quaternions are treated as size (1,) for example
...
def as_matrix(self) -> RotationMatrix:
...
def compose(self, other: Self) -> Self:
# To be safe, we force users to explicitly convert between rotation types.
...
def convert_compose(self, other: Self) -> Self:
# This function will automatically convert between types of rotations
...
def apply(self, p: torch.Tensor) -> torch.Tensor:
# rotates points by this rotation object
...
def invert(self) -> Self:
...
@property
def dtype(self) -> torch.dtype:
return self.tensor.dtype
@property
def device(self) -> torch.device:
return self.tensor.device
@property
def requires_grad(self) -> bool:
return self.tensor.requires_grad
@classmethod
def _from_tensor(cls, t: torch.Tensor) -> Self:
# This function exists to simplify the below functions, esp type signatures
# Its implementation is different from Affine3D.from_tensor and does not
# autodetect rotation types.
return cls(t) # type: ignore
def to(self, **kwargs) -> Self:
return self._from_tensor(self.tensor.to(**kwargs))
def detach(self, *args, **kwargs) -> Self:
return self._from_tensor(self.tensor.detach(**kwargs))
def tensor_apply(self, func) -> Self:
# Applys a function to the underlying tensor
return self._from_tensor(
torch.stack([func(x) for x in self.tensor.unbind(dim=-1)], dim=-1)
)
class RotationMatrix(Rotation):
def __init__(self, rots: torch.Tensor):
if rots.shape[-1] == 9:
rots = rots.unflatten(-1, (3, 3))
assert rots.shape[-1] == 3
assert rots.shape[-2] == 3
# Force full precision
self._rots = rots.to(torch.float32)
@classmethod
def identity(cls, shape, **tensor_kwargs):
rots = torch.eye(3, **tensor_kwargs)
rots = rots.view(*[1 for _ in range(len(shape))], 3, 3)
rots = rots.expand(*shape, -1, -1)
return cls(rots)
@classmethod
def random(cls, shape, **tensor_kwargs):
v1 = torch.randn((*shape, 3), **tensor_kwargs)
v2 = torch.randn((*shape, 3), **tensor_kwargs)
return cls(_graham_schmidt(v1, v2))
def __getitem__(self, idx: T.Any) -> RotationMatrix:
indices = (idx,) if isinstance(idx, int) or idx is None else tuple(idx)
return RotationMatrix(self._rots[indices + (slice(None), slice(None))])
@property
def shape(self) -> torch.Size:
return self._rots.shape[:-2]
def as_matrix(self) -> RotationMatrix:
return self
def compose(self, other: RotationMatrix) -> RotationMatrix:
with fp32_autocast_context(self._rots.device.type):
return RotationMatrix(self._rots @ other._rots)
def convert_compose(self, other: Rotation):
return self.compose(other.as_matrix())
def apply(self, p: torch.Tensor) -> torch.Tensor:
with fp32_autocast_context(self.device.type):
if self._rots.shape[-3] == 1:
# This is a slight speedup over einsum for batched rotations
return p @ self._rots.transpose(-1, -2).squeeze(-3)
else:
# einsum way faster than bmm!
return torch.einsum("...ij,...j", self._rots, p)
def invert(self) -> RotationMatrix:
return RotationMatrix(self._rots.transpose(-1, -2))
@property
def tensor(self) -> torch.Tensor:
return self._rots.flatten(-2)
def to_3x3(self) -> torch.Tensor:
return self._rots
@staticmethod
def from_graham_schmidt(
x_axis: torch.Tensor, xy_plane: torch.Tensor, eps: float = 1e-12
) -> RotationMatrix:
# A low eps here is necessary for good stability!
return RotationMatrix(
maybe_compile(_graham_schmidt, x_axis)(x_axis, xy_plane, eps)
)
@dataclass(frozen=True)
class Affine3D:
trans: torch.Tensor
rot: Rotation
def __post_init__(self):
assert self.trans.shape[:-1] == self.rot.shape
@staticmethod
def identity(
shape_or_affine: T.Union[tuple[int, ...], "Affine3D"],
rotation_type: T.Type[Rotation] = RotationMatrix,
**tensor_kwargs,
):
# Creates a new identity Affine3D object with a specified shape
# or the same shape as another Affine3D object.
if isinstance(shape_or_affine, Affine3D):
kwargs = {"dtype": shape_or_affine.dtype, "device": shape_or_affine.device}
kwargs.update(tensor_kwargs)
shape = shape_or_affine.shape
rotation_type = type(shape_or_affine.rot)
else:
kwargs = tensor_kwargs
shape = shape_or_affine
return Affine3D(
torch.zeros((*shape, 3), **kwargs), rotation_type.identity(shape, **kwargs)
)
@staticmethod
def random(
shape: tuple[int, ...],
std: float = 1,
rotation_type: T.Type[Rotation] = RotationMatrix,
**tensor_kwargs,
) -> "Affine3D":
return Affine3D(
trans=torch.randn((*shape, 3), **tensor_kwargs).mul(std),
rot=rotation_type.random(shape, **tensor_kwargs),
)
def __getitem__(self, idx: T.Any) -> "Affine3D":
indices = (idx,) if isinstance(idx, int) or idx is None else tuple(idx)
return Affine3D(
trans=self.trans[indices + (slice(None),)],
rot=self.rot[idx],
)
@property
def shape(self) -> torch.Size:
return self.trans.shape[:-1]
@property
def dtype(self) -> torch.dtype:
return self.trans.dtype
@property
def device(self) -> torch.device:
return self.trans.device
@property
def requires_grad(self) -> bool:
return self.trans.requires_grad
def to(self, **kwargs) -> "Affine3D":
return Affine3D(self.trans.to(**kwargs), self.rot.to(**kwargs))
def detach(self, *args, **kwargs) -> "Affine3D":
return Affine3D(self.trans.detach(**kwargs), self.rot.detach(**kwargs))
def tensor_apply(self, func) -> "Affine3D":
# Applys a function to the underlying tensor
return self.from_tensor(
torch.stack([func(x) for x in self.tensor.unbind(dim=-1)], dim=-1)
)
def as_matrix(self):
return Affine3D(trans=self.trans, rot=self.rot.as_matrix())
def compose(self, other: "Affine3D", autoconvert: bool = False):
rot = self.rot
new_rot = (rot.convert_compose if autoconvert else rot.compose)(other.rot)
new_trans = rot.apply(other.trans) + self.trans
return Affine3D(trans=new_trans, rot=new_rot)
def compose_rotation(self, other: Rotation, autoconvert: bool = False):
return Affine3D(
trans=self.trans,
rot=(self.rot.convert_compose if autoconvert else self.rot.compose)(other),
)
def scale(self, v: torch.Tensor | float):
return Affine3D(self.trans * v, self.rot)
def mask(self, mask: torch.Tensor, with_zero=False):
# Returns a transform where True positions in mask is identity
if with_zero:
tensor = self.tensor
return Affine3D.from_tensor(
torch.zeros_like(tensor).where(mask[..., None], tensor)
)
else:
identity = self.identity(
self.shape,
rotation_type=type(self.rot),
device=self.device,
dtype=self.dtype,
).tensor
return Affine3D.from_tensor(identity.where(mask[..., None], self.tensor))
def apply(self, p: torch.Tensor) -> torch.Tensor:
return self.rot.apply(p) + self.trans
def invert(self):
inv_rot = self.rot.invert()
return Affine3D(trans=-inv_rot.apply(self.trans), rot=inv_rot)
@property
def tensor(self) -> torch.Tensor:
return torch.cat([self.rot.tensor, self.trans], dim=-1)
@staticmethod
def from_tensor(t: torch.Tensor) -> "Affine3D":
match t.shape[-1]:
case 4:
# Assume tensor 4x4 for backward compat with alphafold
trans = t[..., :3, 3]
rot = RotationMatrix(t[..., :3, :3])
case 12:
trans = t[..., -3:]
rot = RotationMatrix(t[..., :-3].unflatten(-1, (3, 3)))
case _:
raise RuntimeError(
f"Cannot detect rotation fromat from {t.shape[-1] -3}-d flat vector"
)
return Affine3D(trans, rot)
@staticmethod
def from_tensor_pair(t: torch.Tensor, r: torch.Tensor) -> "Affine3D":
return Affine3D(t, RotationMatrix(r))
@staticmethod
def from_graham_schmidt(
neg_x_axis: torch.Tensor,
origin: torch.Tensor,
xy_plane: torch.Tensor,
eps: float = 1e-10,
):
# The arguments of this function is for parity with AlphaFold
x_axis = origin - neg_x_axis
xy_plane = xy_plane - origin
return Affine3D(
trans=origin, rot=RotationMatrix.from_graham_schmidt(x_axis, xy_plane, eps)
)
@staticmethod
def cat(affines: list["Affine3D"], dim: int = 0):
if dim < 0:
dim = len(affines[0].shape) + dim
return Affine3D.from_tensor(torch.cat([x.tensor for x in affines], dim=dim))
def _graham_schmidt(x_axis: torch.Tensor, xy_plane: torch.Tensor, eps: float = 1e-12):
# A low eps here is necessary for good stability!
with fp32_autocast_context(x_axis.device.type):
e1 = xy_plane
denom = torch.sqrt((x_axis**2).sum(dim=-1, keepdim=True) + eps)
x_axis = x_axis / denom
dot = (x_axis * e1).sum(dim=-1, keepdim=True)
e1 = e1 - x_axis * dot
denom = torch.sqrt((e1**2).sum(dim=-1, keepdim=True) + eps)
e1 = e1 / denom
e2 = torch.cross(x_axis, e1, dim=-1)
rots = torch.stack([x_axis, e1, e2], dim=-1)
return rots
def build_affine3d_from_coordinates(
coords: torch.Tensor, # (N, CA, C).
) -> tuple[Affine3D, torch.Tensor]:
_MAX_SUPPORTED_DISTANCE = 1e6
coord_mask = torch.all(
torch.all(torch.isfinite(coords) & (coords < _MAX_SUPPORTED_DISTANCE), dim=-1),
dim=-1,
)
def atom3_to_backbone_affine(bb_positions: torch.Tensor) -> Affine3D:
N, CA, C = bb_positions.unbind(dim=-2)
return Affine3D.from_graham_schmidt(C, CA, N)
coords = coords.clone().float()
coords[~coord_mask] = 0
# NOTE(thayes): If you have already normalized the coordinates, then
# the black hole affine translations will be zeros and the rotations will be
# the identity.
average_per_n_ca_c = coords.masked_fill(~coord_mask[..., None, None], 0).sum(1) / (
coord_mask.sum(-1)[..., None, None] + 1e-8
)
affine_from_average = atom3_to_backbone_affine(
average_per_n_ca_c.float()
).as_matrix()
B, S, _, _ = coords.shape
assert isinstance(B, int)
assert isinstance(S, int)
affine_rot_mats = affine_from_average.rot.tensor[..., None, :].expand(B, S, 9)
affine_trans = affine_from_average.trans[..., None, :].expand(B, S, 3)
# We use the identity rotation whereever we have no coordinates. This is
# important because otherwise the rotation matrices will be all zeros, which
# will cause collapse in the distance/direction attention mechanism.
identity_rot = RotationMatrix.identity(
(B, S), dtype=torch.float32, device=coords.device, requires_grad=False
)
affine_rot_mats = affine_rot_mats.where(
coord_mask.any(-1)[..., None, None], identity_rot.tensor
)
black_hole_affine = Affine3D(affine_trans, RotationMatrix(affine_rot_mats))
affine = atom3_to_backbone_affine(coords.float())
affine = Affine3D.from_tensor(
affine.tensor.where(coord_mask[..., None], black_hole_affine.tensor)
)
return affine, coord_mask