anonymousforpaper's picture
Upload 103 files
224a33f verified
import torch
from einops import rearrange
from esm.utils import residue_constants as RC
def compute_lddt(
all_atom_pred_pos: torch.Tensor,
all_atom_positions: torch.Tensor,
all_atom_mask: torch.Tensor,
cutoff: float = 15.0,
eps: float = 1e-10,
per_residue: bool = True,
) -> torch.Tensor:
"""
Computes LDDT for a protein. Tensor sizes below include some optional dimensions. Specifically:
Nstates:
all_atom_pred_pos can contain multiple states in the first dimension which corresponds to outputs from different layers of a model (e.g. each IPA block). The return size will be [Nstates x Batch size] if this is included.
Natoms:
LDDT can be computed for all atoms or some atoms. The second to last dimension should contain the *FLATTENED* representation of L x Natoms. If you want to calculate for atom37, e.g., this will be of size (L * 37). If you are only calculating CA LDDT, it will be of size L.
Args:
all_atom_pred_pos (Tensor[float], [(Nstates x) B x (L * Natoms x) 3]): Tensor of predicted positions
all_atom_positions (Tensor[float], [B x (L * Natoms x) 3]): Tensor of true positions
all_atom_mask (Tensor[float], [B x (L * Natoms)]): Tensor of masks, indicating whether an atom exists.
cutoff (float): Max distance to score lddt over.
per_residue (bool): Whether to return per-residue or full-protein lddt.
Returns:
LDDT Tensor:
if per_residue:
Tensor[float], [(Nstates x) B x (L * Natoms)]
else:
Tensor[float], [(Nstates x) B]
"""
n = all_atom_mask.shape[-2]
dmat_true = torch.sqrt(
eps
+ torch.sum(
(all_atom_positions[..., None, :] - all_atom_positions[..., None, :, :])
** 2,
dim=-1,
)
)
dmat_pred = torch.sqrt(
eps
+ torch.sum(
(all_atom_pred_pos[..., None, :] - all_atom_pred_pos[..., None, :, :]) ** 2,
dim=-1,
)
)
dists_to_score = (
(dmat_true < cutoff)
* all_atom_mask
* rearrange(all_atom_mask, "... a b -> ... b a")
* (1.0 - torch.eye(n, device=all_atom_mask.device))
)
dist_l1 = torch.abs(dmat_true - dmat_pred)
score = (
(dist_l1 < 0.5).type(dist_l1.dtype)
+ (dist_l1 < 1.0).type(dist_l1.dtype)
+ (dist_l1 < 2.0).type(dist_l1.dtype)
+ (dist_l1 < 4.0).type(dist_l1.dtype)
)
score = score * 0.25
dims = (-1,) if per_residue else (-2, -1)
norm = 1.0 / (eps + torch.sum(dists_to_score, dim=dims))
score = norm * (eps + torch.sum(dists_to_score * score, dim=dims))
return score
def compute_lddt_ca(
all_atom_pred_pos: torch.Tensor,
all_atom_positions: torch.Tensor,
all_atom_mask: torch.Tensor,
cutoff: float = 15.0,
eps: float = 1e-10,
per_residue: bool = True,
) -> torch.Tensor:
ca_pos = RC.atom_order["CA"]
if all_atom_pred_pos.dim() != 3:
all_atom_pred_pos = all_atom_pred_pos[..., ca_pos, :]
all_atom_positions = all_atom_positions[..., ca_pos, :]
all_atom_mask = all_atom_mask[..., ca_pos : (ca_pos + 1)] # keep dim
return compute_lddt(
all_atom_pred_pos,
all_atom_positions,
all_atom_mask,
cutoff=cutoff,
eps=eps,
per_residue=per_residue,
)