from typing import Callable import torch import torch.nn as nn from esm.models.esm3 import ESM3 from esm.models.function_decoder import FunctionTokenDecoder from esm.models.vqvae import ( StructureTokenDecoder, StructureTokenEncoder, ) from esm.utils.constants.esm3 import data_root from esm.utils.constants.models import ( ESM3_FUNCTION_DECODER_V0, ESM3_OPEN_SMALL, ESM3_STRUCTURE_DECODER_V0, ESM3_STRUCTURE_ENCODER_V0, ) ModelBuilder = Callable[[torch.device | str], nn.Module] def ESM3_sm_open_v0(device: torch.device | str = "cpu"): model = ( ESM3( d_model=1536, n_heads=24, v_heads=256, n_layers=48, structure_encoder_name=ESM3_STRUCTURE_ENCODER_V0, structure_decoder_name=ESM3_STRUCTURE_DECODER_V0, function_decoder_name=ESM3_FUNCTION_DECODER_V0, ) .to(device) .eval() ) state_dict = torch.load( data_root() / "data/weights/esm3_sm_open_v1.pth", map_location=device ) model.load_state_dict(state_dict) return model def ESM3_structure_encoder_v0(device: torch.device | str = "cpu"): model = ( StructureTokenEncoder( d_model=1024, n_heads=1, v_heads=128, n_layers=2, d_out=128, n_codes=4096 ) .to(device) .eval() ) state_dict = torch.load( data_root() / "data/weights/esm3_structure_encoder_v0.pth", map_location=device ) model.load_state_dict(state_dict) return model def ESM3_structure_decoder_v0(device: torch.device | str = "cpu"): model = ( StructureTokenDecoder(d_model=1280, n_heads=20, n_layers=30).to(device).eval() ) state_dict = torch.load( data_root() / "data/weights/esm3_structure_decoder_v0.pth", map_location=device ) model.load_state_dict(state_dict) return model def ESM3_function_decoder_v0(device: torch.device | str = "cpu"): model = FunctionTokenDecoder().to(device).eval() state_dict = torch.load( data_root() / "data/weights/esm3_function_decoder_v0.pth", map_location=device ) model.load_state_dict(state_dict) return model LOCAL_MODEL_REGISTRY: dict[str, ModelBuilder] = { ESM3_OPEN_SMALL: ESM3_sm_open_v0, ESM3_STRUCTURE_ENCODER_V0: ESM3_structure_encoder_v0, ESM3_STRUCTURE_DECODER_V0: ESM3_structure_decoder_v0, ESM3_FUNCTION_DECODER_V0: ESM3_function_decoder_v0, } def load_local_model(model_name: str, device: torch.device | str = "cpu") -> nn.Module: if model_name not in LOCAL_MODEL_REGISTRY: raise ValueError(f"Model {model_name} not found in local model registry.") return LOCAL_MODEL_REGISTRY[model_name](device) # Register custom versions of ESM3 for use with the local inference API def register_local_model(model_name: str, model_builder: ModelBuilder) -> None: LOCAL_MODEL_REGISTRY[model_name] = model_builder