import torch import torch.nn.functional as F from esm.utils.structure.affine3d import Affine3D def masked_mean( mask: torch.Tensor, value: torch.Tensor, dim: int | None | tuple[int, ...] = None, eps=1e-10, ) -> torch.Tensor: """Compute the mean of `value` where only positions where `mask == true` are counted. """ mask = mask.expand(*value.shape) return torch.sum(mask * value, dim=dim) / (eps + torch.sum(mask, dim=dim)) def _pae_bins( max_bin: float = 31, num_bins: int = 64, device: torch.device = torch.device("cpu") ): bins = torch.linspace(0, max_bin, steps=(num_bins - 1), device=device) step = max_bin / (num_bins - 2) bin_centers = bins + step / 2 bin_centers = torch.cat( [bin_centers, (bin_centers[-1] + step).unsqueeze(-1)], dim=0 ) return bin_centers def _compute_pae_masks(mask: torch.Tensor): square_mask = (mask.unsqueeze(-1) * mask.unsqueeze(-2)).bool() return square_mask def compute_predicted_aligned_error( logits: torch.Tensor, aa_mask: torch.Tensor, sequence_id: torch.Tensor | None = None, max_bin: float = 31, ) -> torch.Tensor: bins = _pae_bins(max_bin, logits.shape[-1], logits.device) square_mask = _compute_pae_masks(aa_mask) min_v = torch.finfo(logits.dtype).min probs = logits.masked_fill(~square_mask.unsqueeze(-1), min_v).softmax(dim=-1) return (probs * bins).sum(dim=-1) @torch.no_grad def compute_tm( logits: torch.Tensor, aa_mask: torch.Tensor, max_bin: float = 31.0, ): square_mask = _compute_pae_masks(aa_mask) seqlens = aa_mask.sum(-1, keepdim=True) bins = _pae_bins(max_bin, logits.shape[-1], logits.device) d0 = 1.24 * (seqlens.clamp_min(19) - 15) ** (1 / 3) - 1.8 f_d = 1.0 / (1 + (bins / d0.unsqueeze(-1)) ** 2) min_v = torch.finfo(logits.dtype).min probs = logits.masked_fill(~square_mask.unsqueeze(-1), min_v).softmax(dim=-1) # This is the sum over bins ptm = (probs * f_d.unsqueeze(-2)).sum(dim=-1) # This is the mean over residues j ptm = masked_mean(square_mask, ptm, dim=-1) # The we do a max over residues i return ptm.max(dim=-1).values def tm_loss( logits: torch.Tensor, pred_affine: torch.Tensor, targ_affine: torch.Tensor, targ_mask: torch.Tensor, tm_mask: torch.Tensor | None = None, sequence_id: torch.Tensor | None = None, max_bin: float = 31, ): pred = Affine3D.from_tensor(pred_affine) targ = Affine3D.from_tensor(targ_affine) def transform(affine: Affine3D): pts = affine.trans[..., None, :, :] return affine.invert()[..., None].apply(pts) with torch.no_grad(): sq_diff = (transform(pred) - transform(targ)).square().sum(dim=-1) num_bins = logits.shape[-1] sq_bins = torch.linspace( 0, max_bin, num_bins - 1, device=logits.device ).square() # Gets the bin id by using a sum. true_bins = (sq_diff[..., None] > sq_bins).sum(dim=-1).long() errors = F.cross_entropy(logits.movedim(3, 1), true_bins, reduction="none") square_mask = _compute_pae_masks(targ_mask) loss = masked_mean(square_mask, errors, dim=(-1, -2)) if tm_mask is not None: loss = masked_mean(tm_mask, loss, dim=None) else: loss = loss.mean() return loss