import math from typing import ContextManager, Sequence, TypeVar import numpy as np import torch MAX_SUPPORTED_DISTANCE = 1e6 TSequence = TypeVar("TSequence", bound=Sequence) def slice_python_object_as_numpy( obj: TSequence, idx: int | list[int] | slice | np.ndarray ) -> TSequence: """ Slice a python object (like a list, string, or tuple) as if it was a numpy object. Example: >>> obj = "ABCDE" >>> slice_python_object_as_numpy(obj, [1, 3, 4]) "BDE" >>> obj = [1, 2, 3, 4, 5] >>> slice_python_object_as_numpy(obj, np.arange(5) < 3) [1, 2, 3] """ if isinstance(idx, int): idx = [idx] if isinstance(idx, np.ndarray) and idx.dtype == bool: sliced_obj = [obj[i] for i in np.where(idx)[0]] elif isinstance(idx, slice): sliced_obj = obj[idx] else: sliced_obj = [obj[i] for i in idx] match obj, sliced_obj: case str(), list(): sliced_obj = "".join(sliced_obj) case _: sliced_obj = obj.__class__(sliced_obj) # type: ignore return sliced_obj # type: ignore def rbf(values, v_min, v_max, n_bins=16): """ Returns RBF encodings in a new dimension at the end. """ rbf_centers = torch.linspace( v_min, v_max, n_bins, device=values.device, dtype=values.dtype ) rbf_centers = rbf_centers.view([1] * len(values.shape) + [-1]) rbf_std = (v_max - v_min) / n_bins z = (values.unsqueeze(-1) - rbf_centers) / rbf_std return torch.exp(-(z**2)) def batched_gather(data, inds, dim=0, no_batch_dims=0): ranges = [] for i, s in enumerate(data.shape[:no_batch_dims]): r = torch.arange(s) r = r.view(*(*((1,) * i), -1, *((1,) * (len(inds.shape) - i - 1)))) ranges.append(r) remaining_dims = [slice(None) for _ in range(len(data.shape) - no_batch_dims)] remaining_dims[dim - no_batch_dims if dim >= 0 else dim] = inds ranges.extend(remaining_dims) return data[ranges] def node_gather(s: torch.Tensor, edges: torch.Tensor) -> torch.Tensor: return batched_gather(s.unsqueeze(-3), edges, -2, no_batch_dims=len(s.shape) - 1) def knn_graph( coords: torch.Tensor, coord_mask: torch.Tensor, padding_mask: torch.Tensor, sequence_id: torch.Tensor, *, no_knn: int, ): L = coords.shape[-2] num_by_dist = min(no_knn, L) device = coords.device coords = coords.nan_to_num() coord_mask = ~(coord_mask[..., None, :] & coord_mask[..., :, None]) padding_pairwise_mask = padding_mask[..., None, :] | padding_mask[..., :, None] if sequence_id is not None: padding_pairwise_mask |= torch.unsqueeze(sequence_id, 1) != torch.unsqueeze( sequence_id, 2 ) dists = (coords.unsqueeze(-2) - coords.unsqueeze(-3)).norm(dim=-1) arange = torch.arange(L, device=device) seq_dists = (arange.unsqueeze(-1) - arange.unsqueeze(-2)).abs() # We only support up to a certain distance, above that, we use sequence distance # instead. This is so that when a large portion of the structure is masked out, # the edges are built according to sequence distance. max_dist = MAX_SUPPORTED_DISTANCE torch._assert_async((dists[~coord_mask] < max_dist).all()) struct_then_seq_dist = ( seq_dists.to(dists.dtype) .mul(1e2) .add(max_dist) .where(coord_mask, dists) .masked_fill(padding_pairwise_mask, torch.inf) ) dists, edges = struct_then_seq_dist.sort(dim=-1, descending=False) # This is a L x L tensor, where we index by rows first, # and columns are the edges we should pick. chosen_edges = edges[..., :num_by_dist] chosen_mask = dists[..., :num_by_dist].isfinite() return chosen_edges, chosen_mask def stack_variable_length_tensors( sequences: Sequence[torch.Tensor], constant_value: int | float = 0, dtype: torch.dtype | None = None, ) -> torch.Tensor: """Automatically stack tensors together, padding variable lengths with the value in constant_value. Handles an arbitrary number of dimensions. Examples: >>> tensor1, tensor2 = torch.ones([2]), torch.ones([5]) >>> stack_variable_length_tensors(tensor1, tensor2) tensor of shape [2, 5]. First row is [1, 1, 0, 0, 0]. Second row is all ones. >>> tensor1, tensor2 = torch.ones([2, 4]), torch.ones([5, 3]) >>> stack_variable_length_tensors(tensor1, tensor2) tensor of shape [2, 5, 4] """ batch_size = len(sequences) shape = [batch_size] + np.max([seq.shape for seq in sequences], 0).tolist() if dtype is None: dtype = sequences[0].dtype device = sequences[0].device array = torch.full(shape, constant_value, dtype=dtype, device=device) for arr, seq in zip(array, sequences): arrslice = tuple(slice(dim) for dim in seq.shape) arr[arrslice] = seq return array def unbinpack( tensor: torch.Tensor, sequence_id: torch.Tensor | None, pad_value: int | float ): """ Args: tensor (Tensor): [B, L, ...] Returns: Tensor: [B_unbinpacked, L_unbinpack, ...] """ if sequence_id is None: return tensor unpacked_tensors = [] num_sequences = sequence_id.max(dim=-1).values + 1 for batch_idx, (batch_seqid, batch_num_sequences) in enumerate( zip(sequence_id, num_sequences) ): for seqid in range(batch_num_sequences): mask = batch_seqid == seqid unpacked = tensor[batch_idx, mask] unpacked_tensors.append(unpacked) return stack_variable_length_tensors(unpacked_tensors, pad_value) def fp32_autocast_context(device_type: str) -> ContextManager[torch.amp.autocast]: """ Returns an autocast context manager that disables downcasting by AMP. Args: device_type: The device type ('cpu' or 'cuda') Returns: An autocast context manager with the specified behavior. """ if device_type == "cpu": return torch.amp.autocast(device_type, enabled=False) elif device_type == "cuda": return torch.amp.autocast(device_type, dtype=torch.float32) else: raise ValueError(f"Unsupported device type: {device_type}") def merge_ranges(ranges: list[range], merge_gap_max: int | None = None) -> list[range]: """Merge overlapping ranges into sorted, non-overlapping segments. Args: ranges: collection of ranges to merge. merge_gap_max: optionally merge neighboring ranges that are separated by a gap no larger than this size. Returns: non-overlapping ranges merged from the inputs, sorted by position. """ ranges = sorted(ranges, key=lambda r: r.start) merge_gap_max = merge_gap_max if merge_gap_max is not None else 0 assert merge_gap_max >= 0, f"Invalid merge_gap_max: {merge_gap_max}" merged = [] for r in ranges: if not merged: merged.append(r) else: last = merged[-1] if last.stop + merge_gap_max >= r.start: merged[-1] = range(last.start, max(last.stop, r.stop)) else: merged.append(r) return merged def list_nan_to_none(l: list) -> list: if l is None: return None # type: ignore elif isinstance(l, float): return None if math.isnan(l) else l # type: ignore elif isinstance(l, list): return [list_nan_to_none(x) for x in l] else: # Don't go into other structures. return l def list_none_to_nan(l: list) -> list: if l is None: return math.nan # type: ignore elif isinstance(l, list): return [list_none_to_nan(x) for x in l] else: return l def maybe_tensor(x, convert_none_to_nan: bool = False) -> torch.Tensor | None: if x is None: return None if convert_none_to_nan: x = list_none_to_nan(x) return torch.tensor(x) def maybe_list(x, convert_nan_to_none: bool = False) -> list | None: if x is None: return None x = x.tolist() if convert_nan_to_none: x = list_nan_to_none(x) return x