from __future__ import annotations import typing as T from dataclasses import dataclass import torch from typing_extensions import Self from esm.utils.misc import fp32_autocast_context def maybe_compile(func, x: torch.Tensor): # Sometimes, torch compile seems to give issues for CPU tensors... return torch.compile(func) if x.device.type == "cuda" else func @T.runtime_checkable class Rotation(T.Protocol): @classmethod def identity(cls, shape: tuple[int, ...], **tensor_kwargs) -> Self: ... @classmethod def random(cls, shape: tuple[int, ...], **tensor_kwargs) -> Self: ... def __getitem__(self, idx: T.Any) -> Self: ... @property def tensor(self) -> torch.Tensor: # We claim that this should be zero-cost abstraction that returns the raw tensor backing this # object. The raw tensor should always have exactly 1 more dim than self.shape, which should be # implemented using reshaping ... @property def shape(self) -> torch.Size: # The "shape" of the rotation, as if it was a torch.tensor object # This means that 1x4 quaternions are treated as size (1,) for example ... def as_matrix(self) -> RotationMatrix: ... def compose(self, other: Self) -> Self: # To be safe, we force users to explicitly convert between rotation types. ... def convert_compose(self, other: Self) -> Self: # This function will automatically convert between types of rotations ... def apply(self, p: torch.Tensor) -> torch.Tensor: # rotates points by this rotation object ... def invert(self) -> Self: ... @property def dtype(self) -> torch.dtype: return self.tensor.dtype @property def device(self) -> torch.device: return self.tensor.device @property def requires_grad(self) -> bool: return self.tensor.requires_grad @classmethod def _from_tensor(cls, t: torch.Tensor) -> Self: # This function exists to simplify the below functions, esp type signatures # Its implementation is different from Affine3D.from_tensor and does not # autodetect rotation types. return cls(t) # type: ignore def to(self, **kwargs) -> Self: return self._from_tensor(self.tensor.to(**kwargs)) def detach(self, *args, **kwargs) -> Self: return self._from_tensor(self.tensor.detach(**kwargs)) def tensor_apply(self, func) -> Self: # Applys a function to the underlying tensor return self._from_tensor( torch.stack([func(x) for x in self.tensor.unbind(dim=-1)], dim=-1) ) class RotationMatrix(Rotation): def __init__(self, rots: torch.Tensor): if rots.shape[-1] == 9: rots = rots.unflatten(-1, (3, 3)) assert rots.shape[-1] == 3 assert rots.shape[-2] == 3 # Force full precision self._rots = rots.to(torch.float32) @classmethod def identity(cls, shape, **tensor_kwargs): rots = torch.eye(3, **tensor_kwargs) rots = rots.view(*[1 for _ in range(len(shape))], 3, 3) rots = rots.expand(*shape, -1, -1) return cls(rots) @classmethod def random(cls, shape, **tensor_kwargs): v1 = torch.randn((*shape, 3), **tensor_kwargs) v2 = torch.randn((*shape, 3), **tensor_kwargs) return cls(_graham_schmidt(v1, v2)) def __getitem__(self, idx: T.Any) -> RotationMatrix: indices = (idx,) if isinstance(idx, int) or idx is None else tuple(idx) return RotationMatrix(self._rots[indices + (slice(None), slice(None))]) @property def shape(self) -> torch.Size: return self._rots.shape[:-2] def as_matrix(self) -> RotationMatrix: return self def compose(self, other: RotationMatrix) -> RotationMatrix: with fp32_autocast_context(self._rots.device.type): return RotationMatrix(self._rots @ other._rots) def convert_compose(self, other: Rotation): return self.compose(other.as_matrix()) def apply(self, p: torch.Tensor) -> torch.Tensor: with fp32_autocast_context(self.device.type): if self._rots.shape[-3] == 1: # This is a slight speedup over einsum for batched rotations return p @ self._rots.transpose(-1, -2).squeeze(-3) else: # einsum way faster than bmm! return torch.einsum("...ij,...j", self._rots, p) def invert(self) -> RotationMatrix: return RotationMatrix(self._rots.transpose(-1, -2)) @property def tensor(self) -> torch.Tensor: return self._rots.flatten(-2) def to_3x3(self) -> torch.Tensor: return self._rots @staticmethod def from_graham_schmidt( x_axis: torch.Tensor, xy_plane: torch.Tensor, eps: float = 1e-12 ) -> RotationMatrix: # A low eps here is necessary for good stability! return RotationMatrix( maybe_compile(_graham_schmidt, x_axis)(x_axis, xy_plane, eps) ) @dataclass(frozen=True) class Affine3D: trans: torch.Tensor rot: Rotation def __post_init__(self): assert self.trans.shape[:-1] == self.rot.shape @staticmethod def identity( shape_or_affine: T.Union[tuple[int, ...], "Affine3D"], rotation_type: T.Type[Rotation] = RotationMatrix, **tensor_kwargs, ): # Creates a new identity Affine3D object with a specified shape # or the same shape as another Affine3D object. if isinstance(shape_or_affine, Affine3D): kwargs = {"dtype": shape_or_affine.dtype, "device": shape_or_affine.device} kwargs.update(tensor_kwargs) shape = shape_or_affine.shape rotation_type = type(shape_or_affine.rot) else: kwargs = tensor_kwargs shape = shape_or_affine return Affine3D( torch.zeros((*shape, 3), **kwargs), rotation_type.identity(shape, **kwargs) ) @staticmethod def random( shape: tuple[int, ...], std: float = 1, rotation_type: T.Type[Rotation] = RotationMatrix, **tensor_kwargs, ) -> "Affine3D": return Affine3D( trans=torch.randn((*shape, 3), **tensor_kwargs).mul(std), rot=rotation_type.random(shape, **tensor_kwargs), ) def __getitem__(self, idx: T.Any) -> "Affine3D": indices = (idx,) if isinstance(idx, int) or idx is None else tuple(idx) return Affine3D( trans=self.trans[indices + (slice(None),)], rot=self.rot[idx], ) @property def shape(self) -> torch.Size: return self.trans.shape[:-1] @property def dtype(self) -> torch.dtype: return self.trans.dtype @property def device(self) -> torch.device: return self.trans.device @property def requires_grad(self) -> bool: return self.trans.requires_grad def to(self, **kwargs) -> "Affine3D": return Affine3D(self.trans.to(**kwargs), self.rot.to(**kwargs)) def detach(self, *args, **kwargs) -> "Affine3D": return Affine3D(self.trans.detach(**kwargs), self.rot.detach(**kwargs)) def tensor_apply(self, func) -> "Affine3D": # Applys a function to the underlying tensor return self.from_tensor( torch.stack([func(x) for x in self.tensor.unbind(dim=-1)], dim=-1) ) def as_matrix(self): return Affine3D(trans=self.trans, rot=self.rot.as_matrix()) def compose(self, other: "Affine3D", autoconvert: bool = False): rot = self.rot new_rot = (rot.convert_compose if autoconvert else rot.compose)(other.rot) new_trans = rot.apply(other.trans) + self.trans return Affine3D(trans=new_trans, rot=new_rot) def compose_rotation(self, other: Rotation, autoconvert: bool = False): return Affine3D( trans=self.trans, rot=(self.rot.convert_compose if autoconvert else self.rot.compose)(other), ) def scale(self, v: torch.Tensor | float): return Affine3D(self.trans * v, self.rot) def mask(self, mask: torch.Tensor, with_zero=False): # Returns a transform where True positions in mask is identity if with_zero: tensor = self.tensor return Affine3D.from_tensor( torch.zeros_like(tensor).where(mask[..., None], tensor) ) else: identity = self.identity( self.shape, rotation_type=type(self.rot), device=self.device, dtype=self.dtype, ).tensor return Affine3D.from_tensor(identity.where(mask[..., None], self.tensor)) def apply(self, p: torch.Tensor) -> torch.Tensor: return self.rot.apply(p) + self.trans def invert(self): inv_rot = self.rot.invert() return Affine3D(trans=-inv_rot.apply(self.trans), rot=inv_rot) @property def tensor(self) -> torch.Tensor: return torch.cat([self.rot.tensor, self.trans], dim=-1) @staticmethod def from_tensor(t: torch.Tensor) -> "Affine3D": match t.shape[-1]: case 4: # Assume tensor 4x4 for backward compat with alphafold trans = t[..., :3, 3] rot = RotationMatrix(t[..., :3, :3]) case 12: trans = t[..., -3:] rot = RotationMatrix(t[..., :-3].unflatten(-1, (3, 3))) case _: raise RuntimeError( f"Cannot detect rotation fromat from {t.shape[-1] -3}-d flat vector" ) return Affine3D(trans, rot) @staticmethod def from_tensor_pair(t: torch.Tensor, r: torch.Tensor) -> "Affine3D": return Affine3D(t, RotationMatrix(r)) @staticmethod def from_graham_schmidt( neg_x_axis: torch.Tensor, origin: torch.Tensor, xy_plane: torch.Tensor, eps: float = 1e-10, ): # The arguments of this function is for parity with AlphaFold x_axis = origin - neg_x_axis xy_plane = xy_plane - origin return Affine3D( trans=origin, rot=RotationMatrix.from_graham_schmidt(x_axis, xy_plane, eps) ) @staticmethod def cat(affines: list["Affine3D"], dim: int = 0): if dim < 0: dim = len(affines[0].shape) + dim return Affine3D.from_tensor(torch.cat([x.tensor for x in affines], dim=dim)) def _graham_schmidt(x_axis: torch.Tensor, xy_plane: torch.Tensor, eps: float = 1e-12): # A low eps here is necessary for good stability! with fp32_autocast_context(x_axis.device.type): e1 = xy_plane denom = torch.sqrt((x_axis**2).sum(dim=-1, keepdim=True) + eps) x_axis = x_axis / denom dot = (x_axis * e1).sum(dim=-1, keepdim=True) e1 = e1 - x_axis * dot denom = torch.sqrt((e1**2).sum(dim=-1, keepdim=True) + eps) e1 = e1 / denom e2 = torch.cross(x_axis, e1, dim=-1) rots = torch.stack([x_axis, e1, e2], dim=-1) return rots def build_affine3d_from_coordinates( coords: torch.Tensor, # (N, CA, C). ) -> tuple[Affine3D, torch.Tensor]: _MAX_SUPPORTED_DISTANCE = 1e6 coord_mask = torch.all( torch.all(torch.isfinite(coords) & (coords < _MAX_SUPPORTED_DISTANCE), dim=-1), dim=-1, ) def atom3_to_backbone_affine(bb_positions: torch.Tensor) -> Affine3D: N, CA, C = bb_positions.unbind(dim=-2) return Affine3D.from_graham_schmidt(C, CA, N) coords = coords.clone().float() coords[~coord_mask] = 0 # NOTE(thayes): If you have already normalized the coordinates, then # the black hole affine translations will be zeros and the rotations will be # the identity. average_per_n_ca_c = coords.masked_fill(~coord_mask[..., None, None], 0).sum(1) / ( coord_mask.sum(-1)[..., None, None] + 1e-8 ) affine_from_average = atom3_to_backbone_affine( average_per_n_ca_c.float() ).as_matrix() B, S, _, _ = coords.shape assert isinstance(B, int) assert isinstance(S, int) affine_rot_mats = affine_from_average.rot.tensor[..., None, :].expand(B, S, 9) affine_trans = affine_from_average.trans[..., None, :].expand(B, S, 3) # We use the identity rotation whereever we have no coordinates. This is # important because otherwise the rotation matrices will be all zeros, which # will cause collapse in the distance/direction attention mechanism. identity_rot = RotationMatrix.identity( (B, S), dtype=torch.float32, device=coords.device, requires_grad=False ) affine_rot_mats = affine_rot_mats.where( coord_mask.any(-1)[..., None, None], identity_rot.tensor ) black_hole_affine = Affine3D(affine_trans, RotationMatrix(affine_rot_mats)) affine = atom3_to_backbone_affine(coords.float()) affine = Affine3D.from_tensor( affine.tensor.where(coord_mask[..., None], black_hole_affine.tensor) ) return affine, coord_mask