from __future__ import annotations import io from dataclasses import asdict, dataclass, replace from functools import cached_property from pathlib import Path from typing import Sequence, TypeVar, Union import biotite.structure as bs import brotli import msgpack import msgpack_numpy import numpy as np import torch from Bio.Data import PDBData from biotite.application.dssp import DsspApp from biotite.database import rcsb from biotite.structure.io.npz import NpzFile from biotite.structure.io.pdb import PDBFile from scipy.spatial.distance import pdist, squareform from torch import Tensor from esm.utils import residue_constants as RC from esm.utils.constants import esm3 as C from esm.utils.misc import slice_python_object_as_numpy from esm.utils.structure.affine3d import Affine3D from esm.utils.structure.aligner import Aligner from esm.utils.structure.lddt import compute_lddt_ca from esm.utils.structure.normalize_coordinates import ( apply_frame_to_coords, get_protein_normalization_frame, normalize_coordinates, ) msgpack_numpy.patch() CHAIN_ID_CONST = "A" ArrayOrTensor = TypeVar("ArrayOrTensor", np.ndarray, Tensor) PathLike = Union[str, Path] PathOrBuffer = Union[PathLike, io.StringIO] def index_by_atom_name( atom37: ArrayOrTensor, atom_names: str | list[str], dim: int = -2 ) -> ArrayOrTensor: squeeze = False if isinstance(atom_names, str): atom_names = [atom_names] squeeze = True indices = [RC.atom_order[atom_name] for atom_name in atom_names] dim = dim % atom37.ndim index = tuple(slice(None) if dim != i else indices for i in range(atom37.ndim)) result = atom37[index] # type: ignore if squeeze: result = result.squeeze(dim) return result def infer_CB(C, N, Ca, L: float = 1.522, A: float = 1.927, D: float = -2.143): """ Inspired by a util in trDesign: https://github.com/gjoni/trDesign/blob/f2d5930b472e77bfacc2f437b3966e7a708a8d37/02-GD/utils.py#L92 input: 3 coords (a,b,c), (L)ength, (A)ngle, and (D)ihedral output: 4th coord """ norm = lambda x: x / np.sqrt(np.square(x).sum(-1, keepdims=True) + 1e-8) with np.errstate(invalid="ignore"): # inf - inf = nan is ok here vec_bc = N - Ca vec_ba = N - C bc = norm(vec_bc) n = norm(np.cross(vec_ba, bc)) m = [bc, np.cross(n, bc), n] d = [L * np.cos(A), L * np.sin(A) * np.cos(D), -L * np.sin(A) * np.sin(D)] return Ca + sum([m * d for m, d in zip(m, d)]) class AtomIndexer: def __init__(self, structure: ProteinChain, property: str, dim: int): self.structure = structure self.property = property self.dim = dim def __getitem__(self, atom_names: str | list[str]) -> np.ndarray: return index_by_atom_name( getattr(self.structure, self.property), atom_names, self.dim ) @dataclass class ProteinChain: """Dataclass with atom37 representation of a single protein chain.""" id: str sequence: str chain_id: str # author chain id entity_id: int | None residue_index: np.ndarray insertion_code: np.ndarray atom37_positions: np.ndarray atom37_mask: np.ndarray confidence: np.ndarray def __post_init__(self): self.atom37_mask = self.atom37_mask.astype(bool) assert self.atom37_positions.shape[0] == len(self.sequence), ( self.atom37_positions.shape, len(self.sequence), ) assert self.atom37_mask.shape[0] == len(self.sequence), ( self.atom37_mask.shape, len(self.sequence), ) assert self.residue_index.shape[0] == len(self.sequence), ( self.residue_index.shape, len(self.sequence), ) assert self.insertion_code.shape[0] == len(self.sequence), ( self.insertion_code.shape, len(self.sequence), ) assert self.confidence.shape[0] == len(self.sequence), ( self.confidence.shape, len(self.sequence), ) @cached_property def atoms(self) -> AtomIndexer: return AtomIndexer(self, property="atom37_positions", dim=-2) @cached_property def atom_mask(self) -> AtomIndexer: return AtomIndexer(self, property="atom37_mask", dim=-1) @cached_property def atom_array(self) -> bs.AtomArray: atoms = [] for res_name, res_idx, ins_code, positions, mask, conf in zip( self.sequence, self.residue_index, self.insertion_code, self.atom37_positions, self.atom37_mask.astype(bool), self.confidence, ): for i, pos in zip(np.where(mask)[0], positions[mask]): atom = bs.Atom( coord=pos, chain_id="A" if self.chain_id is None else self.chain_id, res_id=res_idx, ins_code=ins_code, res_name=RC.restype_1to3.get(res_name, "UNK"), hetero=False, atom_name=RC.atom_types[i], element=RC.atom_types[i][0], b_factor=conf, ) atoms.append(atom) return bs.array(atoms) @cached_property def residue_index_no_insertions(self) -> np.ndarray: return self.residue_index + np.cumsum(self.insertion_code != "") @cached_property def atom_array_no_insertions(self) -> bs.AtomArray: atoms = [] for res_idx, (res_name, positions, mask, conf) in enumerate( zip( self.sequence, self.atom37_positions, self.atom37_mask.astype(bool), self.confidence, ) ): for i, pos in zip(np.where(mask)[0], positions[mask]): atom = bs.Atom( coord=pos, # hard coded to as we currently only support single chain structures chain_id=CHAIN_ID_CONST, res_id=res_idx + 1, res_name=RC.restype_1to3.get(res_name, "UNK"), hetero=False, atom_name=RC.atom_types[i], element=RC.atom_types[i][0], b_factor=conf, ) atoms.append(atom) return bs.array(atoms) def __getitem__(self, idx: int | list[int] | slice | np.ndarray): if isinstance(idx, int): idx = [idx] sequence = slice_python_object_as_numpy(self.sequence, idx) return replace( self, sequence=sequence, residue_index=self.residue_index[..., idx], insertion_code=self.insertion_code[..., idx], atom37_positions=self.atom37_positions[..., idx, :, :], atom37_mask=self.atom37_mask[..., idx, :], confidence=self.confidence[..., idx], ) def __len__(self): return len(self.sequence) def cbeta_contacts(self, distance_threshold: float = 8.0) -> np.ndarray: distance = self.pdist_CB contacts = (distance < distance_threshold).astype(np.int64) contacts[np.isnan(distance)] = -1 contacts = squareform(contacts) np.fill_diagonal(contacts, -1) return contacts def to_npz(self, path: PathOrBuffer): f = NpzFile() f.set_structure(self.atom_array) f.write(path) def to_npz_string(self): f = NpzFile() f.set_structure(self.atom_array) buf = io.BytesIO() f.write(buf) return buf.getvalue() def to_structure_encoder_inputs( self, should_normalize_coordinates: bool = True, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: coords = torch.tensor(self.atom37_positions, dtype=torch.float32) plddt = torch.tensor(self.confidence, dtype=torch.float32) residue_index = torch.tensor(self.residue_index, dtype=torch.long) if should_normalize_coordinates: coords = normalize_coordinates(coords) return coords.unsqueeze(0), plddt.unsqueeze(0), residue_index.unsqueeze(0) def to_pdb(self, path: PathOrBuffer, include_insertions: bool = True): """Dssp works better w/o insertions.""" f = PDBFile() if not include_insertions: f.set_structure(self.atom_array_no_insertions) else: f.set_structure(self.atom_array) f.write(path) def to_pdb_string(self, include_insertions: bool = True) -> str: buf = io.StringIO() self.to_pdb(buf, include_insertions=include_insertions) buf.seek(0) return buf.read() def state_dict(self, backbone_only=False): """This state dict is optimized for storage, so it turns things to fp16 whenever possible. Note that we also only support int32 residue indices, I'm hoping we don't need more than 2**32 residues...""" dct = {k: v for k, v in asdict(self).items()} for k, v in dct.items(): if isinstance(v, np.ndarray): match v.dtype: case np.int64: dct[k] = v.astype(np.int32) case np.float64 | np.float32: dct[k] = v.astype(np.float16) case _: pass if backbone_only: dct["atom37_mask"][:, 3:] = False dct["atom37_positions"] = dct["atom37_positions"][dct["atom37_mask"]] return dct def to_blob(self, backbone_only=False) -> bytes: return brotli.compress(msgpack.dumps(self.state_dict(backbone_only))) @classmethod def from_state_dict(cls, dct): atom37 = np.full((*dct["atom37_mask"].shape, 3), np.nan) atom37[dct["atom37_mask"]] = dct["atom37_positions"] dct["atom37_positions"] = atom37 dct = { k: (v.astype(np.float32) if k in ["atom37_positions", "confidence"] else v) for k, v in dct.items() } return cls(**dct) @classmethod def from_blob(cls, input: Path | str | io.BytesIO | bytes): """NOTE: blob + sparse coding + brotli + fp16 reduces memory of chains from 52G/1M chains to 20G/1M chains, I think this is a good first shot at compressing and dumping chains to disk. I'm sure there's better ways.""" match input: case Path() | str(): bytes = Path(input).read_bytes() case io.BytesIO(): bytes = input.getvalue() case _: bytes = input return cls.from_state_dict(msgpack.loads(brotli.decompress(bytes))) def dssp(self): dssp = DsspApp.annotate_sse(self.atom_array_no_insertions) full_dssp = np.full(len(self.sequence), "X", dtype="<U1") full_dssp[self.atom37_mask.any(-1)] = dssp return full_dssp def sasa(self): arr = self.atom_array_no_insertions sasa_per_atom = bs.sasa(arr) # type: ignore # Sum per-atom SASA into residue "bins", with np.bincount. assert arr.res_id is not None assert np.array_equal( np.sort(np.unique(arr.res_id)), np.arange(1, arr.res_id.max() + 1) ), "SASA calculation expected contiguous res_ids in range(1, len(chain)+1)" # NOTE: arr.res_id is 1-indexed, but np.bincount returns a sum for bin 0, so we strip. sasa_per_residue = np.bincount(arr.res_id, weights=sasa_per_atom)[1:] assert len(sasa_per_residue) == len(self) return sasa_per_residue def align( self, target: ProteinChain, mobile_inds: list[int] | np.ndarray | None = None, target_inds: list[int] | np.ndarray | None = None, only_use_backbone: bool = False, ): """ Aligns the current protein to the provided target. Args: target (ProteinChain): The target protein to align to. mobile_inds (list[int], np.ndarray, optional): The indices of the mobile atoms to align. These are NOT residue indices target_inds (list[int], np.ndarray, optional): The indices of the target atoms to align. These are NOT residue indices only_use_backbone (bool, optional): If True, only align the backbone atoms. """ aligner = Aligner( self if mobile_inds is None else self[mobile_inds], target if target_inds is None else target[target_inds], only_use_backbone, ) return aligner.apply(self) def rmsd( self, target: ProteinChain, also_check_reflection: bool = False, mobile_inds: list[int] | np.ndarray | None = None, target_inds: list[int] | np.ndarray | None = None, only_compute_backbone_rmsd: bool = False, ): """ Compute the RMSD between this protein chain and another. Args: target (ProteinChain): The target (other) protein chain to compare to. also_check_reflection (bool, optional): If True, also check if the reflection of the mobile atoms has a lower RMSD. mobile_inds (list[int], optional): The indices of the mobile atoms to align. These are NOT residue indices target_inds (list[int], optional): The indices of the target atoms to align. These are NOT residue indices only_compute_backbone_rmsd (bool, optional): If True, only compute the RMSD of the backbone atoms. """ if isinstance(target, bs.AtomArray): raise ValueError( "Support for bs.AtomArray removed, use " "ProteinChain.from_atomarry for ProteinChain." ) aligner = Aligner( self if mobile_inds is None else self[mobile_inds], target if target_inds is None else target[target_inds], only_compute_backbone_rmsd, ) avg_rmsd = aligner.rmsd if not also_check_reflection: return avg_rmsd aligner = Aligner( self if mobile_inds is None else self[mobile_inds], target if target_inds is None else target[target_inds], only_compute_backbone_rmsd, use_reflection=True, ) avg_rmsd_neg = aligner.rmsd return min(avg_rmsd, avg_rmsd_neg) def lddt_ca( self, target: ProteinChain, mobile_inds: list[int] | np.ndarray | None = None, target_inds: list[int] | np.ndarray | None = None, **kwargs, ) -> float | np.ndarray: """Compute the LDDT between this protein chain and another. Arguments: target (ProteinChain): The other protein chain to compare to. mobile_inds (list[int], np.ndarray, optional): The indices of the mobile atoms to align. These are NOT residue indices target_inds (list[int], np.ndarray, optional): The indices of the target atoms to align. These are NOT residue indices Returns: float | np.ndarray: The LDDT score between the two protein chains, either a single float or per-residue LDDT scores if `per_residue` is True. """ lddt = compute_lddt_ca( torch.tensor(self.atom37_positions[mobile_inds]).unsqueeze(0), torch.tensor(target.atom37_positions[target_inds]).unsqueeze(0), torch.tensor(self.atom37_mask[mobile_inds]).unsqueeze(0), **kwargs, ) return float(lddt) if lddt.numel() == 1 else lddt.numpy().flatten() @classmethod def from_atom37( cls, atom37_positions: np.ndarray | torch.Tensor, *, id: str | None = None, sequence: str | None = None, chain_id: str | None = None, entity_id: int | None = None, residue_index: np.ndarray | torch.Tensor | None = None, insertion_code: np.ndarray | None = None, confidence: np.ndarray | torch.Tensor | None = None, ): if isinstance(atom37_positions, torch.Tensor): atom37_positions = atom37_positions.cpu().numpy() if atom37_positions.ndim == 4: if atom37_positions.shape[0] != 1: raise ValueError( f"Cannot handle batched inputs, atom37_positions has shape {atom37_positions.shape}" ) atom37_positions = atom37_positions[0] assert isinstance(atom37_positions, np.ndarray) seqlen = atom37_positions.shape[0] atom_mask = np.isfinite(atom37_positions).all(-1) if id is None: id = "" if sequence is None: sequence = "A" * seqlen if chain_id is None: chain_id = "A" if residue_index is None: residue_index = np.arange(1, seqlen + 1) elif isinstance(residue_index, torch.Tensor): residue_index = residue_index.cpu().numpy() assert isinstance(residue_index, np.ndarray) if residue_index.ndim == 2: if residue_index.shape[0] != 1: raise ValueError( f"Cannot handle batched inputs, residue_index has shape {residue_index.shape}" ) residue_index = residue_index[0] assert isinstance(residue_index, np.ndarray) if insertion_code is None: insertion_code = np.array(["" for _ in range(seqlen)]) if confidence is None: confidence = np.ones(seqlen, dtype=np.float32) elif isinstance(confidence, torch.Tensor): confidence = confidence.cpu().numpy() assert isinstance(confidence, np.ndarray) if confidence.ndim == 2: if confidence.shape[0] != 1: raise ValueError( f"Cannot handle batched inputs, confidence has shape {confidence.shape}" ) confidence = confidence[0] assert isinstance(confidence, np.ndarray) return cls( id=id, sequence=sequence, chain_id=chain_id, entity_id=entity_id, atom37_positions=atom37_positions, atom37_mask=atom_mask, residue_index=residue_index, insertion_code=insertion_code, confidence=confidence, ) @classmethod def from_backbone_atom_coordinates( cls, backbone_atom_coordinates: np.ndarray | torch.Tensor, **kwargs, ): """Create a ProteinChain from a set of backbone atom coordinates. This function simply expands the seqlen x 3 x 3 array of backbone atom coordinates to a seqlen x 37 x 3 array of all atom coordinates, with the padded positions set to infinity. This allows us to use from_atom37 to create the appropriate ProteinChain object with the appropriate atom37_mask. This function passes all kwargs to from_atom37. """ if isinstance(backbone_atom_coordinates, torch.Tensor): backbone_atom_coordinates = backbone_atom_coordinates.cpu().numpy() if backbone_atom_coordinates.ndim == 4: if backbone_atom_coordinates.shape[0] != 1: raise ValueError( f"Cannot handle batched inputs, backbone_atom_coordinates has " f"shape {backbone_atom_coordinates.shape}" ) backbone_atom_coordinates = backbone_atom_coordinates[0] assert isinstance(backbone_atom_coordinates, np.ndarray) assert backbone_atom_coordinates.ndim == 3 assert backbone_atom_coordinates.shape[-2] == 3 assert backbone_atom_coordinates.shape[-1] == 3 atom37_positions = np.full( (backbone_atom_coordinates.shape[0], 37, 3), np.inf, dtype=backbone_atom_coordinates.dtype, ) atom37_positions[:, :3, :] = backbone_atom_coordinates return cls.from_atom37( atom37_positions=atom37_positions, **kwargs, ) @classmethod def from_pdb( cls, path: PathOrBuffer, chain_id: str = "detect", id: str | None = None, is_predicted: bool = False, ) -> "ProteinChain": """Return a ProteinStructure object from an pdb file. Args: path (str | Path | io.TextIO): Path or buffer to read pdb file from. Should be uncompressed. id (str, optional): String identifier to assign to structure. Will attempt to infer otherwise. is_predicted (bool): If True, reads b factor as the confidence readout. Default: False. chain_id (str, optional): Select a chain corresponding to (author) chain id. "detect" uses the first detected chain """ if id is not None: file_id = id else: match path: case Path() | str(): file_id = Path(path).with_suffix("").name case _: file_id = "null" atom_array = PDBFile.read(path).get_structure( model=1, extra_fields=["b_factor"] ) if chain_id == "detect": chain_id = atom_array.chain_id[0] atom_array = atom_array[ bs.filter_amino_acids(atom_array) & ~atom_array.hetero & (atom_array.chain_id == chain_id) ] entity_id = 1 # Not supplied in PDBfiles sequence = "".join( ( r if len(r := PDBData.protein_letters_3to1.get(monomer[0].res_name, "X")) == 1 else "X" ) for monomer in bs.residue_iter(atom_array) ) num_res = len(sequence) atom_positions = np.full( [num_res, RC.atom_type_num, 3], np.nan, dtype=np.float32, ) atom_mask = np.full( [num_res, RC.atom_type_num], False, dtype=bool, ) residue_index = np.full([num_res], -1, dtype=np.int64) insertion_code = np.full([num_res], "", dtype="<U4") confidence = np.ones( [num_res], dtype=np.float32, ) for i, res in enumerate(bs.residue_iter(atom_array)): chain = atom_array[atom_array.chain_id == chain_id] assert isinstance(chain, bs.AtomArray) res_index = res[0].res_id residue_index[i] = res_index insertion_code[i] = res[0].ins_code # Atom level features for atom in res: atom_name = atom.atom_name if atom_name == "SE" and atom.res_name == "MSE": # Put the coords of the selenium atom in the sulphur column atom_name = "SD" if atom_name in RC.atom_order: atom_positions[i, RC.atom_order[atom_name]] = atom.coord atom_mask[i, RC.atom_order[atom_name]] = True if is_predicted and atom_name == "CA": confidence[i] = atom.b_factor assert all(sequence), "Some residue name was not specified correctly" return cls( id=file_id, sequence=sequence, chain_id=chain_id, entity_id=entity_id, atom37_positions=atom_positions, atom37_mask=atom_mask, residue_index=residue_index, insertion_code=insertion_code, confidence=confidence, ) @classmethod def from_rcsb( cls, pdb_id: str, chain_id: str = "detect", ): f: io.StringIO = rcsb.fetch(pdb_id, "pdb") # type: ignore return cls.from_pdb(f, chain_id=chain_id, id=pdb_id) @classmethod def from_atomarray( cls, atom_array: bs.AtomArray, id: str | None = None, ) -> "ProteinChain": """A simple converter from bs.AtomArray -> ProteinChain. Uses PDB file format as intermediate.""" pdb_file = bs.io.pdb.PDBFile() # pyright: ignore pdb_file.set_structure(atom_array) buf = io.StringIO() pdb_file.write(buf) buf.seek(0) return cls.from_pdb(buf, id=id) def get_normalization_frame(self) -> Affine3D: """Given a set of coordinates, compute a single frame. Specifically, we compute the average position of the N, CA, and C atoms use those 3 points to construct a frame using the Gram-Schmidt algorithm. The average CA position is used as the origin of the frame. Returns: Affine3D: [] tensor of Affine3D frame """ coords = torch.from_numpy(self.atom37_positions) frame = get_protein_normalization_frame(coords) return frame def apply_frame(self, frame: Affine3D) -> ProteinChain: """Given a frame, apply the frame to the protein's coordinates. Args: frame (Affine3D): [] tensor of Affine3D frame Returns: ProteinChain: Transformed protein chain """ coords = torch.from_numpy(self.atom37_positions).to(frame.trans.dtype) coords = apply_frame_to_coords(coords, frame) atom37_positions = coords.numpy() return replace(self, atom37_positions=atom37_positions) def normalize_coordinates(self) -> ProteinChain: """Normalize the coordinates of the protein chain.""" return self.apply_frame(self.get_normalization_frame()) def infer_oxygen(self) -> ProteinChain: """Oxygen position is fixed given N, CA, C atoms. Infer it if not provided.""" O_vector = torch.tensor([0.6240, -1.0613, 0.0103], dtype=torch.float32) N, CA, C = torch.from_numpy(self.atoms[["N", "CA", "C"]]).float().unbind(dim=1) N = torch.roll(N, -3) N[..., -1, :] = torch.nan # Get the frame defined by the CA-C-N atom frames = Affine3D.from_graham_schmidt(CA, C, N) O = frames.apply(O_vector) atom37_positions = self.atom37_positions.copy() atom37_mask = self.atom37_mask.copy() atom37_positions[:, RC.atom_order["O"]] = O.numpy() atom37_mask[:, RC.atom_order["O"]] = ~np.isnan( atom37_positions[:, RC.atom_order["O"]] ).any(-1) new_chain = replace( self, atom37_positions=atom37_positions, atom37_mask=atom37_mask ) return new_chain @cached_property def inferred_cbeta(self) -> np.ndarray: """Infer cbeta positions based on N, C, CA.""" N, CA, C = np.moveaxis(self.atoms[["N", "CA", "C"]], 1, 0) # See usage in trDesign codebase. # https://github.com/gjoni/trDesign/blob/f2d5930b472e77bfacc2f437b3966e7a708a8d37/02-GD/utils.py#L140 CB = infer_CB(C, N, CA, 1.522, 1.927, -2.143) return CB def infer_cbeta(self, infer_cbeta_for_glycine: bool = False) -> ProteinChain: """Return a new chain with inferred CB atoms at all residues except GLY. Args: infer_cbeta_for_glycine (bool): If True, infers a beta carbon for glycine residues, even though that residue doesn't have one. Default off. NOTE: The reason for having this switch in the first place is that sometimes we want a (inferred) CB coordinate for every residue, for example for making a pairwise distance matrix, or doing an RMSD calculation between two designs for a given structural template, w/ CB atoms. """ atom37_positions = self.atom37_positions.copy() atom37_mask = self.atom37_mask.copy() inferred_cbeta_positions = self.inferred_cbeta if not infer_cbeta_for_glycine: inferred_cbeta_positions[np.array(list(self.sequence)) == "G", :] = np.NAN atom37_positions[:, RC.atom_order["CB"]] = inferred_cbeta_positions atom37_mask[:, RC.atom_order["CB"]] = ~np.isnan( atom37_positions[:, RC.atom_order["CB"]] ).any(-1) new_chain = replace( self, atom37_positions=atom37_positions, atom37_mask=atom37_mask ) return new_chain @cached_property def pdist_CA(self) -> np.ndarray: CA = self.atoms["CA"] pdist_CA = squareform(pdist(CA)) return pdist_CA @cached_property def pdist_CB(self) -> np.ndarray: pdist_CB = squareform(pdist(self.inferred_cbeta)) return pdist_CB @classmethod def as_complex(cls, chains: Sequence[ProteinChain]): raise RuntimeError( ".as_complex() has been deprecated in favor of .concat(). " ".concat() will eventually be deprecated in favor of ProteinComplex..." ) @classmethod def concat(cls, chains: Sequence[ProteinChain]): def join_arrays(arrays: Sequence[np.ndarray], sep: np.ndarray): full_array = [] for array in arrays: full_array.append(array) full_array.append(sep) full_array = full_array[:-1] return np.concatenate(full_array, 0) sep_tokens = { "residue_index": np.array([-1]), "insertion_code": np.array([""]), "atom37_positions": np.full([1, 37, 3], np.inf), "atom37_mask": np.zeros([1, 37]), "confidence": np.array([0]), } array_args: dict[str, np.ndarray] = { name: join_arrays([getattr(chain, name) for chain in chains], sep) for name, sep in sep_tokens.items() } return cls( id=chains[0].id, sequence=C.CHAIN_BREAK_STR.join(chain.sequence for chain in chains), chain_id="A", entity_id=None, **array_args, ) def select_residue_indices( self, indices: list[int | str], ignore_x_mismatch: bool = False ) -> ProteinChain: numeric_indices = [ idx if isinstance(idx, int) else int(idx[1:]) for idx in indices ] mask = np.isin(self.residue_index, numeric_indices) new = self[mask] mismatches = [] for aa, idx in zip(new.sequence, indices): if isinstance(idx, int): continue if aa == "X" and ignore_x_mismatch: continue if aa != idx[0]: mismatches.append((aa, idx)) if mismatches: mismatch_str = "; ".join( f"Position {idx[1:]}, Expected: {idx[0]}, Received: {aa}" for aa, idx in mismatches ) raise RuntimeError(mismatch_str) return new