anonymousiam commited on
Commit
9759eb6
·
verified ·
1 Parent(s): 52979af

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +103 -57
app.py CHANGED
@@ -1,64 +1,110 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ # Install required dependencies
2
+ !pip install gradio transformers torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ import numpy as np
5
+ import pandas as pd
6
+ import torch
7
+ from transformers import AutoModelForCausalLM, AutoTokenizer
8
+ import gradio as gr
 
 
 
 
9
 
10
+ # Load a free model from Hugging Face
11
+ model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Small model that works well for simple tasks
12
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
13
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
 
 
 
 
14
 
15
+ # Financial knowledge base - simple templates and responses
16
+ financial_templates = {
17
+ "budget": "Here's a simple budget template based on the 50/30/20 rule:\n- 50% for needs (rent, groceries, utilities)\n- 30% for wants (dining out, entertainment)\n- 20% for savings and debt repayment",
18
+ "emergency_fund": "An emergency fund should ideally cover 3-6 months of expenses. Start with a goal of $1,000, then build from there.",
19
+ "debt": "Focus on high-interest debt first (like credit cards). Consider the debt avalanche (highest interest first) or debt snowball (smallest balance first) methods.",
20
+ "investing": "For beginners, consider index funds or ETFs for diversification. Time in the market beats timing the market.",
21
+ "retirement": "Take advantage of employer matches in retirement accounts - it's free money. Start early to benefit from compound interest."
22
+ }
23
 
24
+ # Define guided chat flow
25
+ def guided_response(user_message, chat_history):
26
+ # Check if we should use a template response
27
+ for key, template in financial_templates.items():
28
+ if key in user_message.lower():
29
+ return template
30
+
31
+ # For more general queries, use the AI model
32
+ prompt = f"""<human>I need financial advice: {user_message}</human>
33
+ <assistant>"""
34
+
35
+ inputs = tokenizer(prompt, return_tensors="pt")
36
+ outputs = model.generate(
37
+ inputs["input_ids"],
38
+ max_length=512,
39
+ temperature=0.7,
40
+ do_sample=True,
41
+ pad_token_id=tokenizer.eos_token_id
42
+ )
43
+
44
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
45
+ # Extract just the assistant's response
46
+ if "<assistant>" in response:
47
+ response = response.split("<assistant>")[1].strip()
48
+
49
+ return response
50
 
51
+ # Create budget calculator function
52
+ def calculate_budget(monthly_income, housing, utilities, groceries, transportation):
53
+ total_needs = housing + utilities + groceries + transportation
54
+ needs_percent = (total_needs / monthly_income) * 100
55
+
56
+ available_for_wants = monthly_income * 0.3
57
+ available_for_savings = monthly_income * 0.2
58
+
59
+ return f"""Based on the 50/30/20 rule:
60
+
61
+ Current spending on needs: ${total_needs:.2f} ({needs_percent:.1f}% of income)
62
+ Recommended max for needs: ${monthly_income * 0.5:.2f} (50%)
63
+
64
+ Available for wants: ${available_for_wants:.2f} (30%)
65
+ Recommended for savings/debt: ${available_for_savings:.2f} (20%)
66
+
67
+ {'Your needs expenses are within recommended limits!' if needs_percent <= 50 else 'Your needs expenses exceed 50% of income. Consider areas to reduce spending.'}
68
+ """
69
 
70
+ # Setup Gradio interface with tabs
71
+ with gr.Blocks() as app:
72
+ gr.Markdown("# Financial Advisor Bot")
73
+
74
+ with gr.Tab("Chat Advisor"):
75
+ chatbot = gr.Chatbot(height=400)
76
+ msg = gr.Textbox(label="Ask a question about personal finance")
77
+ clear = gr.Button("Clear")
78
+
79
+ def respond(message, chat_history):
80
+ bot_message = guided_response(message, chat_history)
81
+ chat_history.append((message, bot_message))
82
+ return "", chat_history
83
+
84
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
85
+ clear.click(lambda: None, None, chatbot, queue=False)
86
+
87
+ with gr.Tab("Budget Calculator"):
88
+ gr.Markdown("## 50/30/20 Budget Calculator")
89
+ with gr.Row():
90
+ income = gr.Number(label="Monthly Income (after tax)")
91
+
92
+ with gr.Row():
93
+ gr.Markdown("### Monthly Expenses (Needs)")
94
+ with gr.Row():
95
+ housing = gr.Number(label="Housing", value=0)
96
+ utilities = gr.Number(label="Utilities", value=0)
97
+ groceries = gr.Number(label="Groceries", value=0)
98
+ transport = gr.Number(label="Transportation", value=0)
99
+
100
+ calculate_btn = gr.Button("Calculate Budget")
101
+ output = gr.Textbox(label="Budget Analysis", lines=10)
102
+
103
+ calculate_btn.click(
104
+ calculate_budget,
105
+ inputs=[income, housing, utilities, groceries, transport],
106
+ outputs=output
107
+ )
108
 
109
+ # Launch the app in Colab
110
+ app.launch(share=True) # share=True creates a public link you can share with others