File size: 94,531 Bytes
5e3f2b8
d61ddbe
 
 
 
 
 
 
 
 
 
5e3f2b8
d61ddbe
 
 
 
1eb3ba2
5e3f2b8
 
 
 
d61ddbe
69418bc
d61ddbe
 
69418bc
 
d61ddbe
5e3f2b8
d61ddbe
69418bc
5e3f2b8
 
 
 
 
 
 
1eb3ba2
5e3f2b8
69418bc
5e3f2b8
 
69418bc
5e3f2b8
 
d61ddbe
69418bc
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69418bc
 
5e3f2b8
 
1949eee
5e3f2b8
 
1949eee
5e3f2b8
 
 
1eb3ba2
 
d61ddbe
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69418bc
1eb3ba2
5e3f2b8
d61ddbe
 
b0a1bba
5e3f2b8
b0a1bba
 
 
 
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
b0a1bba
 
d61ddbe
 
1949eee
b0a1bba
 
d61ddbe
 
 
1949eee
b0a1bba
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
5e3f2b8
 
1949eee
5e3f2b8
 
 
 
 
 
 
 
1949eee
d61ddbe
5e3f2b8
d61ddbe
5e3f2b8
d61ddbe
1949eee
 
5e3f2b8
 
 
 
 
 
 
 
d61ddbe
 
5e3f2b8
b0a1bba
1949eee
b0a1bba
 
1949eee
5e3f2b8
b0a1bba
1949eee
d61ddbe
 
5e3f2b8
1949eee
b0a1bba
1949eee
b0a1bba
 
1949eee
5e3f2b8
b0a1bba
1949eee
d61ddbe
 
5e3f2b8
b0a1bba
1949eee
b0a1bba
 
 
1949eee
b0a1bba
5e3f2b8
 
b0a1bba
1949eee
69418bc
1eb3ba2
5e3f2b8
69418bc
b0a1bba
69418bc
1949eee
69418bc
b0a1bba
 
69418bc
 
5e3f2b8
69418bc
b0a1bba
1949eee
69418bc
1949eee
69418bc
b0a1bba
 
69418bc
1eb3ba2
5e3f2b8
b0a1bba
1949eee
 
5e3f2b8
1949eee
5e3f2b8
 
b0a1bba
1949eee
1eb3ba2
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1949eee
5e3f2b8
1949eee
5e3f2b8
1949eee
5e3f2b8
1949eee
b0a1bba
 
 
1949eee
5e3f2b8
 
 
 
 
 
1949eee
 
 
 
 
 
 
5e3f2b8
 
1949eee
5e3f2b8
1949eee
5e3f2b8
 
1eb3ba2
69418bc
5e3f2b8
 
 
 
69418bc
b0a1bba
69418bc
 
1949eee
b0a1bba
5e3f2b8
69418bc
5e3f2b8
b0a1bba
5e3f2b8
 
 
 
 
b0a1bba
 
5e3f2b8
b0a1bba
 
5e3f2b8
 
 
 
b0a1bba
 
5e3f2b8
 
b0a1bba
 
5e3f2b8
 
 
b0a1bba
69418bc
5e3f2b8
b0a1bba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e3f2b8
 
b0a1bba
5e3f2b8
 
b0a1bba
5e3f2b8
 
b0a1bba
 
 
 
 
1949eee
b0a1bba
5e3f2b8
b0a1bba
5e3f2b8
b0a1bba
 
 
5e3f2b8
 
 
 
 
b0a1bba
69418bc
5e3f2b8
1949eee
5e3f2b8
 
69418bc
5e3f2b8
 
 
 
 
 
1949eee
 
5e3f2b8
 
 
 
 
1949eee
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a1bba
69418bc
5e3f2b8
b0a1bba
5e3f2b8
 
 
 
 
 
 
b0a1bba
5e3f2b8
 
 
 
 
 
 
 
b0a1bba
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69418bc
5e3f2b8
 
 
 
69418bc
5e3f2b8
 
 
 
69418bc
d61ddbe
 
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
69418bc
 
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1949eee
5e3f2b8
 
 
1949eee
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a1bba
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1949eee
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
b0a1bba
5e3f2b8
 
 
b0a1bba
 
5e3f2b8
b0a1bba
d61ddbe
 
b0a1bba
5e3f2b8
1949eee
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
b0a1bba
5e3f2b8
b0a1bba
 
 
d61ddbe
1eb3ba2
b0a1bba
5e3f2b8
1eb3ba2
b0a1bba
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a1bba
5e3f2b8
 
b0a1bba
1eb3ba2
69418bc
5e3f2b8
 
d61ddbe
5e3f2b8
 
 
69418bc
5e3f2b8
69418bc
1949eee
5e3f2b8
 
 
 
 
 
 
b0a1bba
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a1bba
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a1bba
69418bc
5e3f2b8
 
 
 
 
 
69418bc
5e3f2b8
 
 
 
69418bc
 
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69418bc
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69418bc
5e3f2b8
 
 
 
 
 
 
 
 
 
b0a1bba
5e3f2b8
 
 
 
 
 
69418bc
 
b0a1bba
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69418bc
5e3f2b8
 
 
 
 
 
 
 
 
 
 
b0a1bba
5e3f2b8
 
 
 
69418bc
 
 
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a1bba
5e3f2b8
 
69418bc
 
5e3f2b8
 
 
 
d61ddbe
b0a1bba
 
5e3f2b8
 
69418bc
 
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a1bba
5e3f2b8
 
 
b0a1bba
69418bc
 
5e3f2b8
 
 
 
 
 
 
b0a1bba
d61ddbe
5e3f2b8
 
69418bc
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
b0a1bba
5e3f2b8
 
1eb3ba2
69418bc
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a1bba
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69418bc
 
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69418bc
 
 
 
d61ddbe
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69418bc
5e3f2b8
 
 
69418bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
# filename: app_gemini_serper_v3.py
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import random
import json
import os
import time
import requests # For Serper API
from typing import List, Dict, Any, Optional
import logging
from dotenv import load_dotenv
import uuid
import re

# --- Google AI Integration ---
import google.generativeai as genai
from google.api_core import exceptions as google_exceptions

# --- Load environment variables ---
load_dotenv()

# --- Set up logging ---
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__) # Use __name__ for logger

# --- Configure API keys ---
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")

if not GOOGLE_API_KEY:
    logger.warning("GOOGLE_API_KEY not found. AI features will not work.")
if not SERPER_API_KEY:
    logger.warning("SERPER_API_KEY not found. Live web search features will not work.")

# --- Initialize the Google AI client ---
try:
    genai.configure(api_key=GOOGLE_API_KEY)
    logger.info("Google AI client configured successfully.")
except Exception as e:
    logger.error(f"Failed to configure Google AI client: {e}")
    genai = None # Prevent further calls if config fails

# --- Model configuration ---
# Using gemini-1.5-flash-latest as the state-of-the-art, fast model
MODEL_ID = "gemini-1.5-flash-latest"
if genai:
    try:
        gemini_model = genai.GenerativeModel(
            MODEL_ID,
            # System instruction is now passed during generation, not model init
            # safety_settings adjusted for potentially sensitive career/emotion talk
            safety_settings=[
                {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
                {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
                {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_ONLY_HIGH"},
                {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
            ]
        )
        logger.info(f"Google AI Model '{MODEL_ID}' initialized.")
    except Exception as e:
        logger.error(f"Failed to initialize Google AI Model '{MODEL_ID}': {e}")
        gemini_model = None
else:
    gemini_model = None

# --- Constants ---
# Enhanced emotions and goals for richer profile
EMOTIONS = ["Unmotivated 😩", "Anxious πŸ˜₯", "Confused πŸ€”", "Excited πŸŽ‰", "Overwhelmed 🀯", "Discouraged πŸ˜”", "Hopeful ✨", "Focused 😎", "Stuck 🧱"]
GOAL_TYPES = [
    "Get a job (Big Company) 🏒", "Get a job (Startup) 🌱", "Find an Internship πŸŽ“", "Freelance/Contract Work πŸ’Ό",
    "Change Careers πŸš€", "Improve Specific Skills πŸ’‘", "Build Professional Network 🀝", "Leadership Development πŸ“ˆ", "Explore Options πŸ€”"
]
USER_DB_PATH = "user_database_v3.json" # New DB file for new structure
RESUME_FOLDER = "user_resumes_v3"
PORTFOLIO_FOLDER = "user_portfolios_v3"
os.makedirs(RESUME_FOLDER, exist_ok=True)
os.makedirs(PORTFOLIO_FOLDER, exist_ok=True)

# --- Tool Definitions for Google AI (Gemini) ---
# Note: Schema is slightly different from OpenAI's

# 1. Document Template Generator
generate_document_template_func = genai.protos.FunctionDeclaration(
    name="generate_document_template",
    description="Generate a document template (like a resume or cover letter) based on type, career field, and experience level.",
    parameters=genai.protos.Schema(
        type=genai.protos.Type.OBJECT,
        properties={
            "document_type": genai.protos.Schema(type=genai.protos.Type.STRING, description="e.g., Resume, Cover Letter, LinkedIn Summary"),
            "career_field": genai.protos.Schema(type=genai.protos.Type.STRING, description="Target industry or field"),
            "experience_level": genai.protos.Schema(type=genai.protos.Type.STRING, description="e.g., Entry, Mid, Senior, Student")
        },
        required=["document_type"]
    )
)

# 2. Personalized Routine Creator
create_personalized_routine_func = genai.protos.FunctionDeclaration(
    name="create_personalized_routine",
    description="Create a personalized daily or weekly career development routine based on the user's current emotion, goals, and available time.",
    parameters=genai.protos.Schema(
        type=genai.protos.Type.OBJECT,
        properties={
            "emotion": genai.protos.Schema(type=genai.protos.Type.STRING, description="User's current primary emotion"),
            "goal": genai.protos.Schema(type=genai.protos.Type.STRING, description="User's primary career goal"),
            "available_time_minutes": genai.protos.Schema(type=genai.protos.Type.INTEGER, description="Average minutes per day user can dedicate"),
            "routine_length_days": genai.protos.Schema(type=genai.protos.Type.INTEGER, description="Desired length of the routine in days (e.g., 7 for weekly)")
        },
        required=["emotion", "goal"]
    )
)

# 3. Resume Analyzer
analyze_resume_func = genai.protos.FunctionDeclaration(
    name="analyze_resume",
    description="Analyze the provided resume text and provide feedback, comparing it against the user's stated career goal. Provides strengths, weaknesses, and suggestions.",
    parameters=genai.protos.Schema(
        type=genai.protos.Type.OBJECT,
        properties={
            "resume_text": genai.protos.Schema(type=genai.protos.Type.STRING, description="The full text content of the user's resume"),
            "career_goal": genai.protos.Schema(type=genai.protos.Type.STRING, description="The specific career goal to analyze against")
        },
        required=["resume_text", "career_goal"]
    )
)

# 4. Portfolio Analyzer
analyze_portfolio_func = genai.protos.FunctionDeclaration(
    name="analyze_portfolio",
    description="Analyze a user's portfolio based on a URL (if provided) and a description, offering feedback relative to their career goal.",
    parameters=genai.protos.Schema(
        type=genai.protos.Type.OBJECT,
        properties={
            "portfolio_url": genai.protos.Schema(type=genai.protos.Type.STRING, description="URL link to the online portfolio (optional)"),
            "portfolio_description": genai.protos.Schema(type=genai.protos.Type.STRING, description="User's description of the portfolio content and purpose"),
            "career_goal": genai.protos.Schema(type=genai.protos.Type.STRING, description="The specific career goal to analyze against")
        },
        required=["portfolio_description", "career_goal"]
    )
)

# 5. Skill Extractor & Rater (from Resume)
extract_and_rate_skills_from_resume_func = genai.protos.FunctionDeclaration(
    name="extract_and_rate_skills_from_resume",
    description="Extracts key skills from resume text and rates them on a scale of 1-10 based on apparent proficiency shown in the resume. Useful for identifying strengths and gaps.",
    parameters=genai.protos.Schema(
        type=genai.protos.Type.OBJECT,
        properties={
            "resume_text": genai.protos.Schema(type=genai.protos.Type.STRING, description="The full text content of the user's resume"),
            "max_skills": genai.protos.Schema(type=genai.protos.Type.INTEGER, description="Maximum number of skills to extract (default 8)")
        },
        required=["resume_text"]
    )
)

# 6. NEW: Live Web Search for Opportunities (Serper API)
search_web_serper_func = genai.protos.FunctionDeclaration(
    name="search_jobs_courses_skills",
    description="Search the web for relevant job openings, online courses, or skills development resources based on the user's goals, location, and potentially identified skill gaps.",
    parameters=genai.protos.Schema(
        type=genai.protos.Type.OBJECT,
        properties={
            "search_query": genai.protos.Schema(type=genai.protos.Type.STRING, description="The specific search query (e.g., 'remote data analyst jobs in California', 'online Python courses for beginners', 'project management certifications')"),
            "search_type": genai.protos.Schema(type=genai.protos.Type.STRING, description="Type of search: 'jobs', 'courses', 'skills', or 'general'"),
            "location": genai.protos.Schema(type=genai.protos.Type.STRING, description="Geographical location for the search (if applicable, e.g., 'London, UK')")
        },
        required=["search_query", "search_type"]
    )
)


# Combine all tool function declarations for the API call
tools_list_gemini = [
    generate_document_template_func,
    create_personalized_routine_func,
    analyze_resume_func,
    analyze_portfolio_func,
    extract_and_rate_skills_from_resume_func,
    search_web_serper_func
]

# --- User Database Functions (Enhanced Profile) ---
def load_user_database():
    try:
        with open(USER_DB_PATH, 'r', encoding='utf-8') as file: db = json.load(file)
        # Basic validation and migration for chat history (similar to previous)
        for user_id in db.get('users', {}):
            profile = db['users'][user_id]
            if 'chat_history' not in profile or not isinstance(profile['chat_history'], list): profile['chat_history'] = []
            else:
                 # Gemini uses 'parts' not 'content', and roles 'user'/'model'
                 fixed_history = []
                 for msg in profile['chat_history']:
                     if isinstance(msg, dict) and 'role' in msg and 'parts' in msg:
                          # Basic check, can be more robust
                         if msg['role'] in ['user', 'model'] and isinstance(msg['parts'], list):
                             fixed_history.append(msg)
                     elif isinstance(msg, dict) and 'role' == 'function': # Gemini uses role 'function' for tool responses
                         # Ensure it has necessary fields (name, response)
                         if 'name' in msg and 'response' in msg:
                             fixed_history.append(msg)
                 profile['chat_history'] = fixed_history

            # Ensure other lists exist
            for key in ['recommendations', 'daily_emotions', 'completed_tasks', 'routine_history', 'strengths', 'areas_for_development', 'values']:
                 if key not in profile or not isinstance(profile.get(key), list):
                     profile[key] = []
            # Ensure basic string fields exist
            for key in ['name', 'location', 'current_emotion', 'career_goal', 'industry', 'preferred_work_style', 'long_term_aspirations', 'resume_path', 'portfolio_path']:
                 if key not in profile:
                     profile[key] = ""
            if 'progress_points' not in profile: profile['progress_points'] = 0
            if 'experience_level' not in profile: profile['experience_level'] = "Not specified" # Add experience level

        return db
    except (FileNotFoundError, json.JSONDecodeError): logger.info(f"DB file '{USER_DB_PATH}' not found/invalid. Creating new."); db = {'users': {}}; save_user_database(db); return db
    except Exception as e: logger.error(f"Error loading DB from {USER_DB_PATH}: {e}"); return {'users': {}}

def save_user_database(db):
    try:
        with open(USER_DB_PATH, 'w', encoding='utf-8') as file: json.dump(db, file, indent=4, ensure_ascii=False)
    except Exception as e: logger.error(f"Error saving DB to {USER_DB_PATH}: {e}")

def get_user_profile(user_id):
    db = load_user_database()
    if user_id not in db.get('users', {}):
        db['users'] = db.get('users', {})
        # Initialize enhanced profile structure
        db['users'][user_id] = {
            "user_id": user_id,
            "name": "",
            "location": "",
            "industry": "", # NEW: Target industry
            "experience_level": "Not specified", # NEW: e.g., Entry, Mid, Senior
            "preferred_work_style": "Any", # NEW: Remote, Hybrid, On-site, Any
            "values": [], # NEW: List of values (e.g., "work-life balance", "impact", "learning")
            "strengths": [], # NEW: User-identified or AI-suggested strengths
            "areas_for_development": [], # NEW: User-identified or AI-suggested areas
            "long_term_aspirations": "", # NEW: Goals beyond the immediate one

            "current_emotion": "",
            "career_goal": "",
            "progress_points": 0,
            "completed_tasks": [],
            "upcoming_events": [], # Consider adding events scheduling later
            "routine_history": [],
            "daily_emotions": [],
            "resume_path": "",
            "portfolio_path": "",
            "recommendations": [],
            "chat_history": [], # Stores history in Gemini format {role: 'user'/'model', parts: [{'text': '...'}]} or {role: 'function', name:'...', response:{...}}
            "joined_date": datetime.now().isoformat()
        }
        save_user_database(db)

    # Ensure lists and basic fields exist on subsequent loads (handled mostly in load_user_database)
    profile = db.get('users', {}).get(user_id, {})
    # Add simple check for chat history format upon retrieval
    if 'chat_history' not in profile or not isinstance(profile.get('chat_history'), list):
        profile['chat_history'] = []
    # Ensure other critical lists exist
    for key in ['recommendations', 'daily_emotions', 'completed_tasks', 'routine_history', 'strengths', 'areas_for_development', 'values']:
         if key not in profile: profile[key] = []


    return profile

# --- Database Update Functions (largely similar, adjust chat message structure) ---
def update_user_profile(user_id, updates):
    # (Keep existing logic, ensure keys match new profile)
    db = load_user_database()
    if user_id in db.get('users', {}):
        profile = db['users'][user_id]
        for key, value in updates.items():
            # Maybe add some validation here later if needed
            profile[key] = value
        save_user_database(db)
        return profile
    else:
        logger.warning(f"Attempted update non-existent profile: {user_id}")
        return None

def add_task_to_user(user_id, task):
    # (Keep existing logic)
    db = load_user_database(); profile = db.get('users', {}).get(user_id)
    if profile:
        if 'completed_tasks' not in profile or not isinstance(profile['completed_tasks'], list): profile['completed_tasks'] = []
        task_with_date = { "task": task, "date": datetime.now().isoformat() }
        profile['completed_tasks'].append(task_with_date)
        profile['progress_points'] = profile.get('progress_points', 0) + random.randint(10, 25) # Gamification element
        save_user_database(db); return profile
    return None

def add_emotion_record(user_id, emotion):
    # (Keep existing logic)
    cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion
    db = load_user_database(); profile = db.get('users', {}).get(user_id)
    if profile:
        if 'daily_emotions' not in profile or not isinstance(profile['daily_emotions'], list): profile['daily_emotions'] = []
        emotion_record = { "emotion": cleaned_emotion, "date": datetime.now().isoformat() }
        profile['daily_emotions'].append(emotion_record)
        profile['current_emotion'] = cleaned_emotion # Update current emotion too
        save_user_database(db); return profile
    return None

def add_routine_to_user(user_id, routine):
    # (Keep existing logic)
    db = load_user_database(); profile = db.get('users', {}).get(user_id)
    if profile:
        if 'routine_history' not in profile or not isinstance(profile['routine_history'], list): profile['routine_history'] = []
        try: days_delta = int(routine.get('days', 7))
        except: days_delta = 7
        end_date = (datetime.now() + timedelta(days=days_delta)).isoformat()
        routine_with_date = { "routine": routine, "start_date": datetime.now().isoformat(), "end_date": end_date, "completion": 0 }
        profile['routine_history'].insert(0, routine_with_date) # Add to beginning
        profile['routine_history'] = profile['routine_history'][:10] # Keep last 10 routines
        save_user_database(db); return profile
    return None

def save_user_resume(user_id, resume_text):
    # (Keep existing logic)
    if not resume_text: return None
    filename, filepath = f"{user_id}_resume.txt", os.path.join(RESUME_FOLDER, f"{user_id}_resume.txt")
    try:
        with open(filepath, 'w', encoding='utf-8') as file: file.write(resume_text)
        update_user_profile(user_id, {"resume_path": filepath})
        logger.info(f"Resume saved: {filepath}"); return filepath
    except Exception as e: logger.error(f"Error saving resume {filepath}: {e}"); return None

def save_user_portfolio(user_id, portfolio_url, portfolio_description):
    # (Keep existing logic)
    if not portfolio_description: return None
    filename, filepath = f"{user_id}_portfolio.json", os.path.join(PORTFOLIO_FOLDER, f"{user_id}_portfolio.json")
    portfolio_content = {"url": portfolio_url, "description": portfolio_description, "saved_date": datetime.now().isoformat()}
    try:
        with open(filepath, 'w', encoding='utf-8') as file: json.dump(portfolio_content, file, indent=4, ensure_ascii=False)
        update_user_profile(user_id, {"portfolio_path": filepath})
        logger.info(f"Portfolio saved: {filepath}"); return filepath
    except Exception as e: logger.error(f"Error saving portfolio {filepath}: {e}"); return None

def add_recommendation_to_user(user_id, recommendation):
    # (Keep existing logic - potentially refine recommendation structure later)
    db = load_user_database(); profile = db.get('users', {}).get(user_id)
    if profile:
        if 'recommendations' not in profile or not isinstance(profile['recommendations'], list): profile['recommendations'] = []
        # Example structure: { 'title': 'Update LinkedIn', 'description': 'Focus on...', 'priority': 'High', 'action_type': 'Skill Building' }
        recommendation_with_date = {"recommendation": recommendation, "date": datetime.now().isoformat(), "status": "pending"}
        profile['recommendations'].insert(0, recommendation_with_date) # Add to beginning
        profile['recommendations'] = profile['recommendations'][:20] # Limit size
        save_user_database(db); return profile
    return None

def add_chat_message(user_id, role, parts_or_func_response):
    """Adds a message to the user's chat history using Gemini format."""
    db = load_user_database()
    profile = db.get('users', {}).get(user_id)
    if not profile:
        logger.warning(f"Profile not found for {user_id} when adding chat message.")
        return None

    if 'chat_history' not in profile or not isinstance(profile['chat_history'], list):
        profile['chat_history'] = []

    if role not in ['user', 'model', 'function']: # Gemini roles: 'user', 'model' (for assistant), 'function' (for tool results)
        logger.warning(f"Invalid role '{role}' for Gemini chat history.")
        return profile

    message = {"role": role}
    if role == 'user' or role == 'model':
        # Expecting parts_or_func_response to be a list of parts, e.g., [{'text': '...'}],
        # but handle simple string input for convenience
        if isinstance(parts_or_func_response, str):
            message['parts'] = [{'text': parts_or_func_response}]
        elif isinstance(parts_or_func_response, list):
            # Basic validation: Ensure it's a list of dicts with 'text'
            if all(isinstance(p, dict) and 'text' in p for p in parts_or_func_response):
                 message['parts'] = parts_or_func_response
            else:
                 logger.warning(f"Invalid parts format for role {role}: {parts_or_func_response}")
                 return profile # Don't save invalid structure
        else:
             logger.warning(f"Invalid content type for role {role}: {type(parts_or_func_response)}")
             return profile # Don't save invalid structure

    elif role == 'function':
        # Expecting parts_or_func_response to be a dict like {'name': 'func_name', 'response': {'content': ...}}
        if isinstance(parts_or_func_response, dict) and 'name' in parts_or_func_response and 'response' in parts_or_func_response:
            message.update(parts_or_func_response) # Merge the dict
        else:
            logger.warning(f"Invalid function response format: {parts_or_func_response}")
            return profile # Don't save invalid structure

    profile['chat_history'].append(message)

    # Limit history size (keep system prompt implicit for now, or add explicitly if needed)
    max_history_turns = 25 # Keep last 25 pairs (user + model/function)
    if len(profile['chat_history']) > max_history_turns * 2:
        profile['chat_history'] = profile['chat_history'][-(max_history_turns * 2):]

    save_user_database(db)
    return profile


# --- Basic Routine Fallback Function (keep as is, provides robustness) ---
def generate_basic_routine(emotion, goal, available_time=60, days=7):
    # (Code identical to the provided version - a good fallback)
    logger.info(f"Generating basic fallback routine for emotion={emotion}, goal={goal}")
    # ... (rest of the function code remains the same) ...
    routine_types = {
        "job_search": [ {"name": "Research Target Companies", "points": 15, "duration": 20, "description": "Identify 3 potential employers aligned with your goal."}, {"name": "Update LinkedIn Section", "points": 15, "duration": 25, "description": "Refine one section of your LinkedIn profile (e.g., summary, experience)."}, {"name": "Practice STAR Method", "points": 20, "duration": 15, "description": "Outline one experience using the STAR method for interviews."}, {"name": "Find Networking Event", "points": 10, "duration": 10, "description": "Look for one relevant online or local networking event."} ],
        "skill_building": [ {"name": "Online Tutorial (1 Module)", "points": 25, "duration": 45, "description": "Complete one module of a relevant online course/tutorial."}, {"name": "Read Industry Blog/Article", "points": 10, "duration": 15, "description": "Read and summarize one article about trends in your field."}, {"name": "Small Project Task", "points": 30, "duration": 60, "description": "Dedicate time to a specific task within a personal project."}, {"name": "Review Skill Documentation", "points": 15, "duration": 30, "description": "Read documentation or examples for a skill you're learning."} ],
        "motivation_wellbeing": [ {"name": "Mindful Reflection", "points": 10, "duration": 10, "description": "Spend 10 minutes reflecting on progress and challenges without judgment."}, {"name": "Set 1-3 Daily Intentions", "points": 10, "duration": 5, "description": "Define small, achievable goals for the day."}, {"name": "Short Break/Walk", "points": 15, "duration": 15, "description": "Take a brief break away from screens, preferably with light movement."}, {"name": "Connect with Support", "points": 20, "duration": 20, "description": "Briefly chat with a friend, mentor, or peer about your journey."} ] }
    cleaned_emotion = emotion.split(" ")[0].lower() if " " in emotion else emotion.lower()
    negative_emotions = ["unmotivated", "anxious", "confused", "overwhelmed", "discouraged", "stuck"] # Added 'stuck'
    if any(term in goal.lower() for term in ["job", "internship", "company", "freelance", "contract"]): base_type = "job_search"
    elif any(term in goal.lower() for term in ["skill", "learn", "development"]): base_type = "skill_building"
    elif "network" in goal.lower(): base_type = "job_search" # Networking often related to job search
    else: base_type = "skill_building" # Default
    include_wellbeing = cleaned_emotion in negative_emotions or "overwhelmed" in cleaned_emotion
    daily_tasks_list = []
    for day in range(1, days + 1):
        day_tasks, remaining_time, tasks_added_count = [], available_time, 0
        possible_tasks = routine_types[base_type].copy()
        if include_wellbeing: possible_tasks.extend(routine_types["motivation_wellbeing"])
        random.shuffle(possible_tasks)
        for task in possible_tasks:
            # Ensure task has duration and check remaining time
            if task.get("duration", 0) > 0 and task["duration"] <= remaining_time and tasks_added_count < 3: # Max 3 tasks/day
                day_tasks.append(task); remaining_time -= task["duration"]; tasks_added_count += 1
            if remaining_time < 10 or tasks_added_count >= 3: break # Stop if little time left or max tasks reached
        daily_tasks_list.append({"day": day, "tasks": day_tasks})
    routine = {"name": f"{days}-Day Focus Plan", "description": f"A focused {days}-day plan to help you with '{goal}', especially while feeling {cleaned_emotion}. We'll do this step-by-step!", "days": days, "daily_tasks": daily_tasks_list}
    return routine # Return dict directly

# --- Tool Implementation Functions ---
# Note: These functions now return Python dicts/strings directly.
# The main AI interaction logic will handle packaging them for Gemini API.

def generate_document_template(document_type: str, career_field: str = "", experience_level: str = "") -> Dict[str, str]:
    """Generates a basic markdown template for the specified document type."""
    logger.info(f"Executing tool: generate_document_template(type='{document_type}', field='{career_field}', exp='{experience_level}')")
    template = f"## Basic Template: {document_type}\n\n"
    template += f"**Target Field:** {career_field or 'Not specified'}\n"
    template += f"**Experience Level:** {experience_level or 'Not specified'}\n\n---\n\n"

    # Using triple quotes correctly
    if "resume" in document_type.lower():
        template += """
### Contact Information
* Name:
* Phone:
* Email:
* LinkedIn URL:
* Portfolio URL (Optional):

### Summary/Objective
* _[ 2-3 sentences summarizing your key skills, experience, and career goals, tailored to the job/field. Make it impactful! ]_

### Experience
**Company Name | Location | Job Title | Start Date – End Date**
* Accomplishment 1 (Use action verbs: Led, Managed, Developed, Increased X by Y%. Quantify results!)
* Accomplishment 2
* _[ Repeat for other relevant positions ]_

### Education
**University/Institution Name | Degree | Graduation Date (or Expected)**
* Relevant coursework, honors, activities (Optional)

### Skills
* **Technical Skills:** [ e.g., Python, Java, SQL, MS Excel, Google Analytics, Figma, AWS ]
* **Languages:** [ e.g., English (Native), Spanish (Fluent) ]
* **Other:** [ Certifications, relevant tools, methodologies like Agile/Scrum ]
"""
    elif "cover letter" in document_type.lower():
        template += """
[Your Name]
[Your Address]
[Your Phone]
[Your Email]

[Date]

[Hiring Manager Name (if known), or 'Hiring Team']
[Hiring Manager Title (if known)]
[Company Name]
[Company Address]

**Subject: Application for [Job Title] Position - [Your Name]**

Dear [Mr./Ms./Mx. Last Name or Hiring Team],

**Introduction:** State the position you're applying for and where you saw it. Express genuine enthusiasm for the role *and* the company. Briefly highlight 1-2 key qualifications that make you a perfect fit right from the start.
* _[ Example: I am writing to express my strong interest in the [Job Title] position advertised on [Platform]. With my background in [Relevant Field] and proven ability to [Key Skill Relevant to Job], I am confident I can bring significant value to [Company Name]'s mission in [Specific Area Company Works In]. ]_

**Body Paragraph(s):** This is where you connect your experience to the job description. Don't just list duties; show *impact*. Use examples (think STAR method: Situation, Task, Action, Result). Explain *why* you're drawn to *this specific company* – mention their values, projects, or recent news. Show you've done your homework!
* _[ Example: In my previous role at [Previous Company], I spearheaded a project that [Quantifiable achievement relevant to new job], demonstrating my expertise in [Skill required by new job]. I admire [Company Name]'s innovative approach to [Specific Company Initiative], and I believe my skills in [Another Relevant Skill] align perfectly with the requirements of this role and your company culture. ]_

**Conclusion:** Reiterate your strong interest and suitability. Briefly summarize your key selling points. State your call to action confidently (e.g., "I am eager to discuss how my skills can benefit [Company Name]..."). Thank the reader for their time and consideration.
* _[ Example: Thank you for considering my application. My attached resume provides further detail on my qualifications. I am excited about the potential to contribute to your team and look forward to hearing from you soon regarding an interview. ]_

Sincerely,

[Your Typed Name]
"""
    elif "linkedin summary" in document_type.lower():
         template += """
### LinkedIn Summary / About Section Template

**Headline:** [ Make this keyword-rich and concise! Who are you professionally? What's your focus? e.g., 'Software Engineer specializing in AI & Cloud | Python | Ex-Google | Building Innovative Solutions' OR 'Marketing Manager | Driving Growth for SaaS Startups | Content Strategy & Demand Generation' ]

**About Section:**

* **[ Paragraph 1: Hook & Overview ]** Start with a compelling statement about your passion, mission, or core expertise. Who are you, what do you do, and what drives you? Use keywords relevant to your target roles/industry. Think of this as your elevator pitch.
* **[ Paragraph 2: Key Skills & Experience Highlights ]** Detail your core competencies, both technical and soft skills. Mention significant experiences, types of projects, or industries you've worked in. Quantify achievements whenever possible (e.g., 'Managed budgets up to $X', 'Increased user engagement by Y%'). Tailor this to attract your desired audience (recruiters, clients, collaborators).
* **[ Paragraph 3: Career Goals & What You're Seeking (Optional but Recommended) ]** Briefly state your current career aspirations. What kind of opportunities, connections, or challenges are you looking for? Be specific if possible (e.g., 'Seeking opportunities in AI ethics', 'Open to collaborating on open-source projects').
* **[ Paragraph 4: Call to Action / Personality (Optional) ]** You might invite relevant connections, mention personal interests related to your field, or add a touch of personality to make you more memorable. What makes you, you?
* **[ Specialties/Keywords: ]** _[ List 5-15 key terms separated by commas or bullet points that recruiters might search for. e.g., Project Management, Data Analysis, Agile Methodologies, Content Strategy, Python, Java, Cloud Security, UX/UI Design, B2B Marketing ]_
"""
    else:
         template += "[ Template structure for this document type will be provided here. Let me know what you need! ]"

    # Return as a dictionary for Gemini function response
    return {"template_markdown": template}

def create_personalized_routine(emotion: str, goal: str, available_time_minutes: int = 60, routine_length_days: int = 7) -> Dict[str, Any]:
    """Creates a personalized routine, trying AI first, then falling back to basic."""
    logger.info(f"Executing tool: create_personalized_routine(emo='{emotion}', goal='{goal}', time={available_time_minutes}, days={routine_length_days})")
    # In a real scenario, you might try a *brief* internal AI call here first
    # for a more nuanced routine before falling back. For now, use fallback directly.
    logger.warning("Using basic fallback for create_personalized_routine for robustness.")
    try:
        routine = generate_basic_routine(emotion, goal, available_time_minutes, routine_length_days)
        if not routine or not isinstance(routine, dict): # generate_basic_routine returns a dict
             raise ValueError("Basic routine generation failed to return a valid dictionary.")
        # Add a supportive message within the routine data
        routine['support_message'] = f"Hey, I know feeling {emotion} while aiming for '{goal}' can be tough. We've got this routine to help break it down. One step at a time, okay? You're doing great just by planning!"
        return routine # Return the dict directly
    except Exception as e:
        logger.error(f"Error in create_personalized_routine fallback: {e}")
        # Return an error structure
        return {"error": f"Couldn't create a routine right now due to an error: {e}. Maybe try simplifying the goal or adjusting the time?"}

def analyze_resume(resume_text: str, career_goal: str) -> Dict[str, Any]:
    """Provides analysis of the resume (Simulated - AI analysis would replace this)."""
    logger.info(f"Executing tool: analyze_resume(goal='{career_goal}', len={len(resume_text)})")
    # !! Placeholder Analysis !! Replace with actual AI call in production if desired,
    # but the main AI handles this via system prompt now. This function is for the TOOL call.
    logger.warning("Using placeholder analysis for analyze_resume tool.")
    analysis = {
        "strengths": [
            "Clear contact information.",
            "Uses some action verbs.",
            f"Mentions skills relevant to '{career_goal}' (needs verification)."
            ],
        "areas_for_improvement": [
            "Quantify achievements more (e.g., 'Increased X by Y%').",
            f"Ensure skills section is tailored specifically for '{career_goal}' roles.",
            "Check for consistent formatting and tense.",
            "Add a compelling summary/objective statement at the top."
            ],
        "format_feedback": "Overall format seems clean, but check for consistency.",
        "content_feedback": f"Content shows potential relevance to '{career_goal}', but needs more specific examples and quantified results.",
        "keyword_suggestions": ["Review job descriptions for "+ career_goal +" and incorporate relevant keywords like 'Keyword1', 'Keyword2', 'Keyword3'."],
        "next_steps": [
            "Revise bullet points under 'Experience' to include measurable results.",
            "Tailor the Summary/Objective and Skills sections for each application.",
            "Proofread carefully for any typos or grammatical errors."
            ]
        }
    return {"analysis": analysis} # Return dict

def analyze_portfolio(portfolio_description: str, career_goal: str, portfolio_url: str = "") -> Dict[str, Any]:
    """Provides analysis of the portfolio (Simulated - AI analysis would replace this)."""
    logger.info(f"Executing tool: analyze_portfolio(goal='{career_goal}', url='{portfolio_url}', desc_len={len(portfolio_description)})")
    # !! Placeholder Analysis !!
    logger.warning("Using placeholder analysis for analyze_portfolio tool.")
    analysis = {
        "alignment_with_goal": f"Based on the description, seems moderately aligned with '{career_goal}'. Review specific projects.",
        "strengths": [
            "Includes a variety of projects (based on description).",
            "Clear description provided helps understand context."
             ] + (["Portfolio URL provided for direct review."] if portfolio_url else []),
        "areas_for_improvement": [
            f"Ensure project descriptions clearly link skills used to '{career_goal}' requirements.",
            "Consider adding 1-2 detailed case studies for key projects.",
            "Make sure navigation is intuitive (if URL provided)."
            ],
        "presentation_feedback": "Description is helpful. " + (f"Review URL ({portfolio_url}) for visual appeal and clarity." if portfolio_url else "Consider creating an online portfolio if you don't have one."),
        "next_steps": [
            "Highlight 2-3 projects most relevant to '{career_goal}' prominently.",
            "Get feedback from peers or mentors in your target field.",
            "Ensure contact information is easily accessible."
            ]
        }
    return {"analysis": analysis} # Return dict

def extract_and_rate_skills_from_resume(resume_text: str, max_skills: int = 8) -> Dict[str, Any]:
    """Extracts and rates skills from resume text (Simulated - AI could do this better)."""
    logger.info(f"Executing tool: extract_skills(len={len(resume_text)}, max={max_skills})")
    # !! Placeholder Extraction !!
    logger.warning("Using placeholder skill extraction for extract_and_rate_skills_from_resume tool.")
    possible = ["Python", "Java", "JavaScript", "Project Management", "Communication", "Data Analysis", "Teamwork", "Leadership", "SQL", "React", "Customer Service", "Problem Solving", "Cloud Computing", "AWS", "Azure", "GCP", "Agile Methodologies", "Machine Learning", "Marketing", "SEO", "Content Creation"]
    found = []
    resume_lower = resume_text.lower()
    # Basic keyword spotting
    for skill in possible:
        # Use word boundaries to avoid matching substrings (e.g., 'java' in 'javascript')
        if re.search(r'\b' + re.escape(skill.lower()) + r'\b', resume_lower):
             # Simulate rating based on frequency or context (very basic here)
             score = random.randint(4, 9)
             if "lead" in resume_lower or "manage" in resume_lower or "develop" in resume_lower:
                 score = min(10, score + random.randint(0, 1)) # Slightly boost if leadership words present
             found.append({"name": skill, "score": score})
        if len(found) >= max_skills: break

    # Fallback if nothing found but resume is substantial
    if not found and len(resume_text) > 100:
        found = [
            {"name": "Communication", "score": random.randint(5,8)},
            {"name": "Teamwork", "score": random.randint(5,8)},
            {"name": "Problem Solving", "score": random.randint(5,8)},
        ]
    logger.info(f"Extracted skills (placeholder): {[s['name'] for s in found]}")
    return {"skills": found[:max_skills]} # Return dict


# --- NEW: Serper Web Search Implementation ---
def search_web_serper(search_query: str, search_type: str = 'general', location: str = None) -> Dict[str, Any]:
    """Performs a web search using the Serper API."""
    logger.info(f"Executing tool: search_web_serper(query='{search_query}', type='{search_type}', loc='{location}')")
    if not SERPER_API_KEY:
        logger.error("SERPER_API_KEY not configured.")
        return {"error": "Web search functionality is not configured."}

    api_url = "https://google.serper.dev/search"
    payload = json.dumps({
        "q": search_query,
        "location": location if location else None, # Add location if provided
        # Add other params like 'num' for number of results if needed
    })
    headers = {
        'X-API-KEY': SERPER_API_KEY,
        'Content-Type': 'application/json'
    }

    try:
        response = requests.post(api_url, headers=headers, data=payload, timeout=10) # Added timeout
        response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
        results = response.json()

        # Extract relevant information based on search type (simplified)
        extracted_results = []
        if search_type == 'jobs':
            # Look for job postings, titles, companies
            if 'jobs' in results: # Serper might have a dedicated jobs structure
                 for job in results['jobs'][:5]: # Limit to top 5
                      extracted_results.append({
                          "title": job.get('title'),
                          "company": job.get('company_name'),
                          "location": job.get('location'),
                          "link": job.get('link') # Assuming Serper provides a direct link
                      })
            elif 'organic' in results: # Fallback to organic results
                 for item in results['organic'][:5]:
                     # Basic check if title sounds like a job
                     if any(kw in item.get('title', '').lower() for kw in ['hiring', 'job', 'career', 'vacancy']):
                        extracted_results.append({
                             "title": item.get('title'),
                             "snippet": item.get('snippet'),
                             "link": item.get('link')
                         })
        elif search_type in ['courses', 'skills']:
             # Extract organic results (titles, links, snippets)
             if 'organic' in results:
                  for item in results['organic'][:5]:
                      extracted_results.append({
                          "title": item.get('title'),
                          "snippet": item.get('snippet'),
                          "link": item.get('link')
                      })
        else: # General search
             if 'organic' in results:
                  for item in results['organic'][:3]: # Limit general results
                       extracted_results.append({
                          "title": item.get('title'),
                          "snippet": item.get('snippet'),
                          "link": item.get('link')
                       })
            # Maybe include answer box if relevant?
             if 'answerBox' in results:
                 extracted_results.insert(0, { # Put answer box first
                     "type": "Answer Box",
                     "title": results['answerBox'].get('title'),
                     "snippet": results['answerBox'].get('snippet') or results['answerBox'].get('answer'),
                     "link": results['answerBox'].get('link')
                 })


        logger.info(f"Serper search successful for '{search_query}'. Found {len(extracted_results)} relevant items.")
        return {"search_results": extracted_results} # Return dict

    except requests.exceptions.RequestException as e:
        logger.error(f"Serper API request failed: {e}")
        return {"error": f"Web search failed: {e}"}
    except Exception as e:
        logger.error(f"Error processing Serper response: {e}")
        return {"error": "Failed to process web search results."}


# --- AI Interaction Logic (Using Google Gemini) ---
def get_ai_response(user_id: str, user_input: str) -> str:
    """Gets response from Google Gemini, handling context, system prompt, and function calls."""
    logger.info(f"Getting AI response for user {user_id}. Input: '{user_input[:100]}...'")

    if not gemini_model:
        logger.error("Gemini model not initialized.")
        return "I'm sorry, my AI core isn't available right now. Please check the configuration."

    try:
        user_profile = get_user_profile(user_id)
        if not user_profile:
             logger.error(f"Failed profile retrieval for {user_id}.")
             return "Uh oh, I couldn't access your profile details right now. Let's try again in a moment?"

        # **INVESTOR NOTE:** The system prompt defines Aishura's unique empathetic persona and strategic approach.
        # This blend of emotional intelligence and career coaching is our key differentiator.
        current_emotion_display = user_profile.get('current_emotion', 'how you feel')
        user_name = user_profile.get('name', 'there')
        career_goal = user_profile.get('career_goal', 'your goals')
        location = user_profile.get('location', 'your area')
        industry = user_profile.get('industry', 'your field')
        exp_level = user_profile.get('experience_level', 'your experience level')

        system_prompt = f"""
        You are Aishura, an advanced AI career assistant built on Google's Gemini model. Your core mission is to provide **empathetic, supportive, and highly personalized career guidance**. You are talking to {user_name}.

        **Your Persona & Communication Style:**
        * **Empathetic & Validating:** ALWAYS acknowledge the user's feelings ({current_emotion_display}). Use phrases like "I hear you," "It sounds like things are tough/exciting," "That makes total sense," "I get it." Validate their experience.
        * **Collaborative & Supportive:** Use "we," "us," "together." Frame guidance as a partnership. Phrases: "Okay, let's figure this out together.", "We can tackle this step-by-step.", "I'm here to help you navigate this."
        * **Positive & Action-Oriented:** While validating struggles, gently guide towards positive next steps. Focus on what *can* be done. Be realistic but hopeful.
        * **Personalized:** Reference the user's profile details subtly: name ({user_name}), goal ({career_goal}), location ({location}), industry ({industry}), experience ({exp_level}).
        * **Concise & Clear:** Use markdown for readability (lists, bolding). Avoid jargon. Get to the point while remaining warm.

        **Core Functionality - How to Respond:**
        1.  **Acknowledge & Empathize:** Start by acknowledging their input and expressed emotion (e.g., "Hey {user_name}, I hear that you're feeling {current_emotion_display}. It's completely understandable given [mention context from user input or goal].").
        2.  **Address the Query Directly:** Answer their specific question or respond to their statement clearly.
        3.  **Leverage Tools Strategically:**
            * **Proactive Suggestions:** If they mention needing a resume, cover letter, or LinkedIn help, suggest using `generate_document_template`. If they feel stuck or need structure, suggest `create_personalized_routine`. If they mention their resume or portfolio, offer to analyze it (`analyze_resume`, `analyze_portfolio`). If they want to understand their skills better from their resume, suggest `extract_and_rate_skills_from_resume`.
            * **Web Search (`search_jobs_courses_skills`):**
                * **Use ONLY when the user explicitly asks for job openings, courses, skill resources, or specific company information.**
                * Construct a specific `search_query` based on their request, `career_goal`, `location`, `industry`, and potentially `areas_for_development`.
                * Specify `search_type` ('jobs', 'courses', 'skills', 'general').
                * Include `location` if relevant and available.
                * **Crucially:** Present the search results clearly. Mention they are *live* results but listings change quickly. Don't just dump links; summarize findings. E.g., "Okay, I found a few promising [type] results for you based on our search:"
            * **Do NOT Use Tools If:** The user is just chatting, venting, or asking for general advice that doesn't map directly to a tool's function. Handle these conversationally.
        4.  **Synthesize Tool Results:** When a tool (especially search) provides results, don't just output the raw data. Explain *why* these results are relevant to the user and their goals. Integrate the findings into your conversational response.
        5.  **Maintain Context:** Remember the conversation flow and user profile details.
        6.  **Handle Errors Gracefully:** If a tool fails or returns an error, apologize and explain simply (e.g., "Hmm, I couldn't fetch the [tool purpose] just now. Maybe we can try searching differently, or focus on [alternative action]?"). Do not show technical error messages to the user.

        **Example Snippets:**
        * "I got you. Feeling {emotion} is tough, but we'll break down this {goal} together."
        * "Okay, based on your goal of {goal} and feeling {emotion}, how about we create a manageable routine? I can use the `create_personalized_routine` tool if you'd like."
        * "Finding jobs can be draining. Want me to run a quick search for '{goal}' roles in {location} using the `search_jobs_courses_skills` tool?"
        """

        # Prepare message history for Gemini API
        # Convert stored format {role: 'user'/'model'/'function', parts/response} to API format
        gemini_history = []
        for msg in user_profile.get('chat_history', []):
            if msg['role'] == 'function':
                 # Convert tool/function response format
                 gemini_history.append(genai.protos.Content(
                     parts=[genai.protos.Part(
                         function_response=genai.protos.FunctionResponse(name=msg['name'], response=msg['response'])
                     )]
                 ))
            elif 'parts' in msg: # Should be 'user' or 'model'
                 # Ensure parts format is correct (list of Part objects)
                 # Assuming stored parts are like [{'text': '...'}]
                try:
                    api_parts = [genai.protos.Part(text=p['text']) for p in msg.get('parts', []) if 'text' in p]
                    if api_parts: # Only add if there are valid parts
                        gemini_history.append(genai.protos.Content(role=msg['role'], parts=api_parts))
                except Exception as e:
                    logger.warning(f"Skipping invalid message structure in history: {msg} - Error: {e}")


        # --- Main AI Interaction Loop (Handles Function Calling) ---
        current_input_parts = [genai.protos.Part(text=user_input)]
        prompt_content = genai.protos.Content(role='user', parts=current_input_parts)
        full_prompt_history = gemini_history + [prompt_content]

        logger.info(f"Sending {len(full_prompt_history)} history entries to Gemini model {MODEL_ID}.")

        # **INVESTOR NOTE:** The use of Gemini 1.5 Flash ensures rapid responses, crucial for user engagement.
        # The integrated function calling allows seamless access to specialized tools and live data (Serper).
        try:
            response = gemini_model.generate_content(
                full_prompt_history,
                generation_config=genai.types.GenerationConfig(temperature=0.7, max_output_tokens=1500),
                tools=tools_list_gemini, # Pass the list of function declarations
                tool_config=genai.types.ToolConfig(function_calling_config="AUTO"), # Let model decide when to call functions
                system_instruction=genai.protos.Content(parts=[genai.protos.Part(text=system_prompt)]) # System prompt passed here
            )

            response_message = response.candidates[0].content
            finish_reason = response.candidates[0].finish_reason

        except google_exceptions.ResourceExhausted as e:
             logger.error(f"Google API Quota Error: {e}")
             return "I'm experiencing high demand right now. Let's try that again in a moment?"
        except google_exceptions.GoogleAPIError as e:
             logger.error(f"Google API Error: {e}")
             return f"Sorry, there was an issue connecting to my AI brain ({e.message}). Could you try again?"
        except Exception as e:
             logger.exception(f"Unexpected error during Gemini API call: {e}")
             return "Oh dear, something unexpected happened on my end. Let's pause and retry?"


        # Check if the model decided to call a function
        if response_message.parts[0].function_call.name:
            function_call = response_message.parts[0].function_call
            func_name = function_call.name
            func_args = dict(function_call.args) # Arguments are provided as a dict

            logger.info(f"Gemini requested tool call: '{func_name}' with args: {func_args}")

            # Add the user message and the assistant's function call request to history
            add_chat_message(user_id, "user", user_input) # Store user input as text
            add_chat_message(user_id, "model", [{'text': f"Thinking... (using tool {func_name})"}]) # Placeholder text, real call stored below

            # --- Call the appropriate Python function ---
            available_functions = {
                "generate_document_template": generate_document_template,
                "create_personalized_routine": create_personalized_routine,
                "analyze_resume": analyze_resume,
                "analyze_portfolio": analyze_portfolio,
                "extract_and_rate_skills_from_resume": extract_and_rate_skills_from_resume,
                "search_jobs_courses_skills": search_web_serper, # Add Serper function
            }

            function_to_call = available_functions.get(func_name)
            function_response_content = None

            if function_to_call:
                try:
                    # Special handling for functions needing profile context or saving files
                    if func_name == "analyze_resume":
                        if 'career_goal' not in func_args: func_args['career_goal'] = career_goal
                        save_user_resume(user_id, func_args.get('resume_text', '')) # Save resume if text provided
                    elif func_name == "analyze_portfolio":
                        if 'career_goal' not in func_args: func_args['career_goal'] = career_goal
                        save_user_portfolio(user_id, func_args.get('portfolio_url', ''), func_args.get('portfolio_description', ''))
                    elif func_name == "search_jobs_courses_skills":
                        # Ensure location from profile is used if not specified in args
                         if 'location' not in func_args or not func_args['location']:
                             func_args['location'] = location if location != 'your area' else None # Pass None if default

                    # Call the function with unpacked arguments
                    logger.info(f"Calling function '{func_name}' with args: {func_args}")
                    function_response_content = function_to_call(**func_args) # Expecting a dict or string
                    logger.info(f"Function '{func_name}' returned type: {type(function_response_content)}")

                    # Prepare response structure for Gemini
                    tool_response_for_api = genai.protos.Part(
                        function_response=genai.protos.FunctionResponse(
                            name=func_name,
                            response={'content': function_response_content} # Gemini expects response in a 'content' key
                        )
                    )
                    # Store tool call result in DB
                    add_chat_message(user_id, 'function', {'name': func_name, 'response': {'content': function_response_content}})


                except TypeError as e:
                     logger.error(f"Argument mismatch for function {func_name}. Args: {func_args}, Error: {e}")
                     error_response = {"error": f"Internal error: Tool '{func_name}' called with incorrect arguments."}
                     tool_response_for_api = genai.protos.Part(function_response=genai.protos.FunctionResponse(name=func_name, response={'content': error_response}))
                     add_chat_message(user_id, 'function', {'name': func_name, 'response': {'content': error_response}})
                except Exception as e:
                    logger.exception(f"Error executing function {func_name}: {e}")
                    error_response = {"error": f"Sorry, I encountered an error while trying to use the '{func_name}' tool. Please try again or ask differently."}
                    # Prepare error response for Gemini
                    tool_response_for_api = genai.protos.Part(
                        function_response=genai.protos.FunctionResponse(
                            name=func_name,
                            response={'content': error_response} # Send error back to model
                        )
                    )
                    # Store error result in DB
                    add_chat_message(user_id, 'function', {'name': func_name, 'response': {'content': error_response}})

            else:
                logger.warning(f"Function {func_name} not implemented.")
                error_response = {"error": f"Tool '{func_name}' is not available."}
                tool_response_for_api = genai.protos.Part(
                    function_response=genai.protos.FunctionResponse(
                        name=func_name,
                        response={'content': error_response}
                    )
                )
                add_chat_message(user_id, 'function', {'name': func_name, 'response': {'content': error_response}})


            # --- Send function response back to the model ---
            logger.info(f"Sending function response for '{func_name}' back to Gemini.")
            try:
                second_response = gemini_model.generate_content(
                    # History includes original user prompt, model's func call, and the func response part
                    gemini_history + [prompt_content, response_message, genai.protos.Content(parts=[tool_response_for_api])],
                    generation_config=genai.types.GenerationConfig(temperature=0.7, max_output_tokens=1500),
                    system_instruction=genai.protos.Content(parts=[genai.protos.Part(text=system_prompt)]) # Re-send system prompt
                )
                final_response_text = second_response.candidates[0].content.parts[0].text
                logger.info("Received final response after tool call.")

            except google_exceptions.GoogleAPIError as e:
                 logger.error(f"Google API Error on second call: {e}")
                 final_response_text = f"Sorry, there was an issue processing the results from the tool ({e.message}). Let's try again?"
            except Exception as e:
                 logger.exception(f"Unexpected error during second Gemini call: {e}")
                 final_response_text = "Oh dear, something went wrong while processing the tool's results. Could we try that step again?"

            # Store final assistant response
            add_chat_message(user_id, "model", final_response_text)
            return final_response_text

        else: # No function call, just a text response
            logger.info("No tool call requested by Gemini.")
            final_response_text = response_message.parts[0].text
            # Store user input and assistant response
            add_chat_message(user_id, "user", user_input)
            add_chat_message(user_id, "model", final_response_text)
            return final_response_text

    except Exception as e:
        logger.exception(f"Unexpected error in get_ai_response: {e}")
        return "An unexpected error occurred. Please try again later."


# --- Recommendation Generation (Placeholder - Keep disabled or implement simple keyword based) ---
def gen_recommendations_simple(user_id):
    """Generate simple recommendations based on profile keywords (Placeholder)."""
    logger.info(f"Generating simple recommendations for user {user_id}")
    profile = get_user_profile(user_id)
    recs = []
    goal = profile.get('career_goal', '').lower()
    emotion = profile.get('current_emotion', '').lower()

    # Simple keyword triggers
    if 'job' in goal or 'internship' in goal:
        recs.append({"title": "Refine Resume", "description": f"Tailor your resume for '{goal}' roles. Use keywords from job descriptions.", "priority": "High", "action_type": "Job Application"})
        recs.append({"title": "Practice Interviewing", "description": "Use the STAR method to prepare answers for common behavioral questions.", "priority": "Medium", "action_type": "Skill Building"})
        recs.append({"title": "Network Actively", "description": f"Connect with people in '{profile.get('industry', 'your')}' industry on LinkedIn or attend virtual events.", "priority": "Medium", "action_type": "Networking"})

    if 'skill' in goal:
        recs.append({"title": "Identify Learning Resources", "description": f"Find online courses (Coursera, Udemy, edX) or tutorials for the skills needed for '{goal}'.", "priority": "High", "action_type": "Skill Building"})
        recs.append({"title": "Start a Small Project", "description": f"Apply newly learned skills in a personal project to build portfolio evidence.", "priority": "Medium", "action_type": "Skill Building"})

    if emotion in ["anxious", "overwhelmed", "stuck", "unmotivated", "discouraged"]:
         recs.append({"title": "Focus on Small Wins", "description": "Break down larger tasks into very small, achievable steps. Celebrate completing them!", "priority": "High", "action_type": "Wellbeing"})
         recs.append({"title": "Schedule Breaks", "description": "Ensure you take regular short breaks to avoid burnout. Step away from the screen.", "priority": "Medium", "action_type": "Wellbeing"})

    # Add recommendations to user profile (limited number)
    if recs:
        # Only add if substantially different from latest pending ones
        current_recs = profile.get('recommendations', [])
        pending_titles = {r['recommendation'].get('title') for r in current_recs if r.get('status') == 'pending'}
        new_recs_to_add = [r for r in recs if r.get('title') not in pending_titles]

        for rec in new_recs_to_add[:3]: # Add max 3 new ones
            add_recommendation_to_user(user_id, rec)

    return # Returns None, updates DB directly


# --- Chart and Visualization Functions (Keep as is) ---
# (create_emotion_chart, create_progress_chart, create_routine_completion_gauge, create_skill_radar_chart remain unchanged)
# ... (Previous chart functions code - no changes needed here) ...
def create_emotion_chart(user_id):
    user_profile = get_user_profile(user_id); records = user_profile.get('daily_emotions', [])
    if not records: fig = go.Figure(); fig.add_annotation(text="No emotion data yet. How are you feeling today?", showarrow=False); fig.update_layout(title="Your Emotional Journey"); return fig
    # Added more emotions to map
    vals = {"Unmotivated": 1, "Discouraged": 1.5, "Stuck": 2, "Anxious": 2.5, "Confused": 3, "Overwhelmed": 3.5, "Hopeful": 4.5, "Focused": 5, "Excited": 6}
    dates = [datetime.fromisoformat(r['date']) for r in records]; scores = [vals.get(r['emotion'], 3) for r in records]; names = [r['emotion'] for r in records]
    df = pd.DataFrame({'Date': dates, 'Score': scores, 'Emotion': names}).sort_values('Date')
    fig = px.line(df, x='Date', y='Score', markers=True, labels={"Score": "State"}, title="Your Emotional Journey")
    fig.update_traces(hovertemplate='%{x|%Y-%m-%d %H:%M}<br>Feeling: %{text}', text=df['Emotion']); fig.update_yaxes(tickvals=list(vals.values()), ticktext=list(vals.keys())); return fig

def create_progress_chart(user_id):
    user_profile = get_user_profile(user_id); tasks = user_profile.get('completed_tasks', [])
    if not tasks: fig = go.Figure(); fig.add_annotation(text="No tasks completed yet. Let's add one!", showarrow=False); fig.update_layout(title="Progress Points"); return fig
    tasks.sort(key=lambda x: datetime.fromisoformat(x['date']))
    dates, points, labels, cum_pts = [], [], [], 0; pts_task = user_profile.get('progress_points', 0) # Start from current total
    task_dates = {} # Track points per day
    for task in tasks:
        task_date_str = datetime.fromisoformat(task['date']).strftime('%Y-%m-%d')
        pts = task.get('points', random.randint(10, 25)) # Use stored points if available
        if task_date_str not in task_dates: task_dates[task_date_str] = {'date': datetime.fromisoformat(task['date']).date(), 'points': 0, 'tasks': []}
        task_dates[task_date_str]['points'] += pts
        task_dates[task_date_str]['tasks'].append(task['task'])

    # Aggregate points daily for chart
    sorted_dates = sorted(task_dates.keys())
    cumulative_points = 0
    chart_dates, chart_points, chart_tasks = [], [], []
    for date_str in sorted_dates:
        day_data = task_dates[date_str]
        cumulative_points += day_data['points']
        chart_dates.append(day_data['date'])
        chart_points.append(cumulative_points)
        chart_tasks.append("<br>".join(day_data['tasks'])) # Combine tasks for hover

    if not chart_dates: # Handle case if somehow no dates processed
         fig = go.Figure(); fig.add_annotation(text="Error processing task data.", showarrow=False); fig.update_layout(title="Progress Points"); return fig


    df = pd.DataFrame({'Date': chart_dates, 'Points': chart_points, 'Tasks': chart_tasks})
    fig = px.line(df, x='Date', y='Points', markers=True, title="Progress Journey"); fig.update_traces(hovertemplate='%{x|%Y-%m-%d}<br>Points: %{y}<br>Tasks:<br>%{text}', text=df['Tasks']); return fig


def create_routine_completion_gauge(user_id):
    user_profile = get_user_profile(user_id); routines = user_profile.get('routine_history', [])
    if not routines: fig = go.Figure(go.Indicator(mode="gauge", value=0, title={'text': "Active Routine"})); fig.add_annotation(text="No routine active. Create one?", showarrow=False); return fig
    latest = routines[0]; completion = latest.get('completion', 0); name = latest.get('routine', {}).get('name', 'Routine')
    fig = go.Figure(go.Indicator(mode="gauge+number", value=completion, domain={'x': [0, 1], 'y': [0, 1]}, title={'text': f"{name} (%)"},
        gauge={'axis': {'range': [0, 100]}, 'bar': {'color': "cornflowerblue"}, 'bgcolor': "white", 'steps': [{'range': [0, 50], 'color': 'whitesmoke'}, {'range': [50, 80], 'color': 'lightgray'}], 'threshold': {'line': {'color': "green", 'width': 4}, 'thickness': 0.75, 'value': 90}})); return fig

def create_skill_radar_chart(user_id):
    logger.info(f"Creating skill chart for {user_id}"); user_profile = get_user_profile(user_id); path = user_profile.get('resume_path')
    if not path or not os.path.exists(path): logger.warning("No resume found for skill chart."); fig = go.Figure(); fig.add_annotation(text="Upload or Analyze Resume for Skill Chart", showarrow=False); fig.update_layout(title="Identified Skills"); return fig
    try:
        with open(path, 'r', encoding='utf-8') as f: text = f.read()
        # Use the tool function to get skills (even if simulated)
        skills_data = extract_and_rate_skills_from_resume(resume_text=text) # Returns a dict
        if 'skills' in skills_data and skills_data['skills']:
            skills = skills_data['skills'][:8] # Limit to 8 for readability
            cats = [s['name'] for s in skills]; vals = [s['score'] for s in skills]
            if len(cats) < 3: # Radar needs >= 3 points
                 fig = go.Figure(); fig.add_annotation(text="Need at least 3 skills identified for radar chart.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig

            # Ensure the plot loops back
            if len(cats) > 2:
                cats.append(cats[0])
                vals.append(vals[0])

            fig = go.Figure();
            fig.add_trace(go.Scatterpolar(
                r=vals,
                theta=cats,
                fill='toself',
                name='Skills',
                hovertemplate='Skill: %{theta}<br>Score: %{r}<extra></extra>' # Custom hover
            ))
            fig.update_layout(
                 polar=dict(radialaxis=dict(visible=True, range=[0, 10], showline=False, ticksuffix=' pts')), # Added units
                 showlegend=False,
                 title="Skill Assessment (from Resume)"
            )
            logger.info(f"Created radar chart with {len(skills)} skills."); return fig
        else: logger.warning("No skills extracted for chart."); fig = go.Figure(); fig.add_annotation(text="No skills extracted from resume yet.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig
    except Exception as e: logger.exception(f"Error creating skill chart: {e}"); fig = go.Figure(); fig.add_annotation(text="Error analyzing skills.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig


# --- Gradio Interface Components ---
# **INVESTOR NOTE:** The Gradio interface provides an accessible and interactive front-end.
# We prioritize a clean UX, focusing on the chat interaction while making powerful tools easily accessible.
def create_interface():
    """Create the Gradio interface for Aishura v3"""
    # Use a persistent session ID or implement user login for production
    session_user_id = str(uuid.uuid4()) # Simple session ID for demo purposes
    logger.info(f"Initializing Gradio interface for session user ID: {session_user_id}")
    get_user_profile(session_user_id) # Initialize profile if it doesn't exist

    # --- Event Handlers ---
    def welcome(name, location, emotion, goal, industry, exp_level, work_style):
        logger.info(f"Welcome: name='{name}', loc='{location}', emo='{emotion}', goal='{goal}', industry='{industry}', exp='{exp_level}', work='{work_style}'")
        if not all([name, location, emotion, goal]):
            # Basic validation
            return ("Please fill in your Name, Location, Emotion, and Goal to get started!", gr.update(visible=True), gr.update(visible=False), gr.update(), gr.update(), gr.update(), gr.update(), gr.update())

        # Clean goal text (remove emoji if present)
        cleaned_goal = goal.rsplit(" ", 1)[0] if goal[-1].isnumeric() == False and goal[-2] == " " else goal

        # Update profile with initial info
        profile_updates = {
            "name": name,
            "location": location,
            "career_goal": cleaned_goal,
            "industry": industry,
            "experience_level": exp_level,
            "preferred_work_style": work_style
        }
        update_user_profile(session_user_id, profile_updates)
        add_emotion_record(session_user_id, emotion) # Add initial emotion

        # **INVESTOR NOTE:** The initial interaction immediately personalizes the experience and sets an empathetic tone.
        initial_input = f"Hi Aishura! I'm {name} from {location}. I'm focusing on '{cleaned_goal}' in the {industry} industry ({exp_level}, preferring {work_style} work). Right now, I'm feeling {emotion}. Can you help me get started?"

        # Get the first AI response
        ai_response = get_ai_response(session_user_id, initial_input)

        # Prepare chat history display for Gradio
        # Gemini uses {role: 'user'/'model', parts: [{'text': '...'}]}
        # Gradio chatbot expects [[user_msg, assistant_msg], ...]
        initial_chat_display = [[initial_input, ai_response]]

        # Update charts
        e_fig, p_fig, r_fig, s_fig = create_emotion_chart(session_user_id), create_progress_chart(session_user_id), create_routine_completion_gauge(session_user_id), create_skill_radar_chart(session_user_id)
        recs_md = display_recommendations(session_user_id) # Display initial recommendations

        return (
            gr.update(value=initial_chat_display), # Update chatbot
            gr.update(visible=False), # Hide welcome group
            gr.update(visible=True), # Show main interface
            gr.update(value=e_fig), gr.update(value=p_fig), gr.update(value=r_fig), gr.update(value=s_fig), # Update plots
            gr.update(value=recs_md) # Update recommendations markdown
        )

    def chat_submit(message_text, history_list_list):
        """Handles chatbot submission, gets AI response, updates history and recommendations."""
        logger.info(f"Chat submit for {session_user_id}: '{message_text[:50]}...'")
        if not message_text:
            return history_list_list, "" # Return current history and clear textbox

        # Append user message to Gradio display history immediately
        history_list_list.append([message_text, None]) # Add placeholder for assistant response
        yield history_list_list, "" # Update UI immediately, clear textbox

        # Get AI response (which also updates the internal DB history)
        ai_response_text = get_ai_response(session_user_id, message_text)

        # Update the placeholder in Gradio display history with the actual response
        history_list_list[-1][1] = ai_response_text

        # Generate and display recommendations
        gen_recommendations_simple(session_user_id) # Generate based on latest interaction (simple version)
        recs_md = display_recommendations(session_user_id)

        # Update UI again with the final response and recommendations
        yield history_list_list, gr.update(value=recs_md)


    # --- Tool Interface Handlers (Manual Trigger from UI) ---
    # These call the *implementation* functions directly, bypassing AI unless needed internally
    def generate_template_interface_handler(doc_type, career_field, experience):
        logger.info(f"Manual Template UI: type='{doc_type}'")
        # Call implementation directly
        result_dict = generate_document_template(doc_type, career_field, experience)
        return result_dict.get('template_markdown', "Error generating template.")

    def create_routine_interface_handler(emotion, goal, time_available, days):
        logger.info(f"Manual Routine UI: emo='{emotion}', goal='{goal}'")
        cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion
        # Call implementation directly (uses fallback basic generator)
        result_dict = create_personalized_routine(cleaned_emotion, goal, int(time_available), int(days))

        if "error" in result_dict:
            return f"Error: {result_dict['error']}", gr.update()

        # Save routine to user profile
        add_routine_to_user(session_user_id, result_dict)

        # Format for display
        md = f"# {result_dict.get('name', 'Your Routine')}\n\n"
        md += f"_{result_dict.get('support_message', result_dict.get('description', ''))}_\n\n---\n\n" # Use support message
        for day in result_dict.get('daily_tasks', []):
            md += f"## Day {day.get('day', '?')}\n"
            tasks = day.get('tasks', [])
            if not tasks:
                md += "- Rest day or catch-up.\n"
            else:
                for task in tasks:
                    md += f"- **{task.get('name', 'Task')}** ({task.get('duration', '?')} min)\n"
                    md += f"  - _{task.get('description', '...')}_\n"
            md += "\n"

        gauge = create_routine_completion_gauge(session_user_id)
        return md, gr.update(value=gauge) # Update markdown and gauge plot

    def analyze_resume_interface_handler(resume_file):
        logger.info(f"Manual Resume Analysis UI: file={resume_file}")
        if resume_file is None:
            return "Please upload a resume file.", gr.update(value=None), gr.update(value=None)

        try:
             # Read text content from uploaded file object
             with open(resume_file.name, 'r', encoding='utf-8') as f:
                 resume_text = f.read()
             logger.info(f"Read {len(resume_text)} characters from uploaded resume.")
        except Exception as e:
             logger.error(f"Error reading uploaded resume file: {e}")
             return f"Error reading file: {e}", gr.update(value=None), gr.update(value=None)


        if not resume_text:
            return "Resume file seems empty.", gr.update(value=None), gr.update(value=None)

        profile = get_user_profile(session_user_id)
        goal = profile.get('career_goal', 'Not specified')

        # Save resume text to user profile (associates it)
        resume_path = save_user_resume(session_user_id, resume_text)
        if not resume_path:
             return "Could not save resume file for analysis.", gr.update(value=None), gr.update(value=None)


        # Call analysis tool implementation function
        analysis_result = analyze_resume(resume_text, goal) # Returns dict

        try:
            analysis = analysis_result.get('analysis', {})
            md = f"## Resume Analysis (Simulated)\n\n**Analyzing for Goal:** '{goal}'\n\n"
            md += "**Strengths Identified:**\n" + "\n".join([f"* {s}" for s in analysis.get('strengths', ["None identified."])]) + "\n\n"
            md += "**Areas for Improvement:**\n" + "\n".join([f"* {s}" for s in analysis.get('areas_for_improvement', ["None identified."])]) + "\n\n"
            md += f"**Format Feedback:** {analysis.get('format_feedback', 'N/A')}\n"
            md += f"**Content Alignment:** {analysis.get('content_feedback', 'N/A')}\n"
            md += f"**Suggested Keywords:** {', '.join(analysis.get('keyword_suggestions', ['N/A']))}\n\n"
            md += "**Recommended Next Steps:**\n" + "\n".join([f"* {s}" for s in analysis.get('next_steps', ["Review suggestions."])])

            # Update skill chart based on the new resume analysis
            skill_fig = create_skill_radar_chart(session_user_id)

            return md, gr.update(value=skill_fig), gr.update(value=resume_path) # Return analysis text, skill chart, and path

        except Exception as e:
            logger.exception("Error formatting resume analysis results.")
            return "Error displaying analysis results.", gr.update(value=None), gr.update(value=None)

    def analyze_portfolio_interface_handler(portfolio_url, portfolio_description):
        logger.info(f"Manual Portfolio Analysis UI: url='{portfolio_url}'")
        if not portfolio_description:
            return "Please provide a description of your portfolio."

        profile = get_user_profile(session_user_id)
        goal = profile.get('career_goal', 'Not specified')

        # Save portfolio info
        portfolio_path = save_user_portfolio(session_user_id, portfolio_url, portfolio_description)
        if not portfolio_path:
             return "Could not save portfolio details."


        # Call analysis tool implementation function
        analysis_result = analyze_portfolio(portfolio_description, goal, portfolio_url) # Returns dict

        try:
            analysis = analysis_result.get('analysis', {})
            md = f"## Portfolio Analysis (Simulated)\n\n**Analyzing for Goal:** '{goal}'\n"
            if portfolio_url: md += f"**URL:** {portfolio_url}\n\n"
            else: md += "\n"

            md += f"**Alignment with Goal:** {analysis.get('alignment_with_goal', 'N/A')}\n\n"
            md += "**Strengths Based on Description:**\n" + "\n".join([f"* {s}" for s in analysis.get('strengths', ["N/A"])]) + "\n\n"
            md += "**Areas for Improvement:**\n" + "\n".join([f"* {s}" for s in analysis.get('areas_for_improvement', ["N/A"])]) + "\n\n"
            md += f"**Presentation Feedback:** {analysis.get('presentation_feedback', 'N/A')}\n\n"
            md += "**Recommended Next Steps:**\n" + "\n".join([f"* {s}" for s in analysis.get('next_steps', ["Review suggestions."])])

            return md

        except Exception as e:
            logger.exception("Error formatting portfolio analysis results.")
            return "Error displaying analysis results."

    # --- Progress Tracking Handlers ---
    def complete_task_handler(task_name):
        logger.info(f"Complete Task UI for {session_user_id}: task='{task_name}'")
        if not task_name:
            return ("Please enter the task you completed.", "", gr.update(), gr.update(), gr.update())

        updated_profile = add_task_to_user(session_user_id, task_name)

        # Update routine completion if a routine is active
        if updated_profile and updated_profile.get('routine_history'):
            db = load_user_database() # Reload DB after add_task potentially saved it
            profile = db.get('users', {}).get(session_user_id)
            if profile and profile.get('routine_history'): # Check again after reload
                 latest_routine = profile['routine_history'][0]
                 # Simple completion increment - could be smarter based on task type/routine content
                 increment = random.randint(5, 15)
                 latest_routine['completion'] = min(100, latest_routine.get('completion', 0) + increment)
                 save_user_database(db) # Save updated routine completion

        # Update charts
        e_fig, p_fig, g_fig = create_emotion_chart(session_user_id), create_progress_chart(session_user_id), create_routine_completion_gauge(session_user_id)

        return (f"Awesome job completing '{task_name}'! Keep up the great work!", "", gr.update(value=e_fig), gr.update(value=p_fig), gr.update(value=g_fig))

    def update_emotion_handler(emotion):
        logger.info(f"Update Emotion UI for {session_user_id}: emotion='{emotion}'")
        if not emotion:
            return "Please select how you're feeling.", gr.update()

        add_emotion_record(session_user_id, emotion)
        e_fig = create_emotion_chart(session_user_id)
        cleaned_display = emotion.split(" ")[0] if " " in emotion else emotion

        return f"Got it. Acknowledging how you feel ({cleaned_display}) is a great step.", gr.update(value=e_fig)

    def display_recommendations(current_user_id):
        """Formats latest recommendations into Markdown for display."""
        logger.info(f"Displaying recommendations for {current_user_id}")
        profile = get_user_profile(current_user_id)
        recs = profile.get('recommendations', [])

        if not recs:
            return "Chat with me about your goals and challenges, and I can suggest some next steps! 😊"

        # Show only pending recommendations, most recent first
        pending_recs = [r for r in recs if r.get('status') == 'pending'][:5] # Get latest 5 pending

        if not pending_recs:
            return "No pending recommendations right now. Great job, or let's chat to find new ones!"

        md = "### ✨ Here are a few things we could focus on:\n\n"
        for i, entry in enumerate(pending_recs, 1):
            rec = entry.get('recommendation', {})
            md += f"**{i}. {rec.get('title', 'Recommendation')}**\n"
            md += f"   - {rec.get('description', 'No description.')}\n"
            md += f"   - *Priority: {rec.get('priority', 'Medium')} | Type: {rec.get('action_type', 'General')}*\n---\n"
        return md

    # --- Build Gradio Interface ---
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky", secondary_hue="blue", font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]), title="Aishura v3") as app:
        gr.Markdown("# Aishura - Your Empathetic AI Career Copilot πŸš€")
        gr.Markdown("_Leveraging Google Gemini & Real-Time Data_")

        # Session state to store user ID (alternative to global variable)
        # user_id_state = gr.State(session_user_id) # Can use state if needed

        # Welcome Screen
        with gr.Group(visible=True) as welcome_group:
            gr.Markdown("## Welcome! Let's personalize your journey.")
            gr.Markdown("Tell me a bit about yourself so I can help you better.")
            with gr.Row():
                with gr.Column():
                    name_input = gr.Textbox(label="What's your first name?")
                    location_input = gr.Textbox(label="Where are you located (City, Country)?", placeholder="e.g., London, UK")
                    industry_input = gr.Textbox(label="What's your primary industry or field?", placeholder="e.g., Technology, Healthcare, Finance")
                with gr.Column():
                    emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling right now?")
                    goal_dropdown = gr.Dropdown(choices=GOAL_TYPES, label="What's your main career goal currently?") # Label updated
                    exp_level_dropdown = gr.Dropdown(choices=["Student", "Entry-Level (0-2 yrs)", "Mid-Level (3-7 yrs)", "Senior-Level (8+ yrs)", "Executive"], label="What's your experience level?")
                    work_style_dropdown = gr.Dropdown(choices=["On-site", "Hybrid", "Remote", "Any"], label="Preferred work style?", value="Any")

            welcome_button = gr.Button("✨ Start My Journey with Aishura ✨", variant="primary")
            welcome_output = gr.Markdown()

        # Main Interface (Hidden initially)
        with gr.Group(visible=False) as main_interface:
            with gr.Tabs():
                # --- Chat Tab ---
                with gr.TabItem("πŸ’¬ Chat with Aishura"):
                    with gr.Row():
                        with gr.Column(scale=3):
                             # Using Gradio's ChatInterface structure for simplicity
                             chatbot_display = gr.Chatbot(
                                 label="Aishura",
                                 height=600,
                                 show_copy_button=True,
                                 bubble_full_width=False, # Modern look
                                 avatar_images=(None, "https://img.icons8.com/external-those-icons-lineal-color-those-icons/96/external-AI-artificial-intelligence-those-icons-lineal-color-those-icons-9.png") # Example AI avatar
                             )
                             msg_textbox = gr.Textbox(
                                 show_label=False,
                                 placeholder="Type your message here... ask for help, share progress, or just vent!",
                                 container=False,
                                 scale=1 # Take full width below chatbot
                             )
                             # Submit button (optional, hitting Enter also works)
                             # submit_btn = gr.Button("Send", variant="secondary", size="sm")

                        with gr.Column(scale=1):
                            gr.Markdown("### Recommendations")
                            recommendation_output = gr.Markdown("Loading recommendations...")
                            refresh_recs_button = gr.Button("πŸ”„ Refresh Recs")
                            gr.Markdown("---")
                            gr.Markdown("### Quick Actions")
                            # Add quick action buttons later? e.g., "Summarize my progress"

                # --- Analysis & Tools Tab ---
                with gr.TabItem("πŸ› οΈ Analyze & Tools"):
                     with gr.Tabs():
                        with gr.TabItem("πŸ“„ Resume Hub"):
                            gr.Markdown("### Analyze Your Resume")
                            gr.Markdown("Upload your resume (TXT or PDF - text readable) for analysis and skill identification.")
                            # Use File upload component
                            resume_file_input = gr.File(label="Upload Resume (.txt, .pdf)", file_types=['.txt', '.pdf'])
                            # Display path of saved resume
                            resume_path_display = gr.Textbox(label="Current Resume File", interactive=False)
                            analyze_resume_button = gr.Button("Analyze Uploaded Resume", variant="primary")
                            resume_analysis_output = gr.Markdown("Analysis will appear here...")
                            gr.Markdown("---")
                            gr.Markdown("### Generate Document Templates")
                            doc_type_dropdown = gr.Dropdown(choices=["Resume", "Cover Letter", "LinkedIn Summary", "Networking Email"], label="Document Type")
                            doc_field_input = gr.Textbox(label="Target Career Field (Optional)", placeholder="e.g., Software Engineering")
                            doc_exp_dropdown = gr.Dropdown(choices=["Student", "Entry-Level", "Mid-Level", "Senior-Level"], label="Experience Level")
                            generate_template_button = gr.Button("Generate Template")
                            template_output_md = gr.Markdown("Template will appear here...")


                        with gr.TabItem("🎨 Portfolio Hub"):
                            gr.Markdown("### Analyze Your Portfolio")
                            portfolio_url_input = gr.Textbox(label="Portfolio URL (Optional)", placeholder="https://yourportfolio.com")
                            portfolio_desc_input = gr.Textbox(label="Describe your portfolio's content and purpose", lines=5, placeholder="e.g., Collection of web development projects using React and Node.js...")
                            analyze_portfolio_button = gr.Button("Analyze Portfolio Info", variant="primary")
                            portfolio_analysis_output = gr.Markdown("Analysis will appear here...")

                        with gr.TabItem("πŸ“… Routine Builder"):
                            gr.Markdown("### Create a Personalized Routine")
                            gr.Markdown("Feeling stuck? Let's build a manageable routine based on how you feel and your goals.")
                            routine_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling?")
                            profile = get_user_profile(session_user_id) # Get goal from profile for default
                            routine_goal_input = gr.Textbox(label="Main Goal for this Routine", value=profile.get('career_goal', ''))
                            routine_time_slider = gr.Slider(15, 120, 45, step=15, label="Minutes you can dedicate per day")
                            routine_days_slider = gr.Slider(3, 21, 7, step=1, label="Length of routine (days)")
                            create_routine_button = gr.Button("Create My Routine", variant="primary")
                            routine_output_md = gr.Markdown("Your personalized routine will appear here...")


                # --- Progress Tab ---
                with gr.TabItem("πŸ“ˆ Track Your Journey"):
                    gr.Markdown("## Your Progress Dashboard")
                    with gr.Row():
                        with gr.Column(scale=1):
                            gr.Markdown("### βœ… Log Completed Task")
                            task_input = gr.Textbox(label="What did you accomplish?", placeholder="e.g., Updated resume, Applied for job X, Completed course module")
                            complete_button = gr.Button("Log Task", variant="primary")
                            task_output = gr.Markdown()
                            gr.Markdown("---")
                            gr.Markdown("### 😊 How are you feeling now?")
                            new_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="Select current emotion")
                            emotion_button = gr.Button("Update Emotion")
                            emotion_output = gr.Markdown()
                        with gr.Column(scale=2):
                            gr.Markdown("### Emotional Journey")
                            emotion_chart_output = gr.Plot(label="Emotion Trend") # Init Plot
                            gr.Markdown("### Active Routine Progress")
                            routine_gauge_output = gr.Plot(label="Routine Completion") # Init Plot

                    with gr.Row():
                         with gr.Column(scale=1):
                             gr.Markdown("### Progress Points")
                             progress_chart_output = gr.Plot(label="Progress Points Over Time") # Init Plot
                         with gr.Column(scale=1):
                             gr.Markdown("### Skills Assessment (from Resume)")
                             skill_radar_chart_output = gr.Plot(label="Skills Radar") # Init Plot


        # --- Event Wiring ---
        welcome_button.click(
            fn=welcome,
            inputs=[name_input, location_input, emotion_dropdown, goal_dropdown, industry_input, exp_level_dropdown, work_style_dropdown],
            outputs=[chatbot_display, welcome_group, main_interface, emotion_chart_output, progress_chart_output, routine_gauge_output, skill_radar_chart_output, recommendation_output] # Added rec output
        )

        # Chat submission
        msg_textbox.submit(
             fn=chat_submit,
             inputs=[msg_textbox, chatbot_display],
             outputs=[chatbot_display, recommendation_output] # Chatbot updated progressively, recs at end
        ).then(lambda: gr.update(value=""), outputs=[msg_textbox]) # Clear textbox after submit


        refresh_recs_button.click(
            fn=lambda: display_recommendations(session_user_id),
            outputs=[recommendation_output]
        )

        # Tool Handlers
        analyze_resume_button.click(
            fn=analyze_resume_interface_handler,
            inputs=[resume_file_input], # Changed to file input
            outputs=[resume_analysis_output, skill_radar_chart_output, resume_path_display] # Added path display
        )
        analyze_portfolio_button.click(
            fn=analyze_portfolio_interface_handler,
            inputs=[portfolio_url_input, portfolio_desc_input],
            outputs=[portfolio_analysis_output]
        )
        generate_template_button.click(
            fn=generate_template_interface_handler,
            inputs=[doc_type_dropdown, doc_field_input, doc_exp_dropdown],
            outputs=[template_output_md]
        )
        create_routine_button.click(
            fn=create_routine_interface_handler,
            inputs=[routine_emotion_dropdown, routine_goal_input, routine_time_slider, routine_days_slider],
            outputs=[routine_output_md, routine_gauge_output] # Updates routine text and gauge
        )

        # Progress Handlers
        complete_button.click(
            fn=complete_task_handler,
            inputs=[task_input],
            outputs=[task_output, task_input, emotion_chart_output, progress_chart_output, routine_gauge_output] # Clear input, update charts
        )
        emotion_button.click(
            fn=update_emotion_handler,
            inputs=[new_emotion_dropdown],
            outputs=[emotion_output, emotion_chart_output] # Update status text and emotion chart
        )

    return app

# --- Main Execution ---
if __name__ == "__main__":
    print("\n--- Aishura v3 Configuration Check ---")
    if not GOOGLE_API_KEY:
        print("⚠️ WARNING: GOOGLE_API_KEY not found in environment variables. AI features DISABLED.")
    else:
        print("βœ… GOOGLE_API_KEY found.")
    if not SERPER_API_KEY:
        print("⚠️ WARNING: SERPER_API_KEY not found. Live web search DISABLED.")
    else:
        print("βœ… SERPER_API_KEY found.")
    if not gemini_model:
         print("❌ ERROR: Google Gemini model failed to initialize. AI features DISABLED.")
    else:
         print(f"βœ… Google Gemini model '{MODEL_ID}' initialized.")
    print("-------------------------------------\n")

    logger.info("Starting Aishura v3 Gradio application...")
    aishura_app = create_interface()
    # Share=True generates a public link (useful for demos)
    # Set debug=True for more verbose Gradio logs if needed
    aishura_app.launch(share=False, debug=False)
    logger.info("Aishura Gradio application stopped.")