File size: 86,266 Bytes
69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 1eb3ba2 69418bc 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 1eb3ba2 d61ddbe 1eb3ba2 d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 1eb3ba2 69418bc 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc 1eb3ba2 69418bc 1eb3ba2 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc 1eb3ba2 d61ddbe 69418bc d61ddbe 69418bc d61ddbe 69418bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 |
# filename: app_openai_updated.py
import gradio as gr
import pandas as pd
import numpy as np
# import matplotlib.pyplot as plt # Not directly used for plotting
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import random
import json
import os
import time
import requests
from typing import List, Dict, Any, Optional
import logging
from dotenv import load_dotenv
# import pytz # Not used
import uuid
import re
# import base64 # Not used
# from io import BytesIO # Not used
# from PIL import Image # Not used
# --- Use OpenAI library ---
import openai
# --- Load environment variables ---
load_dotenv()
# --- Set up logging ---
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Configure API keys ---
# Make sure you have OPENAI_API_KEY and SERPER_API_KEY in your .env file or environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
if not OPENAI_API_KEY:
logger.warning("OPENAI_API_KEY not found. AI features will not work.")
# You might want to raise an error or handle this case gracefully
if not SERPER_API_KEY:
logger.warning("SERPER_API_KEY not found. Web search features will not work.")
# --- Initialize the OpenAI client ---
try:
client = openai.OpenAI(api_key=OPENAI_API_KEY)
# Test connection (optional, uncomment to test during startup)
# client.models.list()
logger.info("OpenAI client initialized successfully.")
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {e}")
# Handle error appropriately, maybe exit or set client to None
client = None
# --- Model configuration ---
MODEL_ID = "gpt-4o" # Use OpenAI GPT-4o model
# --- Constants ---
EMOTIONS = ["Unmotivated", "Anxious", "Confused", "Excited", "Overwhelmed", "Discouraged"]
GOAL_TYPES = ["Get a job at a big company", "Find an internship", "Change careers", "Improve skills", "Network better"]
USER_DB_PATH = "user_database.json"
RESUME_FOLDER = "user_resumes"
PORTFOLIO_FOLDER = "user_portfolios"
# Ensure folders exist
os.makedirs(RESUME_FOLDER, exist_ok=True)
os.makedirs(PORTFOLIO_FOLDER, exist_ok=True)
# --- Tool Definitions for OpenAI ---
# Define functions that the AI can call.
# These will be implemented as Python functions below.
tools_list = [
{
"type": "function",
"function": {
"name": "get_job_opportunities",
"description": "Search for relevant job opportunities based on query, location, and career goals using web search.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The specific job title, keyword, or role the user is searching for.",
},
"location": {
"type": "string",
"description": "The city, region, or country where the user wants to search for jobs.",
},
"max_results": {
"type": "integer",
"description": "Maximum number of job opportunities to return (default 5).",
},
},
"required": ["query", "location"],
},
}
},
{
"type": "function",
"function": {
"name": "generate_document_template",
"description": "Generate a document template (like a resume or cover letter) based on type, career field, and experience level.",
"parameters": {
"type": "object",
"properties": {
"document_type": {
"type": "string",
"description": "Type of document (e.g., Resume, Cover Letter, Self-introduction).",
},
"career_field": {
"type": "string",
"description": "The career field or industry.",
},
"experience_level": {
"type": "string",
"description": "User's experience level (e.g., Entry, Mid, Senior).",
},
},
"required": ["document_type"],
},
}
},
{
"type": "function",
"function": {
"name": "create_personalized_routine",
"description": "Create a personalized daily or weekly career development routine based on the user's current emotion, goals, and available time.",
"parameters": {
"type": "object",
"properties": {
"emotion": {
"type": "string",
"description": "User's current primary emotional state (e.g., Unmotivated, Anxious).",
},
"goal": {
"type": "string",
"description": "User's specific career goal for this routine.",
},
"available_time_minutes": {
"type": "integer",
"description": "Available time in minutes per day (default 60).",
},
"routine_length_days": {
"type": "integer",
"description": "Length of the routine in days (default 7).",
},
},
"required": ["emotion", "goal"],
},
}
},
{
"type": "function",
"function": {
"name": "analyze_resume",
"description": "Analyze the provided resume text and provide feedback, comparing it against the user's stated career goal.",
"parameters": {
"type": "object",
"properties": {
"resume_text": {
"type": "string",
"description": "The full text of the user's resume.",
},
"career_goal": {
"type": "string",
"description": "The user's career goal or target job/industry to analyze against.",
},
},
"required": ["resume_text", "career_goal"],
},
}
},
{
"type": "function",
"function": {
"name": "analyze_portfolio",
"description": "Analyze a user's portfolio based on a URL (if provided) and a description, offering feedback relative to their career goal.",
"parameters": {
"type": "object",
"properties": {
"portfolio_url": {
"type": "string",
"description": "URL to the user's online portfolio (optional).",
},
"portfolio_description": {
"type": "string",
"description": "Detailed description of the portfolio's content, purpose, and structure.",
},
"career_goal": {
"type": "string",
"description": "The user's career goal or target job/industry to analyze against.",
},
},
"required": ["portfolio_description", "career_goal"],
},
}
},
{
"type": "function",
"function": {
"name": "extract_and_rate_skills_from_resume",
"description": "Extracts key skills from resume text and rates them on a scale of 1-10 based on apparent proficiency shown in the resume.",
"parameters": {
"type": "object",
"properties": {
"resume_text": {
"type": "string",
"description": "The full text of the user's resume.",
},
"max_skills": {
"type": "integer",
"description": "Maximum number of skills to extract (default 8).",
},
},
"required": ["resume_text"],
},
}
}
]
# --- User Database Functions (Unchanged, adapted for history format if needed) ---
# [Previous database functions load_user_database, save_user_database, get_user_profile, update_user_profile, etc. remain largely the same]
# Ensure chat history format matches OpenAI's expected {role: 'user'/'assistant', content: 'message'}
def load_user_database():
"""Load user database from JSON file or create if it doesn't exist"""
try:
with open(USER_DB_PATH, 'r') as file:
db = json.load(file)
# Ensure chat history uses 'content' key for OpenAI compatibility
for user_id in db.get('users', {}):
if 'chat_history' not in db['users'][user_id]:
db['users'][user_id]['chat_history'] = []
else:
# Convert old format if necessary
for msg in db['users'][user_id]['chat_history']:
if 'message' in msg and 'content' not in msg:
msg['content'] = msg.pop('message')
return db
except (FileNotFoundError, json.JSONDecodeError):
db = {'users': {}}
save_user_database(db)
return db
def save_user_database(db):
"""Save user database to JSON file"""
with open(USER_DB_PATH, 'w') as file:
json.dump(db, file, indent=4)
def get_user_profile(user_id):
"""Get user profile from database or create new one"""
db = load_user_database()
if user_id not in db['users']:
db['users'][user_id] = {
"user_id": user_id,
"name": "",
"location": "",
"current_emotion": "",
"career_goal": "",
"progress_points": 0,
"completed_tasks": [],
"upcoming_events": [],
"routine_history": [],
"daily_emotions": [],
"resume_path": "",
"portfolio_path": "",
"recommendations": [],
"chat_history": [], # Initialize chat history
"joined_date": datetime.now().strftime("%Y-%m-%d")
}
save_user_database(db)
# Ensure chat history uses 'content' key
elif 'chat_history' not in db['users'][user_id] or \
(db['users'][user_id]['chat_history'] and 'content' not in db['users'][user_id]['chat_history'][0]):
if 'chat_history' not in db['users'][user_id]:
db['users'][user_id]['chat_history'] = []
else:
for msg in db['users'][user_id]['chat_history']:
if 'message' in msg and 'content' not in msg:
msg['content'] = msg.pop('message')
save_user_database(db)
return db['users'][user_id]
def update_user_profile(user_id, updates):
"""Update user profile with new information"""
db = load_user_database()
if user_id in db['users']:
for key, value in updates.items():
db['users'][user_id][key] = value
save_user_database(db)
return db['users'][user_id]
def add_task_to_user(user_id, task):
"""Add a new task to user's completed tasks"""
db = load_user_database()
if user_id in db['users']:
if 'completed_tasks' not in db['users'][user_id]:
db['users'][user_id]['completed_tasks'] = []
task_with_date = {
"task": task,
"date": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
db['users'][user_id]['completed_tasks'].append(task_with_date)
db['users'][user_id]['progress_points'] += random.randint(10, 25) # Keep random points for now
save_user_database(db)
return db['users'][user_id]
def add_emotion_record(user_id, emotion):
"""Add a new emotion record to user's daily emotions"""
db = load_user_database()
if user_id in db['users']:
if 'daily_emotions' not in db['users'][user_id]:
db['users'][user_id]['daily_emotions'] = []
emotion_record = {
"emotion": emotion,
"date": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
db['users'][user_id]['daily_emotions'].append(emotion_record)
db['users'][user_id]['current_emotion'] = emotion # Update current emotion
save_user_database(db)
return db['users'][user_id]
def add_routine_to_user(user_id, routine):
"""Add a new routine to user's routine history"""
db = load_user_database()
if user_id in db['users']:
if 'routine_history' not in db['users'][user_id]:
db['users'][user_id]['routine_history'] = []
routine_with_date = {
"routine": routine, # The AI generated routine JSON
"start_date": datetime.now().strftime("%Y-%m-%d"),
"end_date": (datetime.now() + timedelta(days=routine.get('days', 7))).strftime("%Y-%m-%d"),
"completion": 0 # Start completion at 0
}
# Prepend to make the latest routine first (optional)
db['users'][user_id]['routine_history'].insert(0, routine_with_date)
save_user_database(db)
return db['users'][user_id]
def save_user_resume(user_id, resume_text):
"""Save user's resume text to file and update profile path."""
if not resume_text: return None
filename = f"{user_id}_resume.txt"
filepath = os.path.join(RESUME_FOLDER, filename)
try:
with open(filepath, 'w', encoding='utf-8') as file:
file.write(resume_text)
update_user_profile(user_id, {"resume_path": filepath})
logger.info(f"Resume saved for user {user_id} at {filepath}")
return filepath
except Exception as e:
logger.error(f"Error saving resume for user {user_id}: {e}")
return None
def save_user_portfolio(user_id, portfolio_url, portfolio_description):
"""Save user's portfolio info (URL and description) to file."""
if not portfolio_description: return None
filename = f"{user_id}_portfolio.json"
filepath = os.path.join(PORTFOLIO_FOLDER, filename)
portfolio_content = {
"url": portfolio_url,
"description": portfolio_description,
"saved_date": datetime.now().isoformat()
}
try:
with open(filepath, 'w', encoding='utf-8') as file:
json.dump(portfolio_content, file, indent=4)
update_user_profile(user_id, {"portfolio_path": filepath})
logger.info(f"Portfolio info saved for user {user_id} at {filepath}")
return filepath
except Exception as e:
logger.error(f"Error saving portfolio info for user {user_id}: {e}")
return None
def add_recommendation_to_user(user_id, recommendation):
"""Add a new recommendation object to user's list"""
db = load_user_database()
if user_id in db['users']:
if 'recommendations' not in db['users'][user_id]:
db['users'][user_id]['recommendations'] = []
recommendation_with_date = {
"recommendation": recommendation, # The AI generated recommendation object
"date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"status": "pending" # pending, completed, dismissed
}
# Add to the beginning of the list
db['users'][user_id]['recommendations'].insert(0, recommendation_with_date)
# Optional: Limit the number of stored recommendations
max_recs = 20
if len(db['users'][user_id]['recommendations']) > max_recs:
db['users'][user_id]['recommendations'] = db['users'][user_id]['recommendations'][:max_recs]
save_user_database(db)
return db['users'][user_id]
def add_chat_message(user_id, role, content):
"""Add a message to the user's chat history using OpenAI format."""
db = load_user_database()
if user_id in db['users']:
if 'chat_history' not in db['users'][user_id]:
db['users'][user_id]['chat_history'] = []
# Basic validation
if role not in ['user', 'assistant', 'system', 'tool']:
logger.warning(f"Invalid role '{role}' provided for chat message.")
return db['users'][user_id]
if not content and role != 'tool': # Tool messages can have null content initially
logger.warning(f"Empty content provided for chat role '{role}'.")
# return db['users'][user_id] # Allow empty content for now?
chat_message = {
"role": role,
"content": content, # Use 'content' key
"timestamp": datetime.now().isoformat() # Use ISO format
}
db['users'][user_id]['chat_history'].append(chat_message)
# Optional: Limit chat history length
max_history = 50 # Keep last 50 messages (user + assistant)
if len(db['users'][user_id]['chat_history']) > max_history:
# Keep system prompt + last N messages
system_msgs = [m for m in db['users'][user_id]['chat_history'] if m['role'] == 'system']
other_msgs = [m for m in db['users'][user_id]['chat_history'] if m['role'] != 'system']
db['users'][user_id]['chat_history'] = system_msgs + other_msgs[-max_history:]
save_user_database(db)
return db['users'][user_id]
# --- Tool Implementation Functions ---
# These functions are called when the AI decides to use a tool.
def get_job_opportunities(query: str, location: str, max_results: int = 5) -> str:
"""
Searches for job opportunities using the Serper API based on a query and location.
Returns a JSON string of the search results or an error message.
"""
logger.info(f"Executing tool: get_job_opportunities(query='{query}', location='{location}', max_results={max_results})")
if not SERPER_API_KEY:
return json.dumps({"error": "Serper API key is not configured."})
try:
headers = {
'X-API-KEY': SERPER_API_KEY,
'Content-Type': 'application/json'
}
params = {
'q': f"{query} jobs in {location}",
'num': max_results,
'location': location # Add location parameter explicitly if API supports it
}
logger.info(f"Calling Serper API with params: {params}")
response = requests.get(
'https://serper.dev/search', # Use the correct Serper endpoint
headers=headers,
params=params,
timeout=10 # Add a timeout
)
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
data = response.json()
logger.info(f"Serper API response received (keys: {data.keys()})")
# Extract relevant job listings (adapt based on Serper's actual output structure)
job_results = []
# Check 'jobs' key first, as it's common in job search results
if 'jobs' in data and isinstance(data['jobs'], list):
for item in data['jobs']:
job_results.append({
'title': item.get('title', 'N/A'),
'company': item.get('company_name', item.get('source', 'Unknown Company')), # Try different fields
'description': item.get('description', item.get('snippet', 'No description provided.')),
'link': item.get('link', '#'),
'location': item.get('location', location), # Use provided location if not in result
'date_posted': item.get('detected_extensions', {}).get('posted_at', 'N/A') # Example nested field
})
# Fallback to organic results if 'jobs' key is not present or empty
elif 'organic' in data and not job_results:
logger.info("Parsing 'organic' results for jobs.")
for item in data['organic']:
# Heuristic check if it looks like a job listing
title = item.get('title', '')
snippet = item.get('snippet', '')
if any(keyword in title.lower() for keyword in ['job', 'career', 'hiring', 'position', 'vacancy']) or \
any(keyword in snippet.lower() for keyword in ['apply', 'responsibilities', 'qualifications']):
job_results.append({
'title': title,
'company': item.get('source', extract_company_from_title(title)), # Use source or extract
'description': snippet,
'link': item.get('link', '#'),
'location': location, # Serper organic results might not specify location clearly
'date_posted': 'Recent' # Often not available in organic results
})
if not job_results:
logger.warning(f"No job results extracted from Serper response for query '{query}' in '{location}'.")
return json.dumps({"message": "No job opportunities found for your query.", "results": []})
logger.info(f"Extracted {len(job_results)} job results.")
# Return results as a JSON string for the AI
return json.dumps({"message": f"Found {len(job_results)} potential job opportunities.", "results": job_results})
except requests.exceptions.RequestException as e:
logger.error(f"Error calling Serper API: {e}")
return json.dumps({"error": f"Could not connect to job search service: {e}"})
except Exception as e:
logger.error(f"Exception in get_job_opportunities tool: {e}")
return json.dumps({"error": f"An unexpected error occurred during job search: {e}"})
def extract_company_from_title(title):
"""Simple helper to guess company name from job title string."""
# Improved heuristic
delimiters = [' at ', ' - ', ' | ', ' hiring ', ' for ']
for delim in delimiters:
if delim in title:
parts = title.split(delim)
# Take the part after the delimiter, unless it looks like a job title itself
potential_company = parts[-1].strip()
if len(potential_company) > 1 and not any(kw in potential_company.lower() for kw in ['developer', 'manager', 'engineer', 'analyst']):
return potential_company
# If no delimiter found or extraction failed, return default
return "Unknown Company"
# --- Implement other tool functions ---
def generate_document_template(document_type: str, career_field: str = "", experience_level: str = "") -> str:
"""Generates a basic markdown template for the specified document type."""
logger.info(f"Executing tool: generate_document_template(document_type='{document_type}', career_field='{career_field}', experience_level='{experience_level}')")
# This function *could* call the AI again for a more detailed template,
# but for simplicity, we'll return a predefined basic structure here.
# A real implementation would likely use the AI.
template = f"## Basic Template: {document_type}\n\n"
template += f"**Target Field:** {career_field or 'Not specified'}\n"
template += f"**Experience Level:** {experience_level or 'Not specified'}\n\n"
if "resume" in document_type.lower():
template += (
"### Contact Information\n"
"- Name:\n- Phone:\n- Email:\n- LinkedIn:\n- Portfolio (Optional):\n\n"
"### Summary/Objective\n"
"- [Write 2-3 sentences summarizing your key skills and career goals relevant to the target field/job]\n\n"
"### Experience\n"
"- **Company Name** | Location | Job Title | Start Date - End Date\n"
" - [Quantifiable achievement 1 using action verbs]\n"
" - [Quantifiable achievement 2 using action verbs]\n\n"
"### Education\n"
"- University Name | Degree | Graduation Date\n\n"
"### Skills\n"
"- Technical Skills: [List relevant software, tools, languages]\n"
"- Soft Skills: [List relevant interpersonal skills]\n"
)
elif "cover letter" in document_type.lower():
template += (
"[Your Name]\n[Your Address]\n[Your Phone]\n[Your Email]\n\n"
"[Date]\n\n"
"[Hiring Manager Name (if known), or Title]\n[Company Name]\n[Company Address]\n\n"
"Dear [Mr./Ms./Mx. Hiring Manager Last Name or Hiring Team],\n\n"
"**Introduction:** [State the position you're applying for and where you saw it. Briefly mention your key qualification or enthusiasm.]\n\n"
"**Body Paragraph(s):** [Connect your skills and experience directly to the job requirements. Provide specific examples. Explain why you are interested in this company and role.]\n\n"
"**Conclusion:** [Reiterate your interest and key qualification. State your call to action (e.g., looking forward to discussing). Thank the reader.]\n\n"
"Sincerely,\n[Your Name]"
)
else:
template += "[Structure for this document type needs to be defined.]"
return json.dumps({"template_markdown": template}) # Return as JSON string
def create_personalized_routine(emotion: str, goal: str, available_time_minutes: int = 60, routine_length_days: int = 7) -> str:
"""Creates a basic personalized routine structure."""
logger.info(f"Executing tool: create_personalized_routine(emotion='{emotion}', goal='{goal}', time={available_time_minutes}, days={routine_length_days})")
# Similar to template generation, this could call the AI for a detailed plan.
# Here, we generate a basic fallback structure.
# A real implementation should use the AI for better personalization.
routine = generate_basic_routine(emotion, goal, available_time_minutes, routine_length_days) # Use the existing fallback
logger.info(f"Generated basic routine: {routine['name']}")
# Add routine to user profile
# user_profile = add_routine_to_user(session_user_id, routine) # Need user_id here! Pass it if possible.
# For now, just return the routine structure. The main chat logic should handle saving it.
return json.dumps(routine) # Return JSON string
def analyze_resume(resume_text: str, career_goal: str) -> str:
"""Provides a basic analysis structure for the resume."""
logger.info(f"Executing tool: analyze_resume(career_goal='{career_goal}', resume_length={len(resume_text)})")
# This should ideally call the AI for actual analysis.
# Returning a placeholder structure for now.
analysis = {
"strengths": ["Identified strength 1 based on AI analysis (placeholder).", "Identified strength 2 (placeholder)."],
"areas_for_improvement": ["Suggestion 1 for improvement (placeholder).", "Suggestion 2 based on goal alignment (placeholder)."],
"format_feedback": "General feedback on format (placeholder).",
"content_feedback": f"Feedback on content relevance to '{career_goal}' (placeholder).",
"next_steps": ["Recommended action 1 (placeholder).", "Recommended action 2 (placeholder)."]
}
# Save the resume text (need user_id)
# save_user_resume(session_user_id, resume_text) # Pass user_id if available
return json.dumps({"analysis": analysis}) # Return JSON string
def analyze_portfolio(portfolio_description: str, career_goal: str, portfolio_url: str = "") -> str:
"""Provides a basic analysis structure for the portfolio."""
logger.info(f"Executing tool: analyze_portfolio(career_goal='{career_goal}', url='{portfolio_url}', desc_length={len(portfolio_description)})")
# Placeholder analysis
analysis = {
"alignment_with_goal": f"Assessment of alignment with '{career_goal}' (placeholder).",
"strengths": ["Portfolio strength 1 (placeholder).", "Portfolio strength 2 (placeholder)."],
"areas_for_improvement": ["Suggestion 1 for portfolio enhancement (placeholder)."],
"presentation_feedback": "Feedback on presentation/UX (placeholder).",
"next_steps": ["Recommended action for portfolio (placeholder)."]
}
# Save portfolio info (need user_id)
# save_user_portfolio(session_user_id, portfolio_url, portfolio_description) # Pass user_id if available
return json.dumps({"analysis": analysis}) # Return JSON string
def extract_and_rate_skills_from_resume(resume_text: str, max_skills: int = 8) -> str:
"""
Placeholder function to simulate skill extraction and rating.
In a real scenario, this would involve more sophisticated NLP or another AI call.
"""
logger.info(f"Executing tool: extract_and_rate_skills_from_resume(resume_length={len(resume_text)}, max_skills={max_skills})")
# Simple keyword spotting for demonstration
possible_skills = ["Python", "Java", "Project Management", "Communication", "Data Analysis", "Teamwork", "Leadership", "SQL", "React", "Customer Service", "Problem Solving", "Microsoft Office"]
found_skills = []
resume_lower = resume_text.lower()
for skill in possible_skills:
if skill.lower() in resume_lower:
# Assign a random score for demonstration
found_skills.append({"name": skill, "score": random.randint(4, 9)})
if len(found_skills) >= max_skills:
break
# Ensure we return *some* skills if none automatically found
if not found_skills:
found_skills = [
{"name": "Communication", "score": random.randint(5,8)},
{"name": "Teamwork", "score": random.randint(5,8)},
{"name": "Problem Solving", "score": random.randint(5,8)},
]
logger.info(f"Extracted skills (placeholder): {[s['name'] for s in found_skills]}")
return json.dumps({"skills": found_skills[:max_skills]}) # Return JSON string
# --- AI Interaction Logic (Using OpenAI) ---
def get_ai_response(user_id: str, user_input: str, generate_recommendations: bool = True) -> str:
"""
Gets a response from the OpenAI API, handling context, system prompt, and tool calls.
"""
logger.info(f"Getting AI response for user {user_id}. Input: '{user_input[:100]}...'")
if not client:
return "I apologize, the AI service is currently unavailable. Please check the configuration."
try:
user_profile = get_user_profile(user_id)
# --- System Prompt ---
system_prompt = f"""
You are Aishura, an emotionally intelligent AI career assistant. Your primary goal is to provide empathetic,
realistic, and actionable career guidance. Always follow these steps:
1. Acknowledge the user's message and, if applicable, their expressed emotion (from their profile: '{user_profile.get('current_emotion', 'Not specified')}' or message). Use empathetic language.
2. Directly address the user's query or statement.
3. Proactively offer relevant support using your tools: suggest searching for jobs (`get_job_opportunities`), generating document templates (`generate_document_template`), creating a personalized routine (`create_personalized_routine`), analyzing their resume (`analyze_resume`) or portfolio (`analyze_portfolio`) if they've provided them or mention doing so.
4. Tailor your response based on the user's profile:
- Name: {user_profile.get('name', 'User')}
- Location: {user_profile.get('location', 'Not specified')}
- Stated Career Goal: {user_profile.get('career_goal', 'Not specified')}
- Recent Emotion: {user_profile.get('current_emotion', 'Not specified')}
5. If the user has uploaded a resume or portfolio (check profile paths: resume='{user_profile.get('resume_path', '')}', portfolio='{user_profile.get('portfolio_path', '')}'), mention you can analyze them or use insights from previous analysis if available.
6. Keep responses concise, friendly, and focused on next steps. Avoid overly long paragraphs.
7. Use markdown for formatting (bolding, lists) where appropriate.
"""
# --- Build Message History ---
messages = [{"role": "system", "content": system_prompt}]
# Add recent chat history (ensure it's in OpenAI format)
chat_history = user_profile.get('chat_history', [])
# Append only user/assistant messages with 'content' key
for msg in chat_history:
if msg.get('role') in ['user', 'assistant'] and 'content' in msg:
messages.append({"role": msg['role'], "content": msg['content']})
elif msg.get('role') == 'tool' and 'tool_call_id' in msg and 'name' in msg and 'content' in msg:
# Reconstruct tool call response message correctly
messages.append({
"role": "tool",
"tool_call_id": msg['tool_call_id'],
"name": msg['name'],
"content": msg['content'] # Content should be the JSON string result from the tool function
})
# Add current user input
messages.append({"role": "user", "content": user_input})
# --- Initial API Call ---
logger.info(f"Sending {len(messages)} messages to OpenAI model {MODEL_ID}.")
response = client.chat.completions.create(
model=MODEL_ID,
messages=messages,
tools=tools_list,
tool_choice="auto", # Let the model decide whether to use tools
temperature=0.7,
max_tokens=1024 # Adjust as needed
)
response_message = response.choices[0].message
logger.info("Received initial response from OpenAI.")
# --- Tool Call Handling ---
tool_calls = response_message.tool_calls
if tool_calls:
logger.info(f"AI requested {len(tool_calls)} tool call(s): {[tc.function.name for tc in tool_calls]}")
# Append the assistant's response message that contains the tool calls
messages.append(response_message)
# --- Execute Tools and Get Results ---
available_functions = {
"get_job_opportunities": get_job_opportunities,
"generate_document_template": generate_document_template,
"create_personalized_routine": create_personalized_routine,
"analyze_resume": analyze_resume,
"analyze_portfolio": analyze_portfolio,
"extract_and_rate_skills_from_resume": extract_and_rate_skills_from_resume,
}
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions.get(function_name)
function_args = json.loads(tool_call.function.arguments) # Arguments are provided as a JSON string
if function_to_call:
try:
# Special handling for functions needing user_id or profile info
if function_name in ["analyze_resume", "analyze_portfolio", "create_personalized_routine"]:
# Add user_id or necessary profile elements to args if needed by the function
# e.g., function_args['user_id'] = user_id
# Pass career goal from profile if not in direct args for analysis functions
if function_name == "analyze_resume" and 'career_goal' not in function_args:
function_args['career_goal'] = user_profile.get('career_goal', 'Not specified')
if function_name == "analyze_portfolio" and 'career_goal' not in function_args:
function_args['career_goal'] = user_profile.get('career_goal', 'Not specified')
# Save files when analysis tools are called
if function_name == "analyze_resume":
save_user_resume(user_id, function_args.get('resume_text', ''))
if function_name == "analyze_portfolio":
save_user_portfolio(user_id, function_args.get('portfolio_url', ''), function_args.get('portfolio_description', ''))
# Call the function with unpacked arguments
logger.info(f"Calling function '{function_name}' with args: {function_args}")
function_response = function_to_call(**function_args)
logger.info(f"Function '{function_name}' returned (type: {type(function_response)}): {str(function_response)[:200]}...")
# Append tool response to messages
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response, # Must be a string (JSON string in our case)
}
)
# Also add tool call result to chat history DB
add_chat_message(user_id, "tool", {
"tool_call_id": tool_call.id,
"name": function_name,
"content": function_response # Save the JSON string result
})
except Exception as e:
logger.error(f"Error executing function {function_name}: {e}")
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": json.dumps({"error": f"Failed to execute tool {function_name}: {e}"}),
}
)
# Also add error to chat history DB
add_chat_message(user_id, "tool", {
"tool_call_id": tool_call.id,
"name": function_name,
"content": json.dumps({"error": f"Failed to execute tool {function_name}: {e}"})
})
else:
logger.warning(f"Function {function_name} requested by AI but not found.")
# Append a message indicating the function wasn't found
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": json.dumps({"error": f"Tool '{function_name}' is not available."})
}
)
add_chat_message(user_id, "tool", {
"tool_call_id": tool_call.id,
"name": function_name,
"content": json.dumps({"error": f"Tool '{function_name}' is not available."})
})
# --- Second API Call (after tool execution) ---
logger.info(f"Sending {len(messages)} messages to OpenAI (including tool results).")
second_response = client.chat.completions.create(
model=MODEL_ID,
messages=messages,
temperature=0.7,
max_tokens=1024
# No tool_choice here, we expect a natural language response
)
final_response_content = second_response.choices[0].message.content
logger.info("Received final response from OpenAI after tool calls.")
else:
# No tool calls were made, use the first response
final_response_content = response_message.content
logger.info("No tool calls requested by AI.")
# --- Post-processing and Saving ---
if not final_response_content:
final_response_content = "I received that, but I don't have a specific response right now. Could you try rephrasing?"
logger.warning("AI returned empty content.")
# Save user message and final AI response to DB
add_chat_message(user_id, "user", user_input)
# Check if the last message added was the assistant's message with tool calls
if messages[-1]['role'] == 'assistant' and messages[-1].tool_calls:
# Don't add the tool call message itself to the history again,
# just add the final text response
pass
elif messages[-1]['role'] == 'tool':
# If the last message was a tool response, the final content comes from the second call
pass
else:
# If no tools were called, the first response message needs saving
add_chat_message(user_id, "assistant", final_response_content)
# Generate recommendations (consider doing this asynchronously)
if generate_recommendations:
# This could be a separate AI call based on the final interaction
# For simplicity, we'll skip detailed recommendation generation here
# but you would call a function like `gen_recommendations_openai`
# gen_recommendations_openai(user_id, user_input, final_response_content)
pass # Placeholder for recommendation generation logic
return final_response_content
except openai.APIError as e:
logger.error(f"OpenAI API returned an API Error: {e}")
return f"I'm sorry, there was an error communicating with the AI service (API Error: {e.status_code}). Please try again later."
except openai.APIConnectionError as e:
logger.error(f"Failed to connect to OpenAI API: {e}")
return "I'm sorry, I couldn't connect to the AI service. Please check your connection and try again."
except openai.RateLimitError as e:
logger.error(f"OpenAI API request exceeded rate limit: {e}")
return "I'm currently experiencing high demand. Please try again in a few moments."
except Exception as e:
# Log the full traceback for debugging
logger.exception(f"Unexpected error in get_ai_response for user {user_id}: {e}")
return "I apologize, but an unexpected error occurred while processing your request. Please try again."
# --- Recommendation Generation (Placeholder - Adapt for OpenAI) ---
def gen_recommendations_openai(user_id, user_input, ai_response):
"""Generate recommendations using OpenAI (Adapt prompt and parsing)."""
logger.info(f"Generating recommendations for user {user_id}")
if not client:
logger.warning("OpenAI client not available for generating recommendations.")
return []
try:
user_profile = get_user_profile(user_id)
prompt = f"""
Based on the following user profile and recent conversation, generate 1-3 specific, actionable recommendations
for the user's next steps in their career journey. Focus on practical actions they can take soon.
User Profile:
- Current emotion: {user_profile.get('current_emotion', 'Not specified')}
- Career goal: {user_profile.get('career_goal', 'Not specified')}
- Location: {user_profile.get('location', 'Not specified')}
- Recent chat history is available to the main assistant.
Most Recent Interaction:
User: {user_input}
Aishura (AI Assistant): {ai_response}
Generate recommendations in this JSON format only:
```json
[
{{
"title": "Concise recommendation title (e.g., 'Refine Resume Keywords')",
"description": "Detailed explanation of the recommendation and why it's relevant (2-3 sentences).",
"action_type": "job_search | skill_building | networking | resume_update | portfolio_review | interview_prep | mindset_shift | other",
"priority": "high | medium | low"
}}
]
```
Provide only the JSON array, no introductory text.
"""
response = client.chat.completions.create(
model=MODEL_ID, # Or a faster/cheaper model if preferred for this task
messages=[
{"role": "system", "content": "You are an expert career advisor generating concise, actionable recommendations in JSON format."},
{"role": "user", "content": prompt}
],
temperature=0.5,
max_tokens=512,
response_format={"type": "json_object"} # Request JSON output if model supports it
)
recommendation_json_str = response.choices[0].message.content
logger.info(f"Raw recommendations JSON string: {recommendation_json_str}")
# Attempt to parse the JSON
try:
# The response_format parameter should ensure it's valid JSON, but double-check
# Clean potential markdown fences if response_format didn't work
if recommendation_json_str.startswith("```json"):
recommendation_json_str = recommendation_json_str.split("```json")[1].split("```")[0].strip()
# The prompt asks for a list, but response_format might enforce an object. Adjust parsing.
recommendations_data = json.loads(recommendation_json_str)
# If the root is an object with a key like "recommendations", extract the list
if isinstance(recommendations_data, dict) and "recommendations" in recommendations_data and isinstance(recommendations_data["recommendations"], list):
recommendations = recommendations_data["recommendations"]
elif isinstance(recommendations_data, list):
recommendations = recommendations_data # It's already a list
else:
logger.error(f"Unexpected JSON structure for recommendations: {type(recommendations_data)}")
return []
# Add valid recommendations to user profile
valid_recs_added = 0
for rec in recommendations:
# Basic validation of recommendation structure
if isinstance(rec, dict) and all(k in rec for k in ['title', 'description', 'action_type', 'priority']):
add_recommendation_to_user(user_id, rec)
valid_recs_added += 1
else:
logger.warning(f"Skipping invalid recommendation format: {rec}")
logger.info(f"Added {valid_recs_added} recommendations for user {user_id}")
return recommendations # Return the raw list parsed
except json.JSONDecodeError as e:
logger.error(f"Failed to parse JSON recommendations from AI response: {e}\nResponse: {recommendation_json_str}")
return []
except Exception as e:
logger.exception(f"Error processing recommendations: {e}")
return []
except Exception as e:
logger.exception(f"Error in gen_recommendations_openai: {e}")
return []
# --- Chart and Visualization Functions (Unchanged, but depend on data format) ---
# [Keep create_emotion_chart, create_progress_chart, create_routine_completion_gauge]
# Ensure they handle the data structures saved by the updated functions correctly.
def create_emotion_chart(user_id):
"""Create a chart of user's emotions over time"""
user_profile = get_user_profile(user_id)
emotion_records = user_profile.get('daily_emotions', [])
if not emotion_records:
fig = go.Figure()
fig.add_annotation(text="No emotion data tracked yet.", align='center', showarrow=False)
fig.update_layout(title="Emotion Tracking")
return fig
emotion_values = {
"Unmotivated": 1, "Anxious": 2, "Confused": 3,
"Discouraged": 4, "Overwhelmed": 5, "Excited": 6
}
dates = [datetime.fromisoformat(record['date']) if isinstance(record['date'], str) else datetime.strptime(record['date'], "%Y-%m-%d %H:%M:%S") for record in emotion_records] # Handle ISO or older format
emotion_scores = [emotion_values.get(record['emotion'], 3) for record in emotion_records]
emotion_names = [record['emotion'] for record in emotion_records]
df = pd.DataFrame({'Date': dates, 'Emotion Score': emotion_scores, 'Emotion': emotion_names})
df = df.sort_values('Date') # Ensure chronological order
fig = px.line(df, x='Date', y='Emotion Score', markers=True,
labels={"Emotion Score": "Emotional State"},
title="Your Emotional Journey")
fig.update_traces(hovertemplate='%{x|%Y-%m-%d %H:%M}<br>Feeling: %{text}', text=df['Emotion'])
fig.update_yaxes(tickvals=list(emotion_values.values()), ticktext=list(emotion_values.keys()))
return fig
def create_progress_chart(user_id):
"""Create a chart showing user's progress points over time"""
user_profile = get_user_profile(user_id)
tasks = user_profile.get('completed_tasks', [])
if not tasks:
fig = go.Figure()
fig.add_annotation(text="No tasks completed yet.", align='center', showarrow=False)
fig.update_layout(title="Progress Tracking")
return fig
# Ensure tasks have points (might need adjustment based on how points are awarded)
points_per_task = 20 # Example: Assign fixed points if not stored with task
dates = []
cumulative_points = 0
points_timeline = []
task_labels = []
# Sort tasks by date
tasks.sort(key=lambda x: datetime.fromisoformat(x['date']) if isinstance(x['date'], str) else datetime.strptime(x['date'], "%Y-%m-%d %H:%M:%S"))
for task in tasks:
task_date = datetime.fromisoformat(task['date']) if isinstance(task['date'], str) else datetime.strptime(task['date'], "%Y-%m-%d %H:%M:%S")
dates.append(task_date)
# Use points from profile if calculated there, otherwise estimate
# We are using the cumulative points stored in the profile directly now
# For simplicity, let's recalculate cumulative points for the chart
cumulative_points += task.get('points', points_per_task) # Use stored points if available
points_timeline.append(cumulative_points)
task_labels.append(task['task'])
df = pd.DataFrame({'Date': dates, 'Points': points_timeline, 'Task': task_labels})
fig = px.line(df, x='Date', y='Points', markers=True, title="Your Career Journey Progress")
fig.update_traces(hovertemplate='%{x|%Y-%m-%d %H:%M}<br>Points: %{y}<br>Completed: %{text}', text=df['Task'])
return fig
def create_routine_completion_gauge(user_id):
"""Create a gauge chart showing routine completion percentage"""
user_profile = get_user_profile(user_id)
routines = user_profile.get('routine_history', [])
if not routines:
fig = go.Figure(go.Indicator(mode="gauge", value=0, title={'text': "Routine Completion"}))
fig.add_annotation(text="No active routine.", showarrow=False)
return fig
# Get the most recent routine (assuming prepend logic)
latest_routine = routines[0]
completion = latest_routine.get('completion', 0)
routine_name = latest_routine.get('routine', {}).get('name', 'Current Routine')
fig = go.Figure(go.Indicator(
mode = "gauge+number",
value = completion,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': f"{routine_name} Completion"},
gauge = {
'axis': {'range': [0, 100], 'tickwidth': 1, 'tickcolor': "darkblue"},
'bar': {'color': "cornflowerblue"},
'bgcolor': "white",
'borderwidth': 2,
'bordercolor': "gray",
'steps': [
{'range': [0, 50], 'color': 'whitesmoke'},
{'range': [50, 80], 'color': 'lightgray'}],
'threshold': {
'line': {'color': "green", 'width': 4},
'thickness': 0.75, 'value': 90}})) # Threshold at 90%
return fig
def create_skill_radar_chart(user_id):
"""
Creates a radar chart of user's skills.
Requires skills data, potentially extracted by `extract_and_rate_skills_from_resume` tool.
"""
logger.info(f"Creating skill radar chart for user {user_id}")
user_profile = get_user_profile(user_id)
resume_path = user_profile.get('resume_path')
if not resume_path or not os.path.exists(resume_path):
logger.warning("No resume path found or file missing for skill chart.")
fig = go.Figure()
fig.add_annotation(text="Upload & Analyze Resume for Skill Chart", showarrow=False)
fig.update_layout(title="Skill Assessment")
return fig
try:
with open(resume_path, 'r', encoding='utf-8') as f:
resume_text = f.read()
# Use the tool function to extract skills (simulated call here)
# In a real app, this might be triggered explicitly or data stored after analysis
skills_json_str = extract_and_rate_skills_from_resume(resume_text=resume_text)
skill_data = json.loads(skills_json_str)
if 'skills' in skill_data and skill_data['skills']:
skills = skill_data['skills']
# Limit to max 8 skills for readability
skills = skills[:8]
categories = [skill['name'] for skill in skills]
values = [skill['score'] for skill in skills]
# Ensure the loop closes
if len(categories) > 2:
categories.append(categories[0])
values.append(values[0])
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=values,
theta=categories,
fill='toself',
name='Skills'
))
fig.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, 10])),
showlegend=False,
title="Skill Assessment (Based on Resume)"
)
logger.info(f"Successfully created radar chart with {len(skills)} skills.")
return fig
else:
logger.warning("Could not extract skills from resume for chart.")
fig = go.Figure()
fig.add_annotation(text="Could not extract skills from resume", showarrow=False)
fig.update_layout(title="Skill Assessment")
return fig
except Exception as e:
logger.exception(f"Error creating skill radar chart: {e}")
fig = go.Figure()
fig.add_annotation(text="Error analyzing skills", showarrow=False)
fig.update_layout(title="Skill Assessment")
return fig
# --- Gradio Interface Components ---
def create_interface():
"""Create the Gradio interface for Aishura"""
# Generate a unique user ID for this session (can be replaced with login later)
# This state needs careful handling in Gradio for multi-user scenarios.
# Using a simple global or closure for demo purposes.
# A better approach involves Gradio's State management or user handling.
session_user_id = str(uuid.uuid4())
logger.info(f"Initializing Gradio interface for session user ID: {session_user_id}")
# Initialize profile for session user
get_user_profile(session_user_id)
# --- Event Handlers for Gradio Components ---
def welcome(name, location, emotion, goal):
"""Handles the initial welcome screen submission."""
logger.info(f"Welcome action for user {session_user_id}: name='{name}', loc='{location}', emo='{emotion}', goal='{goal}'")
if not all([name, location, emotion, goal]):
return ("Please fill out all fields to get started.",
gr.update(visible=True), # Keep welcome visible
gr.update(visible=False)) # Keep main hidden
# Update profile
update_user_profile(session_user_id, {
"name": name, "location": location, "career_goal": goal
})
add_emotion_record(session_user_id, emotion) # Record initial emotion
# Generate initial AI message based on input
initial_input = f"Hi Aishura! I'm {name} from {location}. I'm currently feeling {emotion}, and my main goal is to {goal}. Can you help me get started?"
ai_response = get_ai_response(session_user_id, initial_input, generate_recommendations=True)
# Initial chat history
initial_chat = [(initial_input, ai_response)]
# Initial charts
emotion_fig = create_emotion_chart(session_user_id)
progress_fig = create_progress_chart(session_user_id)
routine_fig = create_routine_completion_gauge(session_user_id)
skill_fig = create_skill_radar_chart(session_user_id) # Will be empty initially
# Output: Hide welcome, show main, populate initial chat and charts
return (gr.update(value=initial_chat), # Update chatbot
gr.update(visible=False), # Hide welcome group
gr.update(visible=True), # Show main interface
gr.update(figure=emotion_fig),
gr.update(figure=progress_fig),
gr.update(figure=routine_fig),
gr.update(figure=skill_fig)
)
def chat_submit(message, history):
"""Handles sending a message in the chatbot."""
logger.info(f"Chat submit for user {session_user_id}: '{message[:50]}...'")
if not message:
return history, "" # Do nothing if message is empty
ai_response = get_ai_response(session_user_id, message, generate_recommendations=True)
history.append((message, ai_response))
# Update recommendations display after chat
recommendations_md = display_recommendations(session_user_id)
return history, "", gr.update(value=recommendations_md) # Return updated history, clear input, update recs
# --- Simulation for Emotion Messages ---
pause_message = "Take your time, weβre here when you're ready."
retype_message = "It doesnβt have to be perfect. Letβs just begin."
# JS for basic simulation (might need refinement based on Gradio version/behavior)
# This is illustrative; direct JS injection can be tricky/fragile in Gradio.
# We'll use Gradio events for a simpler simulation.
def show_pause_message():
# Simulate showing pause message (e.g., make a Markdown visible)
# In a real app, this needs proper timing logic (JS setTimeout)
# logger.info("Simulating 'pause' message visibility.")
return gr.update(value=pause_message, visible=True)
def show_retype_message():
# Simulate showing retype message
# logger.info("Simulating 'retype' message visibility.")
return gr.update(value=retype_message, visible=True)
def hide_emotion_message():
# logger.info("Hiding emotion message.")
return gr.update(value="", visible=False)
def handle_chat_focus():
"""Called when chat input gains focus."""
# logger.info("Chat input focused.")
# Decide whether to show a message, e.g., maybe the retype one briefly?
# Or just hide any existing message.
return hide_emotion_message() # Hide message on focus for now
# Placeholder: More complex logic would be needed for actual pause/retype detection
# Using .change() with debounce might approximate it, but Gradio support varies.
# --- Tool Interface Handlers ---
def search_jobs_interface_handler(query, location, max_results):
"""Handles the Job Search button click."""
logger.info(f"Manual Job Search UI: query='{query}', loc='{location}', num={max_results}")
# Call the underlying tool function directly for the UI button
results_json_str = get_job_opportunities(query, location, int(max_results))
try:
results_data = json.loads(results_json_str)
if "error" in results_data:
return f"Error: {results_data['error']}"
if not results_data.get("results"):
return "No job opportunities found matching your criteria."
output_md = f"## Job Opportunities Found ({len(results_data['results'])})\n\n"
for i, job in enumerate(results_data['results'], 1):
output_md += f"### {i}. {job.get('title', 'N/A')}\n"
output_md += f"**Company:** {job.get('company', 'N/A')}\n"
output_md += f"**Location:** {job.get('location', location)}\n" # Use search location as fallback
output_md += f"**Description:** {job.get('description', 'N/A')}\n"
output_md += f"**Posted:** {job.get('date_posted', 'N/A')}\n"
link = job.get('link', '#')
output_md += f"**Link:** [{link}]({link})\n\n"
return output_md
except json.JSONDecodeError:
logger.error(f"Failed to parse job search results: {results_json_str}")
return "Error displaying job search results."
except Exception as e:
logger.exception("Error in search_jobs_interface_handler")
return f"An unexpected error occurred: {e}"
def generate_template_interface_handler(doc_type, career_field, experience):
"""Handles Generate Template button click."""
logger.info(f"Manual Template UI: type='{doc_type}', field='{career_field}', exp='{experience}'")
template_json_str = generate_document_template(doc_type, career_field, experience)
try:
template_data = json.loads(template_json_str)
if "error" in template_data:
return f"Error: {template_data['error']}"
return template_data.get('template_markdown', "Could not generate template.")
except json.JSONDecodeError:
logger.error(f"Failed to parse template results: {template_json_str}")
return "Error displaying template."
except Exception as e:
logger.exception("Error in generate_template_interface_handler")
return f"An unexpected error occurred: {e}"
def create_routine_interface_handler(emotion, goal, time_available, days):
"""Handles Create Routine button click."""
logger.info(f"Manual Routine UI: emo='{emotion}', goal='{goal}', time='{time_available}', days='{days}'")
routine_json_str = create_personalized_routine(emotion, goal, int(time_available), int(days))
try:
routine_data = json.loads(routine_json_str)
if "error" in routine_data:
return f"Error: {routine_data['error']}"
# Save the generated routine to the user profile
add_routine_to_user(session_user_id, routine_data)
# Format for display
output_md = f"# Your {routine_data.get('name', 'Personalized Routine')}\n\n"
output_md += f"{routine_data.get('description', '')}\n\n"
for day_plan in routine_data.get('daily_tasks', []):
output_md += f"## Day {day_plan.get('day', '?')}\n"
if not day_plan.get('tasks'):
output_md += "- Rest day or free choice.\n"
else:
for task in day_plan.get('tasks', []):
output_md += f"- **{task.get('name', 'Task')}** "
output_md += f"({task.get('duration', '?')} mins"
if 'points' in task: # Only show points if available
output_md += f", {task.get('points', '?')} points"
output_md += ")\n"
output_md += f" *Why: {task.get('description', '...') }*\n"
output_md += "\n"
# Update the gauge chart as well
gauge_fig = create_routine_completion_gauge(session_user_id)
return output_md, gr.update(figure=gauge_fig) # Return markdown and updated gauge
except json.JSONDecodeError:
logger.error(f"Failed to parse routine results: {routine_json_str}")
return "Error displaying routine.", gr.update() # Return update for gauge too
except Exception as e:
logger.exception("Error in create_routine_interface_handler")
return f"An unexpected error occurred: {e}", gr.update()
def analyze_resume_interface_handler(resume_text):
"""Handles Analyze Resume button click."""
logger.info(f"Manual Resume Analysis UI: length={len(resume_text)}")
if not resume_text:
# Clear previous results if input is empty
return "Please paste your resume text above.", gr.update(figure=None)
user_profile = get_user_profile(session_user_id)
career_goal = user_profile.get('career_goal', 'Not specified') # Get goal from profile
# Save resume first
save_user_resume(session_user_id, resume_text)
# Call analysis tool (placeholder version for now)
analysis_json_str = analyze_resume(resume_text, career_goal)
try:
analysis_data = json.loads(analysis_json_str)
if "error" in analysis_data:
return f"Error: {analysis_data['error']}", gr.update() # Update for chart
# Format analysis for display (adapt based on actual tool output)
analysis = analysis_data.get('analysis', {})
output_md = "## Resume Analysis Results\n\n"
output_md += f"**Analysis against goal:** '{career_goal}'\n\n"
output_md += "**Strengths:**\n" + "\n".join([f"- {s}" for s in analysis.get('strengths', [])]) + "\n\n"
output_md += "**Areas for Improvement:**\n" + "\n".join([f"- {s}" for s in analysis.get('areas_for_improvement', [])]) + "\n\n"
output_md += f"**Format Feedback:** {analysis.get('format_feedback', 'N/A')}\n\n"
output_md += f"**Content Feedback:** {analysis.get('content_feedback', 'N/A')}\n\n"
output_md += "**Suggested Next Steps:**\n" + "\n".join([f"- {s}" for s in analysis.get('next_steps', [])])
# Update skill chart after analysis
skill_fig = create_skill_radar_chart(session_user_id)
return output_md, gr.update(figure=skill_fig)
except json.JSONDecodeError:
logger.error(f"Failed to parse resume analysis results: {analysis_json_str}")
return "Error displaying resume analysis.", gr.update()
except Exception as e:
logger.exception("Error in analyze_resume_interface_handler")
return f"An unexpected error occurred: {e}", gr.update()
def analyze_portfolio_interface_handler(portfolio_url, portfolio_description):
"""Handles Analyze Portfolio button click."""
logger.info(f"Manual Portfolio Analysis UI: url='{portfolio_url}', desc_len={len(portfolio_description)}")
if not portfolio_description:
return "Please provide a description of your portfolio."
user_profile = get_user_profile(session_user_id)
career_goal = user_profile.get('career_goal', 'Not specified') # Get goal from profile
# Save portfolio info first
save_user_portfolio(session_user_id, portfolio_url, portfolio_description)
# Call analysis tool (placeholder)
analysis_json_str = analyze_portfolio(portfolio_description, career_goal, portfolio_url)
try:
analysis_data = json.loads(analysis_json_str)
if "error" in analysis_data:
return f"Error: {analysis_data['error']}"
# Format analysis for display
analysis = analysis_data.get('analysis', {})
output_md = "## Portfolio Analysis Results\n\n"
output_md += f"**Analysis against goal:** '{career_goal}'\n"
if portfolio_url:
output_md += f"**Portfolio URL:** {portfolio_url}\n\n"
output_md += f"**Alignment with Goal:**\n{analysis.get('alignment_with_goal', 'N/A')}\n\n"
output_md += "**Strengths:**\n" + "\n".join([f"- {s}" for s in analysis.get('strengths', [])]) + "\n\n"
output_md += "**Areas for Improvement:**\n" + "\n".join([f"- {s}" for s in analysis.get('areas_for_improvement', [])]) + "\n\n"
output_md += f"**Presentation Feedback:** {analysis.get('presentation_feedback', 'N/A')}\n\n"
output_md += "**Suggested Next Steps:**\n" + "\n".join([f"- {s}" for s in analysis.get('next_steps', [])])
return output_md
except json.JSONDecodeError:
logger.error(f"Failed to parse portfolio analysis results: {analysis_json_str}")
return "Error displaying portfolio analysis."
except Exception as e:
logger.exception("Error in analyze_portfolio_interface_handler")
return f"An unexpected error occurred: {e}"
# --- Progress Tracking Handlers ---
def complete_task_handler(task_name):
"""Handles marking a task as complete."""
logger.info(f"Complete Task UI: task='{task_name}' for user {session_user_id}")
if not task_name:
return ("Please enter the name of the task you completed.", "",
gr.update(), gr.update(), gr.update()) # No chart updates if no task
# Add task and update points
user_profile = add_task_to_user(session_user_id, task_name)
points_earned = 20 # Use a fixed value or get from task data if available
# Update completion % of latest routine
db = load_user_database()
if session_user_id in db['users'] and db['users'][session_user_id].get('routine_history'):
latest_routine_entry = db['users'][session_user_id]['routine_history'][0] # Get latest
# Simple: increment completion by a fixed amount per task (e.g., 5-15%)
# More complex: calculate based on routine definition and completed tasks
increment = random.randint(5, 15)
new_completion = min(100, latest_routine_entry.get('completion', 0) + increment)
latest_routine_entry['completion'] = new_completion
save_user_database(db) # Save updated DB
# Refresh charts
emotion_fig = create_emotion_chart(session_user_id)
progress_fig = create_progress_chart(session_user_id)
gauge_fig = create_routine_completion_gauge(session_user_id)
return (f"Great job completing '{task_name}'! You've earned progress points.",
"", # Clear task input
gr.update(figure=emotion_fig),
gr.update(figure=progress_fig),
gr.update(figure=gauge_fig))
def update_emotion_handler(emotion):
"""Handles updating the user's current emotion."""
logger.info(f"Update Emotion UI: emotion='{emotion}' for user {session_user_id}")
if not emotion:
return "Please select an emotion.", gr.update() # No chart update
add_emotion_record(session_user_id, emotion)
# Refresh emotion chart
emotion_fig = create_emotion_chart(session_user_id)
return f"Your current emotion has been updated to '{emotion}'.", gr.update(figure=emotion_fig)
def display_recommendations(current_user_id):
"""Fetches and formats recommendations for display."""
logger.info(f"Displaying recommendations for user {current_user_id}")
user_profile = get_user_profile(current_user_id)
recommendations = user_profile.get('recommendations', [])
if not recommendations:
return "No recommendations available yet. Chat with Aishura to get personalized suggestions!"
# Show the most recent 5 recommendations (they are prepended)
recent_recs = recommendations[:5]
output_md = "# Your Latest Recommendations\n\n"
if not recent_recs:
output_md += "No recommendations yet."
return output_md
for i, rec_entry in enumerate(recent_recs, 1):
rec = rec_entry.get('recommendation', {}) # Get the actual recommendation object
output_md += f"### {i}. {rec.get('title', 'Recommendation')}\n"
output_md += f"{rec.get('description', 'No details.')}\n"
output_md += f"**Priority:** {rec.get('priority', 'N/A').title()} | "
output_md += f"**Type:** {rec.get('action_type', 'N/A').replace('_', ' ').title()}\n"
# output_md += f"*Generated: {rec_entry.get('date', 'N/A')}*\n" # Optional: show date
output_md += "---\n"
return output_md
# --- Build Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky")) as app:
gr.Markdown("# Aishura - Your AI Career Assistant")
# --- Welcome Screen ---
with gr.Group(visible=True) as welcome_group:
gr.Markdown("## Welcome to Aishura!")
gr.Markdown("Let's get acquainted. Tell me a bit about yourself.")
with gr.Row():
with gr.Column():
name_input = gr.Textbox(label="Your Name", placeholder="e.g., Alex Chen")
location_input = gr.Textbox(label="Your Location", placeholder="e.g., London, UK")
with gr.Column():
emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling today?")
goal_dropdown = gr.Dropdown(choices=GOAL_TYPES, label="What's your main career goal?")
welcome_button = gr.Button("Start My Journey")
welcome_output = gr.Markdown() # For validation messages
# --- Main App Interface (Initially Hidden) ---
with gr.Group(visible=False) as main_interface:
with gr.Tabs() as tabs:
# --- Chat Tab ---
with gr.TabItem("π¬ Chat"):
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Aishura Assistant",
height=550,
avatar_images=("./user_avatar.png", "./aishura_avatar.png"), # Provide paths to avatar images if available
bubble_full_width=False,
show_copy_button=True
)
# --- Simulated Emotion Message Area ---
emotion_message_area = gr.Markdown("", visible=False, elem_classes="subtle-message") # Hidden initially
# --- Chat Input ---
msg_textbox = gr.Textbox(
show_label=False,
placeholder="Type your message here and press Enter...",
container=False,
scale=1 # Take full width below chatbot
)
with gr.Column(scale=1):
gr.Markdown("### β¨ Recommendations")
recommendation_output = gr.Markdown(value="Chat with Aishura to get recommendations.")
refresh_recs_button = gr.Button("π Refresh Recommendations")
# --- Analysis Tab ---
with gr.TabItem("π Analysis"):
with gr.Tabs() as analysis_subtabs:
with gr.TabItem("π Resume"):
gr.Markdown("### Resume Analysis")
gr.Markdown("Paste your full resume below. Aishura can analyze it against your career goals and help identify strengths and areas for improvement.")
resume_text_input = gr.Textbox(label="Paste Resume Text Here", lines=15, placeholder="Your resume content...")
analyze_resume_button = gr.Button("Analyze My Resume")
resume_analysis_output = gr.Markdown()
with gr.TabItem("π¨ Portfolio"):
gr.Markdown("### Portfolio Analysis")
gr.Markdown("Provide a link and/or description of your portfolio (e.g., website, GitHub, Behance).")
portfolio_url_input = gr.Textbox(label="Portfolio URL (Optional)", placeholder="[https://your-portfolio.com](https://your-portfolio.com)")
portfolio_desc_input = gr.Textbox(label="Portfolio Description", lines=5, placeholder="Describe your portfolio's purpose, key projects, and target audience...")
analyze_portfolio_button = gr.Button("Analyze My Portfolio")
portfolio_analysis_output = gr.Markdown()
with gr.TabItem("π‘ Skills"):
gr.Markdown("### Skill Assessment")
gr.Markdown("This chart visualizes skills identified from your latest resume analysis.")
skill_radar_chart_output = gr.Plot(label="Skill Radar Chart")
# --- Tools Tab ---
with gr.TabItem("π οΈ Tools"):
with gr.Tabs() as tools_subtabs:
with gr.TabItem("π Job Search"):
gr.Markdown("### Find Job Opportunities")
gr.Markdown("Use this tool to search for jobs based on keywords and location.")
job_query_input = gr.Textbox(label="Job Title/Keyword", placeholder="e.g., Software Engineer, Marketing Manager")
job_location_input = gr.Textbox(label="Location", placeholder="e.g., New York, Remote")
job_results_slider = gr.Slider(minimum=5, maximum=20, value=10, step=1, label="Number of Results")
search_jobs_button = gr.Button("Search for Jobs")
job_search_output = gr.Markdown()
with gr.TabItem("π Templates"):
gr.Markdown("### Generate Document Templates")
gr.Markdown("Get started with common career documents.")
doc_type_dropdown = gr.Dropdown(choices=["Resume", "Cover Letter", "LinkedIn Summary", "Networking Email"], label="Select Document Type")
doc_field_input = gr.Textbox(label="Career Field (Optional)", placeholder="e.g., Healthcare, Technology")
doc_exp_dropdown = gr.Dropdown(choices=["Entry-Level", "Mid-Career", "Senior-Level", "Student/Intern"], label="Experience Level")
generate_template_button = gr.Button("Generate Template")
template_output_md = gr.Markdown()
with gr.TabItem("π
Routine"):
gr.Markdown("### Create a Personalized Routine")
gr.Markdown("Develop a daily or weekly plan to work towards your goals, tailored to how you feel.")
routine_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling about this goal?")
routine_goal_input = gr.Textbox(label="Specific Goal for this Routine", placeholder="e.g., Apply to 5 jobs, Learn basic Python")
routine_time_slider = gr.Slider(minimum=15, maximum=120, value=45, step=15, label="Minutes Available Per Day")
routine_days_slider = gr.Slider(minimum=3, maximum=21, value=7, step=1, label="Routine Length (Days)")
create_routine_button = gr.Button("Create My Routine")
routine_output_md = gr.Markdown()
# --- Progress Tab ---
with gr.TabItem("π Progress"):
gr.Markdown("## Track Your Journey")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Mark Task Complete")
task_input = gr.Textbox(label="Task Name", placeholder="e.g., Updated LinkedIn Profile")
complete_button = gr.Button("Complete Task")
task_output = gr.Markdown()
gr.Markdown("---")
gr.Markdown("### Update Emotion")
new_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling now?")
emotion_button = gr.Button("Update Feeling")
emotion_output = gr.Markdown()
with gr.Column(scale=2):
gr.Markdown("### Visualizations")
with gr.Row():
emotion_chart_output = gr.Plot(label="Emotional Journey")
progress_chart_output = gr.Plot(label="Progress Points")
with gr.Row():
routine_gauge_output = gr.Plot(label="Routine Completion")
# Maybe add skill chart here too? Or keep in Analysis.
gr.Markdown("") # Spacer
# --- Event Wiring ---
# Welcome screen action
welcome_button.click(
fn=welcome,
inputs=[name_input, location_input, emotion_dropdown, goal_dropdown],
outputs=[chatbot, welcome_group, main_interface, # Show/hide groups
emotion_chart_output, progress_chart_output, routine_gauge_output, skill_radar_chart_output] # Populate initial charts
)
# Chat submission
msg_textbox.submit(
fn=chat_submit,
inputs=[msg_textbox, chatbot],
outputs=[chatbot, msg_textbox, recommendation_output] # Update chatbot, clear input, refresh recs
)
# Recommendation refresh button
refresh_recs_button.click(
fn=lambda: display_recommendations(session_user_id), # Use lambda to pass user_id
inputs=[],
outputs=[recommendation_output]
)
# --- Simulated Emotion Message Wiring ---
# Simple simulation: Show/hide message on focus/blur (or change)
# msg_textbox.focus(fn=handle_chat_focus, outputs=[emotion_message_area])
# msg_textbox.blur(fn=hide_emotion_message, outputs=[emotion_message_area])
# Example: Show retype message briefly on change, then hide
# msg_textbox.change(fn=show_retype_message, outputs=emotion_message_area).then(
# fn=hide_emotion_message, outputs=emotion_message_area, js="() => { return new Promise(resolve => setTimeout(() => { resolve('') }, 2000)) }")
# Analysis Tab Wiring
analyze_resume_button.click(
fn=analyze_resume_interface_handler,
inputs=[resume_text_input],
outputs=[resume_analysis_output, skill_radar_chart_output] # Update analysis text and skill chart
)
analyze_portfolio_button.click(
fn=analyze_portfolio_interface_handler,
inputs=[portfolio_url_input, portfolio_desc_input],
outputs=[portfolio_analysis_output]
)
# Tools Tab Wiring
search_jobs_button.click(
fn=search_jobs_interface_handler,
inputs=[job_query_input, job_location_input, job_results_slider],
outputs=[job_search_output]
)
generate_template_button.click(
fn=generate_template_interface_handler,
inputs=[doc_type_dropdown, doc_field_input, doc_exp_dropdown],
outputs=[template_output_md]
)
create_routine_button.click(
fn=create_routine_interface_handler,
inputs=[routine_emotion_dropdown, routine_goal_input, routine_time_slider, routine_days_slider],
outputs=[routine_output_md, routine_gauge_output] # Update routine text and gauge chart
)
# Progress Tab Wiring
complete_button.click(
fn=complete_task_handler,
inputs=[task_input],
outputs=[task_output, task_input, # Update message, clear input
emotion_chart_output, progress_chart_output, routine_gauge_output] # Update all charts
)
emotion_button.click(
fn=update_emotion_handler,
inputs=[new_emotion_dropdown],
outputs=[emotion_output, emotion_chart_output] # Update message and emotion chart
)
# Load initial state for elements that need it (e.g., charts if resuming session)
# app.load(...) could be used here if state management was more robust.
return app
# --- Main Execution ---
if __name__ == "__main__":
if not OPENAI_API_KEY or not SERPER_API_KEY:
print("*****************************************************")
print("Warning: API keys for OpenAI or Serper not found.")
print("Please set OPENAI_API_KEY and SERPER_API_KEY environment variables.")
print("You can create a .env file in the same directory:")
print("OPENAI_API_KEY=your_openai_key")
print("SERPER_API_KEY=your_serper_key")
print("*****************************************************")
# Decide whether to exit or continue with limited functionality
# exit(1)
logger.info("Starting Aishura Gradio application...")
aishura_app = create_interface()
# Consider adding share=False for local testing, share=True for public link
aishura_app.launch(share=False)
logger.info("Aishura Gradio application stopped.") |