File size: 86,012 Bytes
cc80c5b
d61ddbe
 
 
 
 
 
 
 
 
 
5e3f2b8
d61ddbe
 
 
 
1eb3ba2
5e3f2b8
cc80c5b
 
d61ddbe
69418bc
d61ddbe
 
69418bc
 
d61ddbe
cc80c5b
d61ddbe
69418bc
cc80c5b
5e3f2b8
 
cc80c5b
 
 
 
5e3f2b8
 
cc80c5b
 
1eb3ba2
cc80c5b
 
69418bc
cc80c5b
 
 
 
 
 
 
69418bc
cc80c5b
 
d61ddbe
69418bc
cc80c5b
69418bc
 
cc80c5b
5e3f2b8
1949eee
5e3f2b8
 
1949eee
cc80c5b
 
 
1eb3ba2
 
d61ddbe
cc80c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69418bc
1eb3ba2
cc80c5b
d61ddbe
 
b0a1bba
cc80c5b
b0a1bba
 
cc80c5b
 
b0a1bba
cc80c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e3f2b8
 
 
 
 
 
 
cc80c5b
5e3f2b8
d61ddbe
b0a1bba
 
d61ddbe
 
cc80c5b
1949eee
b0a1bba
 
d61ddbe
 
cc80c5b
d61ddbe
1949eee
b0a1bba
5e3f2b8
 
cc80c5b
 
 
 
 
 
 
 
5e3f2b8
 
d61ddbe
5e3f2b8
1949eee
cc80c5b
5e3f2b8
 
 
 
 
1949eee
d61ddbe
cc80c5b
d61ddbe
cc80c5b
d61ddbe
1949eee
 
cc80c5b
 
 
d61ddbe
 
cc80c5b
b0a1bba
1949eee
b0a1bba
cc80c5b
1949eee
cc80c5b
b0a1bba
1949eee
d61ddbe
 
cc80c5b
1949eee
b0a1bba
1949eee
b0a1bba
 
1949eee
cc80c5b
b0a1bba
1949eee
d61ddbe
 
cc80c5b
b0a1bba
1949eee
b0a1bba
 
 
1949eee
b0a1bba
cc80c5b
b0a1bba
1949eee
69418bc
1eb3ba2
cc80c5b
69418bc
b0a1bba
69418bc
1949eee
69418bc
b0a1bba
 
69418bc
 
cc80c5b
69418bc
b0a1bba
1949eee
69418bc
1949eee
69418bc
b0a1bba
 
69418bc
1eb3ba2
cc80c5b
b0a1bba
1949eee
 
 
cc80c5b
b0a1bba
1949eee
1eb3ba2
cc80c5b
 
5e3f2b8
 
 
 
 
 
 
 
 
cc80c5b
 
5e3f2b8
 
 
cc80c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e3f2b8
cc80c5b
 
 
 
 
5e3f2b8
cc80c5b
 
5e3f2b8
cc80c5b
 
5e3f2b8
 
 
cc80c5b
 
5e3f2b8
cc80c5b
 
 
 
 
 
 
5e3f2b8
 
 
 
1949eee
cc80c5b
1949eee
cc80c5b
1949eee
cc80c5b
1949eee
cc80c5b
5e3f2b8
 
cc80c5b
 
5e3f2b8
1949eee
 
 
 
 
 
 
cc80c5b
1949eee
cc80c5b
1949eee
cc80c5b
5e3f2b8
1eb3ba2
cc80c5b
 
5e3f2b8
cc80c5b
 
b0a1bba
69418bc
 
1949eee
cc80c5b
 
 
 
 
 
 
 
 
5e3f2b8
 
1949eee
cc80c5b
 
5e3f2b8
cc80c5b
1949eee
5e3f2b8
cc80c5b
5e3f2b8
cc80c5b
 
5e3f2b8
 
cc80c5b
 
5e3f2b8
cc80c5b
 
5e3f2b8
 
cc80c5b
 
5e3f2b8
cc80c5b
 
5e3f2b8
 
 
b0a1bba
69418bc
b0a1bba
5e3f2b8
 
cc80c5b
5e3f2b8
b0a1bba
cc80c5b
b0a1bba
cc80c5b
5e3f2b8
 
cc80c5b
 
 
5e3f2b8
 
 
cc80c5b
5e3f2b8
 
cc80c5b
 
5e3f2b8
 
cc80c5b
 
5e3f2b8
 
cc80c5b
5e3f2b8
cc80c5b
 
 
5e3f2b8
cc80c5b
5e3f2b8
 
cc80c5b
5e3f2b8
 
cc80c5b
 
5e3f2b8
 
cc80c5b
5e3f2b8
 
 
cc80c5b
5e3f2b8
 
cc80c5b
69418bc
5e3f2b8
cc80c5b
5e3f2b8
cc80c5b
 
5e3f2b8
cc80c5b
 
5e3f2b8
69418bc
d61ddbe
 
5e3f2b8
 
 
 
cc80c5b
5e3f2b8
 
 
 
 
 
69418bc
 
cc80c5b
5e3f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc80c5b
5e3f2b8
cc80c5b
 
 
 
 
 
d61ddbe
5e3f2b8
cc80c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e3f2b8
 
cc80c5b
 
5e3f2b8
cc80c5b
 
5e3f2b8
cc80c5b
 
 
 
 
 
 
5e3f2b8
cc80c5b
 
5e3f2b8
cc80c5b
 
 
 
 
 
5e3f2b8
cc80c5b
 
5e3f2b8
cc80c5b
 
5e3f2b8
cc80c5b
 
 
 
 
 
5e3f2b8
 
cc80c5b
 
 
 
5e3f2b8
 
 
 
 
 
 
cc80c5b
5e3f2b8
 
cc80c5b
 
 
 
 
 
5e3f2b8
 
cc80c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e3f2b8
cc80c5b
 
5e3f2b8
cc80c5b
 
b0a1bba
cc80c5b
 
 
 
 
 
 
 
5e3f2b8
 
cc80c5b
 
5e3f2b8
cc80c5b
 
 
 
 
5e3f2b8
cc80c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e3f2b8
 
 
cc80c5b
 
5e3f2b8
 
cc80c5b
5e3f2b8
cc80c5b
5e3f2b8
cc80c5b
 
 
 
 
5e3f2b8
cc80c5b
 
 
5e3f2b8
cc80c5b
 
d61ddbe
b0a1bba
5e3f2b8
 
b0a1bba
 
5e3f2b8
cc80c5b
d61ddbe
 
b0a1bba
5e3f2b8
1949eee
cc80c5b
5e3f2b8
 
cc80c5b
5e3f2b8
 
 
cc80c5b
5e3f2b8
cc80c5b
 
5e3f2b8
cc80c5b
d61ddbe
 
b0a1bba
5e3f2b8
b0a1bba
cc80c5b
d61ddbe
1eb3ba2
b0a1bba
5e3f2b8
1eb3ba2
b0a1bba
cc80c5b
 
5e3f2b8
cc80c5b
 
 
 
 
b0a1bba
5e3f2b8
 
b0a1bba
1eb3ba2
cc80c5b
d61ddbe
cc80c5b
 
 
 
69418bc
cc80c5b
5e3f2b8
cc80c5b
 
 
b0a1bba
cc80c5b
5e3f2b8
cc80c5b
5e3f2b8
cc80c5b
 
 
5e3f2b8
b0a1bba
cc80c5b
 
 
5e3f2b8
 
cc80c5b
 
 
 
 
 
5e3f2b8
cc80c5b
 
5e3f2b8
cc80c5b
 
5e3f2b8
cc80c5b
69418bc
5e3f2b8
cc80c5b
69418bc
cc80c5b
 
 
 
69418bc
 
cc80c5b
5e3f2b8
cc80c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e3f2b8
 
cc80c5b
 
 
69418bc
cc80c5b
5e3f2b8
cc80c5b
 
 
5e3f2b8
cc80c5b
 
69418bc
cc80c5b
 
b0a1bba
cc80c5b
 
5e3f2b8
69418bc
 
cc80c5b
 
 
 
5e3f2b8
cc80c5b
 
69418bc
cc80c5b
 
b0a1bba
cc80c5b
5e3f2b8
cc80c5b
69418bc
cc80c5b
 
5e3f2b8
 
cc80c5b
 
 
 
b0a1bba
5e3f2b8
69418bc
 
cc80c5b
 
d61ddbe
b0a1bba
 
5e3f2b8
69418bc
 
cc80c5b
 
 
 
 
 
5e3f2b8
 
b0a1bba
cc80c5b
b0a1bba
69418bc
cc80c5b
 
5e3f2b8
cc80c5b
5e3f2b8
cc80c5b
d61ddbe
5e3f2b8
 
69418bc
cc80c5b
 
 
 
 
d61ddbe
b0a1bba
cc80c5b
5e3f2b8
1eb3ba2
69418bc
cc80c5b
 
5e3f2b8
cc80c5b
 
 
 
5e3f2b8
b0a1bba
5e3f2b8
cc80c5b
5e3f2b8
 
 
 
cc80c5b
 
 
5e3f2b8
 
cc80c5b
 
5e3f2b8
cc80c5b
 
 
 
 
 
5e3f2b8
 
d61ddbe
5e3f2b8
cc80c5b
 
 
 
5e3f2b8
cc80c5b
 
5e3f2b8
cc80c5b
 
 
 
 
 
 
 
 
 
 
 
 
69418bc
 
 
 
d61ddbe
cc80c5b
 
 
 
 
 
 
 
 
 
69418bc
5e3f2b8
cc80c5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
# filename: app_openai_serper_v4.py
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import random
import json
import os
import time
import requests # For Serper API
from typing import List, Dict, Any, Optional
import logging
from dotenv import load_dotenv
import uuid
import re

# --- OpenAI Integration ---
import openai

# --- Load environment variables ---
load_dotenv()

# --- Set up logging ---
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# --- Configure API keys ---
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")

if not OPENAI_API_KEY:
    logger.warning("OPENAI_API_KEY not found. AI features will not work.")
else:
    logger.info("OpenAI API Key found.")
if not SERPER_API_KEY:
    logger.warning("SERPER_API_KEY not found. Live web search features will not work.")
else:
    logger.info("Serper API Key found.")


# --- Initialize the OpenAI client ---
try:
    # Ensure the API key is not None before initializing
    if OPENAI_API_KEY:
        client = openai.OpenAI(api_key=OPENAI_API_KEY)
        logger.info("OpenAI client initialized successfully.")
    else:
        client = None
        logger.error("Failed to initialize OpenAI client: API key is missing.")
except Exception as e:
    logger.error(f"Failed to initialize OpenAI client: {e}")
    client = None

# --- Model configuration ---
MODEL_ID = "gpt-4o" # Using OpenAI's GPT-4o model

# --- Constants ---
# Using the same enhanced constants from v3
EMOTIONS = ["Unmotivated 😩", "Anxious πŸ˜₯", "Confused πŸ€”", "Excited πŸŽ‰", "Overwhelmed 🀯", "Discouraged πŸ˜”", "Hopeful ✨", "Focused 😎", "Stuck 🧱"]
GOAL_TYPES = [
    "Get a job (Big Company) 🏒", "Get a job (Startup) 🌱", "Find an Internship πŸŽ“", "Freelance/Contract Work πŸ’Ό",
    "Change Careers πŸš€", "Improve Specific Skills πŸ’‘", "Build Professional Network 🀝", "Leadership Development πŸ“ˆ", "Explore Options πŸ€”"
]
USER_DB_PATH = "user_database_v4.json" # New DB file for this version
RESUME_FOLDER = "user_resumes_v4"
PORTFOLIO_FOLDER = "user_portfolios_v4"
os.makedirs(RESUME_FOLDER, exist_ok=True)
os.makedirs(PORTFOLIO_FOLDER, exist_ok=True)

# --- Tool Definitions for OpenAI ---
# Format matches the structure expected by the OpenAI API
tools_list_openai = [
    {
        "type": "function",
        "function": {
            "name": "generate_document_template",
            "description": "Generate a document template (like a resume or cover letter) based on type, career field, and experience level.",
            "parameters": {
                "type": "object",
                "properties": {
                    "document_type": {"type": "string", "description": "e.g., Resume, Cover Letter, LinkedIn Summary"},
                    "career_field": {"type": "string", "description": "Target industry or field"},
                    "experience_level": {"type": "string", "description": "e.g., Entry, Mid, Senior, Student"}
                },
                "required": ["document_type"]
            },
        }
    },
    {
        "type": "function",
        "function": {
            "name": "create_personalized_routine",
            "description": "Create a personalized daily or weekly career development routine based on the user's current emotion, goals, and available time.",
            "parameters": {
                "type": "object",
                "properties": {
                    "emotion": {"type": "string", "description": "User's current primary emotion"},
                    "goal": {"type": "string", "description": "User's primary career goal"},
                    "available_time_minutes": {"type": "integer", "description": "Average minutes per day user can dedicate"},
                    "routine_length_days": {"type": "integer", "description": "Desired length of the routine in days (e.g., 7 for weekly)"}
                },
                "required": ["emotion", "goal"]
            },
        }
    },
    {
        "type": "function",
        "function": {
            "name": "analyze_resume",
            "description": "Analyze the provided resume text and provide feedback, comparing it against the user's stated career goal. Provides strengths, weaknesses, and suggestions.",
            "parameters": {
                "type": "object",
                "properties": {
                    "resume_text": {"type": "string", "description": "The full text content of the user's resume"},
                    "career_goal": {"type": "string", "description": "The specific career goal to analyze against"}
                },
                "required": ["resume_text", "career_goal"]
            },
        }
    },
    {
        "type": "function",
        "function": {
            "name": "analyze_portfolio",
            "description": "Analyze a user's portfolio based on a URL (if provided) and a description, offering feedback relative to their career goal.",
            "parameters": {
                "type": "object",
                "properties": {
                    "portfolio_url": {"type": "string", "description": "URL link to the online portfolio (optional)"},
                    "portfolio_description": {"type": "string", "description": "User's description of the portfolio content and purpose"},
                    "career_goal": {"type": "string", "description": "The specific career goal to analyze against"}
                },
                "required": ["portfolio_description", "career_goal"]
            },
        }
    },
    {
        "type": "function",
        "function": {
            "name": "extract_and_rate_skills_from_resume",
            "description": "Extracts key skills from resume text and rates them on a scale of 1-10 based on apparent proficiency shown in the resume. Useful for identifying strengths and gaps.",
            "parameters": {
                "type": "object",
                "properties": {
                    "resume_text": {"type": "string", "description": "The full text content of the user's resume"},
                    "max_skills": {"type": "integer", "description": "Maximum number of skills to extract (default 8)"}
                },
                "required": ["resume_text"]
            },
        }
    },
    {
        "type": "function",
        "function": {
            "name": "search_jobs_courses_skills",
            "description": "Search the web using Serper API for relevant job openings, online courses, or skills development resources based on the user's goals, location, and potentially identified skill gaps.",
            "parameters": {
                "type": "object",
                "properties": {
                    "search_query": {"type": "string", "description": "The specific search query (e.g., 'remote data analyst jobs in California', 'online Python courses for beginners', 'project management certifications')"},
                    "search_type": {"type": "string", "description": "Type of search: 'jobs', 'courses', 'skills', or 'general'"},
                    "location": {"type": "string", "description": "Geographical location for the search (if applicable, e.g., 'London, UK')"}
                },
                "required": ["search_query", "search_type"]
            },
        }
    }
]

# --- User Database Functions (Enhanced Profile - Adapted for OpenAI History) ---
def load_user_database():
    try:
        with open(USER_DB_PATH, 'r', encoding='utf-8') as file: db = json.load(file)
        # Validation for chat history (OpenAI format: role='user'/'assistant'/'system'/'tool', content=str, tool_calls=list[dict])
        for user_id in db.get('users', {}):
            profile = db['users'][user_id]
            if 'chat_history' not in profile or not isinstance(profile['chat_history'], list):
                profile['chat_history'] = []
            else:
                fixed_history = []
                for msg in profile['chat_history']:
                    if isinstance(msg, dict) and 'role' in msg and 'content' in msg:
                        # Basic check for standard messages
                        if msg['role'] in ['user', 'assistant', 'system'] and isinstance(msg.get('content'), (str, type(None))):
                             # Allow None content for assistant messages that only have tool calls
                            if msg['role'] == 'assistant' or msg.get('content') is not None:
                                # Check for tool_calls structure if present
                                if 'tool_calls' in msg:
                                    if isinstance(msg['tool_calls'], list) and all(isinstance(tc, dict) and 'id' in tc and 'type' in tc and 'function' in tc for tc in msg['tool_calls']):
                                         fixed_history.append(msg)
                                    else:
                                         logger.warning(f"Skipping message with invalid tool_calls for user {user_id}: {msg}")
                                else:
                                    fixed_history.append(msg) # Valid user/system/assistant message without tool calls
                        else:
                             logger.warning(f"Skipping message with invalid role/content type for user {user_id}: {msg}")
                    elif isinstance(msg, dict) and msg.get('role') == 'tool':
                        # Check for tool response structure
                        if 'tool_call_id' in msg and 'content' in msg and isinstance(msg.get('content'), str):
                             # Note: OpenAI API expects 'name' in the tool call, but the response message uses 'tool_call_id'. Content should be stringified JSON result.
                            fixed_history.append(msg)
                        else:
                             logger.warning(f"Skipping invalid tool message structure for user {user_id}: {msg}")
                    else:
                        logger.warning(f"Skipping unrecognized message structure for user {user_id}: {msg}")
                profile['chat_history'] = fixed_history

            # Ensure other lists/fields exist (same as v3)
            for key in ['recommendations', 'daily_emotions', 'completed_tasks', 'routine_history', 'strengths', 'areas_for_development', 'values']:
                 if key not in profile or not isinstance(profile.get(key), list):
                     profile[key] = []
            for key in ['name', 'location', 'current_emotion', 'career_goal', 'industry', 'preferred_work_style', 'long_term_aspirations', 'resume_path', 'portfolio_path']:
                 if key not in profile:
                     profile[key] = ""
            if 'progress_points' not in profile: profile['progress_points'] = 0
            if 'experience_level' not in profile: profile['experience_level'] = "Not specified"

        return db
    except (FileNotFoundError, json.JSONDecodeError): logger.info(f"DB file '{USER_DB_PATH}' not found/invalid. Creating new."); db = {'users': {}}; save_user_database(db); return db
    except Exception as e: logger.error(f"Error loading DB from {USER_DB_PATH}: {e}"); return {'users': {}}

def save_user_database(db):
    # (Identical to v3)
    try:
        with open(USER_DB_PATH, 'w', encoding='utf-8') as file: json.dump(db, file, indent=4, ensure_ascii=False)
    except Exception as e: logger.error(f"Error saving DB to {USER_DB_PATH}: {e}")

def get_user_profile(user_id):
    # (Mostly identical to v3, ensures profile exists)
    db = load_user_database()
    if user_id not in db.get('users', {}):
        db['users'] = db.get('users', {})
        # Initialize enhanced profile structure
        db['users'][user_id] = {
            "user_id": user_id, "name": "", "location": "", "industry": "",
            "experience_level": "Not specified", "preferred_work_style": "Any",
            "values": [], "strengths": [], "areas_for_development": [],
            "long_term_aspirations": "", "current_emotion": "", "career_goal": "",
            "progress_points": 0, "completed_tasks": [], "upcoming_events": [],
            "routine_history": [], "daily_emotions": [], "resume_path": "",
            "portfolio_path": "", "recommendations": [],
            "chat_history": [], # Stores history in OpenAI format {role: 'user'/'assistant'/'system'/'tool', content: str, tool_calls?: list, tool_call_id?: str}
            "joined_date": datetime.now().isoformat()
        }
        save_user_database(db)

    profile = db.get('users', {}).get(user_id, {})
    # Ensure critical lists exist after loading (handled mostly in load_user_database)
    if 'chat_history' not in profile or not isinstance(profile.get('chat_history'), list):
        profile['chat_history'] = []
    for key in ['recommendations', 'daily_emotions', 'completed_tasks', 'routine_history', 'strengths', 'areas_for_development', 'values']:
         if key not in profile: profile[key] = []

    return profile

# --- Database Update Functions (Adjust chat message structure for OpenAI) ---
def update_user_profile(user_id, updates):
    # (Identical to v3)
    db = load_user_database()
    if user_id in db.get('users', {}):
        profile = db['users'][user_id]
        for key, value in updates.items(): profile[key] = value
        save_user_database(db); return profile
    else: logger.warning(f"Attempted update non-existent profile: {user_id}"); return None

def add_task_to_user(user_id, task):
    # (Identical to v3)
    db = load_user_database(); profile = db.get('users', {}).get(user_id)
    if profile:
        if 'completed_tasks' not in profile or not isinstance(profile['completed_tasks'], list): profile['completed_tasks'] = []
        task_with_date = { "task": task, "date": datetime.now().isoformat(), "points": random.randint(10, 25) } # Add points here
        profile['completed_tasks'].append(task_with_date)
        profile['progress_points'] = profile.get('progress_points', 0) + task_with_date["points"] # Update total points
        save_user_database(db); return profile
    return None

def add_emotion_record(user_id, emotion):
    # (Identical to v3)
    cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion
    db = load_user_database(); profile = db.get('users', {}).get(user_id)
    if profile:
        if 'daily_emotions' not in profile or not isinstance(profile['daily_emotions'], list): profile['daily_emotions'] = []
        emotion_record = { "emotion": cleaned_emotion, "date": datetime.now().isoformat() }
        profile['daily_emotions'].append(emotion_record)
        profile['current_emotion'] = cleaned_emotion
        save_user_database(db); return profile
    return None

def add_routine_to_user(user_id, routine):
    # (Identical to v3)
    db = load_user_database(); profile = db.get('users', {}).get(user_id)
    if profile:
        if 'routine_history' not in profile or not isinstance(profile['routine_history'], list): profile['routine_history'] = []
        try: days_delta = int(routine.get('days', 7))
        except: days_delta = 7
        end_date = (datetime.now() + timedelta(days=days_delta)).isoformat()
        routine_with_date = { "routine": routine, "start_date": datetime.now().isoformat(), "end_date": end_date, "completion": 0 }
        profile['routine_history'].insert(0, routine_with_date); profile['routine_history'] = profile['routine_history'][:10]
        save_user_database(db); return profile
    return None

def save_user_resume(user_id, resume_text):
    # (Identical to v3)
    if not resume_text: return None
    filename, filepath = f"{user_id}_resume.txt", os.path.join(RESUME_FOLDER, f"{user_id}_resume.txt")
    try:
        with open(filepath, 'w', encoding='utf-8') as file: file.write(resume_text)
        update_user_profile(user_id, {"resume_path": filepath})
        logger.info(f"Resume saved: {filepath}"); return filepath
    except Exception as e: logger.error(f"Error saving resume {filepath}: {e}"); return None

def save_user_portfolio(user_id, portfolio_url, portfolio_description):
    # (Identical to v3)
    if not portfolio_description: return None
    filename, filepath = f"{user_id}_portfolio.json", os.path.join(PORTFOLIO_FOLDER, f"{user_id}_portfolio.json")
    portfolio_content = {"url": portfolio_url, "description": portfolio_description, "saved_date": datetime.now().isoformat()}
    try:
        with open(filepath, 'w', encoding='utf-8') as file: json.dump(portfolio_content, file, indent=4, ensure_ascii=False)
        update_user_profile(user_id, {"portfolio_path": filepath})
        logger.info(f"Portfolio saved: {filepath}"); return filepath
    except Exception as e: logger.error(f"Error saving portfolio {filepath}: {e}"); return None

def add_recommendation_to_user(user_id, recommendation):
    # (Identical to v3)
    db = load_user_database(); profile = db.get('users', {}).get(user_id)
    if profile:
        if 'recommendations' not in profile or not isinstance(profile['recommendations'], list): profile['recommendations'] = []
        recommendation_with_date = {"recommendation": recommendation, "date": datetime.now().isoformat(), "status": "pending"}
        profile['recommendations'].insert(0, recommendation_with_date); profile['recommendations'] = profile['recommendations'][:20]
        save_user_database(db); return profile
    return None

def add_chat_message(user_id, role, message_content):
    """Adds a message to the user's chat history using OpenAI format."""
    db = load_user_database()
    profile = db.get('users', {}).get(user_id)
    if not profile:
        logger.warning(f"Profile not found for {user_id} when adding chat message.")
        return None

    if 'chat_history' not in profile or not isinstance(profile['chat_history'], list):
        profile['chat_history'] = []

    if role not in ['user', 'assistant', 'system', 'tool']:
        logger.warning(f"Invalid role '{role}' for OpenAI chat history.")
        return profile

    message = {"role": role}

    if role == 'user' or role == 'system':
        if isinstance(message_content, str):
            message['content'] = message_content
        else:
            logger.warning(f"Invalid content type for role {role}: {type(message_content)}. Expected string.")
            return profile
    elif role == 'assistant':
        # Assistant message can have content (string/None) and/or tool_calls (list)
        if isinstance(message_content, dict):
            message['content'] = message_content.get('content') # Can be None if only tool calls
            if 'tool_calls' in message_content:
                # Basic validation of tool_calls structure
                if isinstance(message_content['tool_calls'], list) and all(isinstance(tc, dict) and 'id' in tc and 'type' in tc and 'function' in tc for tc in message_content['tool_calls']):
                    message['tool_calls'] = message_content['tool_calls']
                else:
                    logger.warning(f"Invalid tool_calls structure in assistant message: {message_content.get('tool_calls')}")
                    # Decide whether to store without tool_calls or skip
                    if message['content'] is None: return profile # Skip if no content and invalid tool_calls
                    # else store with content only
            # Ensure content is string or None
            if not isinstance(message['content'], (str, type(None))):
                 logger.warning(f"Invalid content type in assistant message dict: {type(message['content'])}")
                 message['content'] = str(message['content']) # Attempt conversion or handle error
        elif isinstance(message_content, str):
            message['content'] = message_content # Simple text response
        else:
             logger.warning(f"Invalid content type for role {role}: {type(message_content)}. Expected dict or string.")
             return profile
    elif role == 'tool':
        # Tool message needs tool_call_id and content (stringified result)
        if isinstance(message_content, dict) and 'tool_call_id' in message_content and 'content' in message_content:
            message['tool_call_id'] = message_content['tool_call_id']
            # Ensure content is stringified JSON or simple string
            if isinstance(message_content['content'], str):
                 message['content'] = message_content['content']
            else:
                 try:
                     message['content'] = json.dumps(message_content['content'])
                 except Exception as e:
                     logger.error(f"Could not stringify tool content: {e}")
                     message['content'] = json.dumps({"error": "Failed to serialize tool result."})
        else:
            logger.warning(f"Invalid content format for role {role}: {message_content}. Expected dict with 'tool_call_id' and 'content'.")
            return profile

    # Add timestamp for potential future use (optional)
    # message['timestamp'] = datetime.now().isoformat()

    profile['chat_history'].append(message)

    # Limit history size (keep system prompt implicit for now)
    max_history_turns = 25 # Keep last 25 pairs (user + assistant/tool)
    if len(profile['chat_history']) > max_history_turns * 2:
        # Find first non-system message index if system message exists
        first_non_system = 0
        if profile['chat_history'] and profile['chat_history'][0]['role'] == 'system':
            first_non_system = 1
        # Keep system message + last N turns
        profile['chat_history'] = profile['chat_history'][:first_non_system] + profile['chat_history'][-(max_history_turns * 2):]


    save_user_database(db)
    return profile


# --- Basic Routine Fallback Function (keep as is) ---
def generate_basic_routine(emotion, goal, available_time=60, days=7):
    # (Code identical to the provided v3 version - a good fallback)
    logger.info(f"Generating basic fallback routine for emotion={emotion}, goal={goal}")
    routine_types = { "job_search": [ {"name": "Research Target Companies", "points": 15, "duration": 20, "description": "Identify 3 potential employers aligned with your goal."}, {"name": "Update LinkedIn Section", "points": 15, "duration": 25, "description": "Refine one section of your LinkedIn profile (e.g., summary, experience)."}, {"name": "Practice STAR Method", "points": 20, "duration": 15, "description": "Outline one experience using the STAR method for interviews."}, {"name": "Find Networking Event", "points": 10, "duration": 10, "description": "Look for one relevant online or local networking event."} ], "skill_building": [ {"name": "Online Tutorial (1 Module)", "points": 25, "duration": 45, "description": "Complete one module of a relevant online course/tutorial."}, {"name": "Read Industry Blog/Article", "points": 10, "duration": 15, "description": "Read and summarize one article about trends in your field."}, {"name": "Small Project Task", "points": 30, "duration": 60, "description": "Dedicate time to a specific task within a personal project."}, {"name": "Review Skill Documentation", "points": 15, "duration": 30, "description": "Read documentation or examples for a skill you're learning."} ], "motivation_wellbeing": [ {"name": "Mindful Reflection", "points": 10, "duration": 10, "description": "Spend 10 minutes reflecting on progress and challenges without judgment."}, {"name": "Set 1-3 Daily Intentions", "points": 10, "duration": 5, "description": "Define small, achievable goals for the day."}, {"name": "Short Break/Walk", "points": 15, "duration": 15, "description": "Take a brief break away from screens, preferably with light movement."}, {"name": "Connect with Support", "points": 20, "duration": 20, "description": "Briefly chat with a friend, mentor, or peer about your journey."} ] }
    cleaned_emotion = emotion.split(" ")[0].lower() if " " in emotion else emotion.lower()
    negative_emotions = ["unmotivated", "anxious", "confused", "overwhelmed", "discouraged", "stuck"]
    if any(term in goal.lower() for term in ["job", "internship", "company", "freelance", "contract"]): base_type = "job_search"
    elif any(term in goal.lower() for term in ["skill", "learn", "development"]): base_type = "skill_building"
    elif "network" in goal.lower(): base_type = "job_search"
    else: base_type = "skill_building"
    include_wellbeing = cleaned_emotion in negative_emotions or "overwhelmed" in cleaned_emotion
    daily_tasks_list = []
    for day in range(1, days + 1):
        day_tasks, remaining_time, tasks_added_count = [], available_time, 0
        possible_tasks = routine_types[base_type].copy()
        if include_wellbeing: possible_tasks.extend(routine_types["motivation_wellbeing"])
        random.shuffle(possible_tasks)
        for task in possible_tasks:
            if task.get("duration", 0) > 0 and task["duration"] <= remaining_time and tasks_added_count < 3:
                day_tasks.append(task); remaining_time -= task["duration"]; tasks_added_count += 1
            if remaining_time < 10 or tasks_added_count >= 3: break
        daily_tasks_list.append({"day": day, "tasks": day_tasks})
    routine = {"name": f"{days}-Day Focus Plan", "description": f"A focused {days}-day plan to help you with '{goal}', especially while feeling {cleaned_emotion}. We'll do this step-by-step!", "days": days, "daily_tasks": daily_tasks_list, "support_message": f"Hey, I know feeling {cleaned_emotion} while aiming for '{goal}' can be tough. We've got this routine to help break it down. One step at a time, okay? You're doing great just by planning!"}
    return routine # Return dict directly

# --- Tool Implementation Functions (Return JSON strings or dicts for OpenAI) ---
# These functions remain largely the same internally but ensure output is serializable.

def generate_document_template(document_type: str, career_field: str = "", experience_level: str = "") -> str:
    """Generates a basic markdown template. Returns JSON string."""
    logger.info(f"Executing tool: generate_document_template(type='{document_type}', field='{career_field}', exp='{experience_level}')")
    template = f"## Basic Template: {document_type}\n\n"
    template += f"**Target Field:** {career_field or 'Not specified'}\n"
    template += f"**Experience Level:** {experience_level or 'Not specified'}\n\n---\n\n"
    # (Keep the template content from v3/previous version)
    if "resume" in document_type.lower(): template += """### Contact Information\n* Name:\n* Phone:\n* Email:\n* LinkedIn URL:\n* Portfolio URL (Optional):\n\n### Summary/Objective\n* _[ 2-3 sentences summarizing your key skills, experience, and career goals, tailored to the job/field. Make it impactful! ]_\n\n### Experience\n**Company Name | Location | Job Title | Start Date – End Date**\n* Accomplishment 1 (Use action verbs: Led, Managed, Developed, Increased X by Y%. Quantify results!)\n* Accomplishment 2\n* _[ Repeat for other relevant positions ]_\n\n### Education\n**University/Institution Name | Degree | Graduation Date (or Expected)**\n* Relevant coursework, honors, activities (Optional)\n\n### Skills\n* **Technical Skills:** [ e.g., Python, Java, SQL, MS Excel, Google Analytics, Figma, AWS ]\n* **Languages:** [ e.g., English (Native), Spanish (Fluent) ]\n* **Other:** [ Certifications, relevant tools, methodologies like Agile/Scrum ]\n"""
    elif "cover letter" in document_type.lower(): template += """[Your Name]\n[Your Address]\n[Your Phone]\n[Your Email]\n\n[Date]\n\n[Hiring Manager Name (if known), or 'Hiring Team']\n[Hiring Manager Title (if known)]\n[Company Name]\n[Company Address]\n\n**Subject: Application for [Job Title] Position - [Your Name]**\n\nDear [Mr./Ms./Mx. Last Name or Hiring Team],\n\n**Introduction:** State the position you're applying for and where you saw it. Express genuine enthusiasm for the role *and* the company. Briefly highlight 1-2 key qualifications that make you a perfect fit right from the start.\n* _[ Example: I am writing to express my strong interest in the [Job Title] position advertised on [Platform]. With my background in [Relevant Field] and proven ability to [Key Skill Relevant to Job], I am confident I can bring significant value to [Company Name]'s mission in [Specific Area Company Works In]. ]_\n\n**Body Paragraph(s):** This is where you connect your experience to the job description. Don't just list duties; show *impact*. Use examples (think STAR method: Situation, Task, Action, Result). Explain *why* you're drawn to *this specific company* – mention their values, projects, or recent news. Show you've done your homework!\n* _[ Example: In my previous role at [Previous Company], I spearheaded a project that [Quantifiable achievement relevant to new job], demonstrating my expertise in [Skill required by new job]. I admire [Company Name]'s innovative approach to [Specific Company Initiative], and I believe my skills in [Another Relevant Skill] align perfectly with the requirements of this role and your company culture. ]_\n\n**Conclusion:** Reiterate your strong interest and suitability. Briefly summarize your key selling points. State your call to action confidently (e.g., "I am eager to discuss how my skills can benefit [Company Name]..."). Thank the reader for their time and consideration.\n* _[ Example: Thank you for considering my application. My attached resume provides further detail on my qualifications. I am excited about the potential to contribute to your team and look forward to hearing from you soon regarding an interview. ]_\n\nSincerely,\n\n[Your Typed Name]\n"""
    elif "linkedin summary" in document_type.lower(): template += """### LinkedIn Summary / About Section Template\n\n**Headline:** [ Make this keyword-rich and concise! Who are you professionally? What's your focus? e.g., 'Software Engineer specializing in AI & Cloud | Python | Ex-Google | Building Innovative Solutions' OR 'Marketing Manager | Driving Growth for SaaS Startups | Content Strategy & Demand Generation' ]\n\n**About Section:**\n\n* **[ Paragraph 1: Hook & Overview ]** Start with a compelling statement about your passion, mission, or core expertise. Who are you, what do you do, and what drives you? Use keywords relevant to your target roles/industry. Think of this as your elevator pitch.\n* **[ Paragraph 2: Key Skills & Experience Highlights ]** Detail your core competencies, both technical and soft skills. Mention significant experiences, types of projects, or industries you've worked in. Quantify achievements whenever possible (e.g., 'Managed budgets up to $X', 'Increased user engagement by Y%'). Tailor this to attract your desired audience (recruiters, clients, collaborators).\n* **[ Paragraph 3: Career Goals & What You're Seeking (Optional but Recommended) ]** Briefly state your current career aspirations. What kind of opportunities, connections, or challenges are you looking for? Be specific if possible (e.g., 'Seeking opportunities in AI ethics', 'Open to collaborating on open-source projects').\n* **[ Paragraph 4: Call to Action / Personality (Optional) ]** You might invite relevant connections, mention personal interests related to your field, or add a touch of personality to make you more memorable. What makes you, you?\n* **[ Specialties/Keywords: ]** _[ List 5-15 key terms separated by commas or bullet points that recruiters might search for. e.g., Project Management, Data Analysis, Agile Methodologies, Content Strategy, Python, Java, Cloud Security, UX/UI Design, B2B Marketing ]_\n"""
    else: template += "[ Template structure for this document type will be provided here. Let me know what you need! ]"
    return json.dumps({"template_markdown": template}) # Return JSON string

def create_personalized_routine(emotion: str, goal: str, available_time_minutes: int = 60, routine_length_days: int = 7) -> str:
    """Creates a personalized routine using fallback. Returns JSON string."""
    logger.info(f"Executing tool: create_personalized_routine(emo='{emotion}', goal='{goal}', time={available_time_minutes}, days={routine_length_days})")
    logger.warning("Using basic fallback for create_personalized_routine for robustness.")
    try:
        routine_dict = generate_basic_routine(emotion, goal, available_time_minutes, routine_length_days)
        if not routine_dict or not isinstance(routine_dict, dict):
             raise ValueError("Basic routine generation failed to return a valid dictionary.")
        return json.dumps(routine_dict) # Return JSON string
    except Exception as e:
        logger.error(f"Error in create_personalized_routine fallback: {e}")
        return json.dumps({"error": f"Couldn't create a routine right now due to an error: {e}. Maybe try simplifying the goal or adjusting the time?"})

def analyze_resume(resume_text: str, career_goal: str) -> str:
    """Provides analysis of the resume (Simulated). Returns JSON string."""
    logger.info(f"Executing tool: analyze_resume(goal='{career_goal}', len={len(resume_text)})")
    logger.warning("Using placeholder analysis for analyze_resume tool.")
    analysis = { "strengths": ["Clear contact information.", "Uses some action verbs.", f"Mentions skills potentially relevant to '{career_goal}'."], "areas_for_improvement": ["Quantify achievements more (e.g., 'Increased X by Y%').", f"Tailor skills section specifically for '{career_goal}' roles.", "Check for consistent formatting and tense.", "Add a compelling summary/objective statement."], "format_feedback": "Overall format seems clean, check consistency.", "content_feedback": f"Content shows potential relevance to '{career_goal}', but needs more specific examples and quantified results.", "keyword_suggestions": ["Review job descriptions for "+ career_goal +" and incorporate relevant keywords like 'Keyword1', 'Keyword2', 'Keyword3'."], "next_steps": ["Revise 'Experience' bullet points with measurable results.", "Tailor Summary/Objective and Skills sections per application.", "Proofread carefully."] }
    return json.dumps({"analysis": analysis}) # Return JSON string

def analyze_portfolio(portfolio_description: str, career_goal: str, portfolio_url: str = "") -> str:
    """Provides analysis of the portfolio (Simulated). Returns JSON string."""
    logger.info(f"Executing tool: analyze_portfolio(goal='{career_goal}', url='{portfolio_url}', desc_len={len(portfolio_description)})")
    logger.warning("Using placeholder analysis for analyze_portfolio tool.")
    analysis = { "alignment_with_goal": f"Based on description, seems moderately aligned with '{career_goal}'. Review specific projects.", "strengths": ["Includes a variety of projects (based on description).", "Clear description provided helps context."] + (["URL provided."] if portfolio_url else []), "areas_for_improvement": [f"Ensure project descriptions clearly link skills used to '{career_goal}' requirements.", "Consider adding 1-2 detailed case studies.", "Check navigation is intuitive (if URL provided)."], "presentation_feedback": "Description helpful. " + (f"Review URL ({portfolio_url}) for visual appeal/clarity." if portfolio_url else "Consider creating an online portfolio."), "next_steps": ["Highlight 2-3 projects most relevant to '{career_goal}' prominently.", "Get feedback from peers/mentors.", "Ensure contact info is easily accessible."] }
    return json.dumps({"analysis": analysis}) # Return JSON string

def extract_and_rate_skills_from_resume(resume_text: str, max_skills: int = 8) -> str:
    """Extracts and rates skills from resume text (Simulated). Returns JSON string."""
    logger.info(f"Executing tool: extract_skills(len={len(resume_text)}, max={max_skills})")
    logger.warning("Using placeholder skill extraction for extract_and_rate_skills_from_resume tool.")
    possible = ["Python", "Java", "JavaScript", "Project Management", "Communication", "Data Analysis", "Teamwork", "Leadership", "SQL", "React", "Customer Service", "Problem Solving", "Cloud Computing", "AWS", "Azure", "GCP", "Agile Methodologies", "Machine Learning", "Marketing", "SEO", "Content Creation"]
    found = []
    resume_lower = resume_text.lower()
    for skill in possible:
        if re.search(r'\b' + re.escape(skill.lower()) + r'\b', resume_lower):
             score = random.randint(4, 9)
             if "lead" in resume_lower or "manage" in resume_lower or "develop" in resume_lower: score = min(10, score + random.randint(0, 1))
             found.append({"name": skill, "score": score})
        if len(found) >= max_skills: break
    if not found and len(resume_text) > 100: found = [ {"name": "Communication", "score": random.randint(5,8)}, {"name": "Teamwork", "score": random.randint(5,8)}, {"name": "Problem Solving", "score": random.randint(5,8)}, ]
    logger.info(f"Extracted skills (placeholder): {[s['name'] for s in found]}")
    return json.dumps({"skills": found[:max_skills]}) # Return JSON string


# --- Serper Web Search Implementation (Returns JSON string) ---
def search_web_serper(search_query: str, search_type: str = 'general', location: str = None) -> str:
    """Performs a web search using Serper API. Returns JSON string."""
    logger.info(f"Executing tool: search_web_serper(query='{search_query}', type='{search_type}', loc='{location}')")
    if not SERPER_API_KEY:
        logger.error("SERPER_API_KEY not configured.")
        return json.dumps({"error": "Web search functionality is not configured."})

    api_url = "https://google.serper.dev/search"
    payload = json.dumps({"q": search_query,"location": location if location else None})
    headers = {'X-API-KEY': SERPER_API_KEY,'Content-Type': 'application/json'}

    try:
        response = requests.post(api_url, headers=headers, data=payload, timeout=10)
        response.raise_for_status()
        results = response.json()
        extracted_results = []
        # (Keep the extraction logic from v3)
        if search_type == 'jobs':
            if 'jobs' in results:
                 for job in results['jobs'][:5]: extracted_results.append({"title": job.get('title'),"company": job.get('company_name'),"location": job.get('location'),"link": job.get('link')})
            elif 'organic' in results:
                 for item in results['organic'][:5]:
                     if any(kw in item.get('title', '').lower() for kw in ['hiring', 'job', 'career', 'vacancy']): extracted_results.append({"title": item.get('title'),"snippet": item.get('snippet'),"link": item.get('link')})
        elif search_type in ['courses', 'skills']:
             if 'organic' in results:
                  for item in results['organic'][:5]: extracted_results.append({"title": item.get('title'),"snippet": item.get('snippet'),"link": item.get('link')})
        else: # General search
             if 'organic' in results:
                  for item in results['organic'][:3]: extracted_results.append({"title": item.get('title'),"snippet": item.get('snippet'),"link": item.get('link')})
             if 'answerBox' in results: extracted_results.insert(0, {"type": "Answer Box","title": results['answerBox'].get('title'),"snippet": results['answerBox'].get('snippet') or results['answerBox'].get('answer'),"link": results['answerBox'].get('link')})

        logger.info(f"Serper search successful for '{search_query}'. Found {len(extracted_results)} relevant items.")
        return json.dumps({"search_results": extracted_results}) # Return JSON string

    except requests.exceptions.RequestException as e:
        logger.error(f"Serper API request failed: {e}")
        return json.dumps({"error": f"Web search failed: {e}"})
    except Exception as e:
        logger.error(f"Error processing Serper response: {e}")
        return json.dumps({"error": "Failed to process web search results."})


# --- AI Interaction Logic (Using OpenAI GPT-4o) ---
def get_ai_response(user_id: str, user_input: str) -> str:
    """Gets response from OpenAI GPT-4o, handling context, system prompt, and tool calls."""
    logger.info(f"Getting OpenAI response for user {user_id}. Input: '{user_input[:100]}...'")

    if not client:
        logger.error("OpenAI client not initialized.")
        return "I'm sorry, my AI core isn't available right now. Please check the configuration."

    try:
        user_profile = get_user_profile(user_id)
        if not user_profile:
             logger.error(f"Failed profile retrieval for {user_id}.")
             return "Uh oh, I couldn't access your profile details right now. Let's try again in a moment?"

        # **INVESTOR NOTE:** The system prompt defines Aishura's unique empathetic persona and strategic approach, now adapted for OpenAI.
        current_emotion_display = user_profile.get('current_emotion', 'how you feel')
        user_name = user_profile.get('name', 'there')
        career_goal = user_profile.get('career_goal', 'your goals')
        location = user_profile.get('location', 'your area')
        industry = user_profile.get('industry', 'your field')
        exp_level = user_profile.get('experience_level', 'your experience level')

        system_prompt = f"""
        You are Aishura, an advanced AI career assistant powered by OpenAI's GPT-4o. Your core mission is to provide **empathetic, supportive, and highly personalized career guidance**. You are talking to {user_name}.

        **Your Persona & Communication Style:**
        * **Empathetic & Validating:** ALWAYS acknowledge the user's feelings ({current_emotion_display}). Use phrases like "I hear you," "It sounds like things are tough/exciting," "That makes total sense," "I get it." Validate their experience.
        * **Collaborative & Supportive:** Use "we," "us," "together." Frame guidance as a partnership. Phrases: "Okay, let's figure this out together.", "We can tackle this step-by-step.", "I'm here to help you navigate this."
        * **Positive & Action-Oriented:** While validating struggles, gently guide towards positive next steps. Focus on what *can* be done. Be realistic but hopeful.
        * **Personalized:** Reference the user's profile details subtly: name ({user_name}), goal ({career_goal}), location ({location}), industry ({industry}), experience ({exp_level}).
        * **Concise & Clear:** Use markdown for readability (lists, bolding). Avoid jargon. Get to the point while remaining warm.

        **Core Functionality - How to Respond:**
        1.  **Acknowledge & Empathize:** Start by acknowledging their input and expressed emotion (e.g., "Hey {user_name}, I hear that you're feeling {current_emotion_display}. It's completely understandable given [mention context from user input or goal].").
        2.  **Address the Query Directly:** Answer their specific question or respond to their statement clearly.
        3.  **Leverage Tools Strategically:**
            * **Proactive Suggestions:** If they mention needing a resume, cover letter, or LinkedIn help, suggest using `generate_document_template`. If they feel stuck or need structure, suggest `create_personalized_routine`. If they mention their resume or portfolio, offer to analyze it (`analyze_resume`, `analyze_portfolio`). If they want to understand their skills better from their resume, suggest `extract_and_rate_skills_from_resume`.
            * **Web Search (`search_jobs_courses_skills`):**
                * **Use ONLY when the user explicitly asks for job openings, courses, skill resources, or specific company information.**
                * Construct a specific `search_query` based on their request, `career_goal`, `location`, `industry`, etc.
                * Specify `search_type` ('jobs', 'courses', 'skills', 'general').
                * Include `location` if relevant.
                * **Crucially:** Present the search results clearly. Summarize findings, don't just dump links. E.g., "Okay, I ran a search using Serper and found a few promising [type] results for you:"
            * **Do NOT Use Tools If:** The user is just chatting, venting, or asking for general advice not mapping to a tool. Handle these conversationally.
        4.  **Synthesize Tool Results:** Explain *why* tool results are relevant. Integrate findings into your response.
        5.  **Maintain Context:** Remember the conversation flow and profile.
        6.  **Handle Errors Gracefully:** Apologize and explain simply if a tool fails (e.g., "Hmm, I couldn't fetch the [tool purpose] just now. Maybe we can try searching differently, or focus on [alternative action]?"). No technical errors to user.
        """

        # Prepare message history for OpenAI API
        # Convert stored format to API format {role: '...', content: '...'}
        messages = [{"role": "system", "content": system_prompt}]
        chat_history = user_profile.get('chat_history', [])
        for msg in chat_history:
             # Basic validation before appending
            if isinstance(msg, dict) and 'role' in msg:
                api_msg = {"role": msg["role"]}
                if msg["role"] in ["user", "assistant", "system"]:
                     # Handle messages with content and potentially tool_calls (for assistant)
                     if 'content' in msg and isinstance(msg.get('content'), (str, type(None))):
                         api_msg['content'] = msg.get('content') # Can be None for assistant msg with only tool_calls
                     else:
                         # If content is missing or wrong type for user/system, skip or log error
                         if msg["role"] != 'assistant':
                             logger.warning(f"Skipping message with missing/invalid content for role {msg['role']}: {msg}")
                             continue
                         else: # Assistant role, content can be None if tool_calls exist
                              api_msg['content'] = None

                     if msg["role"] == 'assistant' and 'tool_calls' in msg and isinstance(msg['tool_calls'], list):
                          # Validate tool_calls structure before adding
                          valid_tool_calls = all(isinstance(tc, dict) and 'id' in tc and 'type' in tc and 'function' in tc for tc in msg['tool_calls'])
                          if valid_tool_calls:
                               api_msg['tool_calls'] = msg['tool_calls']
                          else:
                               logger.warning(f"Invalid tool_calls structure found in history: {msg['tool_calls']}")
                               # Decide: skip message, or add without tool_calls if content exists?
                               if api_msg['content'] is None: continue # Skip if no content either

                     # Only append if content is not None OR tool_calls are present
                     if api_msg.get('content') is not None or api_msg.get('tool_calls'):
                          messages.append(api_msg)

                elif msg["role"] == "tool":
                     # Handle tool responses
                     if 'tool_call_id' in msg and 'content' in msg and isinstance(msg.get('content'), str):
                         api_msg['tool_call_id'] = msg['tool_call_id']
                         api_msg['content'] = msg['content'] # Content is the stringified result
                         messages.append(api_msg)
                     else:
                         logger.warning(f"Skipping invalid tool message structure in history: {msg}")
                         continue
                else:
                     logger.warning(f"Skipping message with unknown role: {msg['role']}")
                     continue
            else:
                 logger.warning(f"Skipping invalid message format in history: {msg}")
                 continue


        # Add current user input
        messages.append({"role": "user", "content": user_input})

        # --- Make the initial API Call ---
        logger.info(f"Sending {len(messages)} messages to OpenAI model {MODEL_ID}.")
        try:
            response = client.chat.completions.create(
                model=MODEL_ID,
                messages=messages,
                tools=tools_list_openai,
                tool_choice="auto", # Let model decide when to call functions
                temperature=0.7,
                max_tokens=1500
            )
            response_message = response.choices[0].message
            finish_reason = response.choices[0].finish_reason

        except openai.APIError as e: logger.error(f"OpenAI API Error: {e.status_code} - {e.response}"); return f"AI service error (Code: {e.status_code}). Try again."
        except openai.APITimeoutError: logger.error("OpenAI timed out."); return "AI service request timed out. Try again."
        except openai.APIConnectionError as e: logger.error(f"OpenAI Connection Error: {e}"); return "Cannot connect to AI service."
        except openai.RateLimitError: logger.error("OpenAI Rate Limit Exceeded."); return "AI service busy. Try again shortly."
        except openai.AuthenticationError: logger.error("OpenAI Authentication Error. Check API Key."); return "AI Authentication failed. Please check configuration."
        except Exception as e: logger.exception(f"Unexpected error during OpenAI API call: {e}"); return "Oh dear, something unexpected happened on my end. Let's pause and retry?"

        # --- Process the response ---
        tool_calls = response_message.tool_calls

        # Store user message (already added to 'messages' list for API call)
        add_chat_message(user_id, "user", user_input)

        # Store the initial assistant message (might contain text and/or tool calls)
        assistant_message_for_db = {"content": response_message.content}
        if tool_calls:
            # Convert ToolCall objects to dictionaries for JSON serialization
            assistant_message_for_db['tool_calls'] = [tc.model_dump() for tc in tool_calls]
        add_chat_message(user_id, "assistant", assistant_message_for_db)


        # --- Handle Tool Calls if any ---
        if tool_calls:
            logger.info(f"OpenAI requested tool call(s): {[tc.function.name for tc in tool_calls]}")
            messages.append(response_message) # Add assistant's msg with tool_calls to local list for next API call

            available_functions = {
                "generate_document_template": generate_document_template,
                "create_personalized_routine": create_personalized_routine,
                "analyze_resume": analyze_resume,
                "analyze_portfolio": analyze_portfolio,
                "extract_and_rate_skills_from_resume": extract_and_rate_skills_from_resume,
                "search_jobs_courses_skills": search_web_serper,
            }

            # Execute functions and gather results
            for tool_call in tool_calls:
                function_name = tool_call.function.name
                function_to_call = available_functions.get(function_name)
                tool_call_id = tool_call.id
                function_response_content = None # Initialize

                try:
                    function_args = json.loads(tool_call.function.arguments)

                    if function_to_call:
                         # Special handling before calling
                        if function_name == "analyze_resume":
                            if 'career_goal' not in function_args: function_args['career_goal'] = career_goal
                            save_user_resume(user_id, function_args.get('resume_text', ''))
                        elif function_name == "analyze_portfolio":
                            if 'career_goal' not in function_args: function_args['career_goal'] = career_goal
                            save_user_portfolio(user_id, function_args.get('portfolio_url', ''), function_args.get('portfolio_description', ''))
                        elif function_name == "search_jobs_courses_skills":
                            if 'location' not in function_args or not function_args['location']:
                                function_args['location'] = location if location != 'your area' else None

                        logger.info(f"Calling function '{function_name}' with args: {function_args}")
                        # Functions return JSON strings
                        function_response_content = function_to_call(**function_args)
                        logger.info(f"Function '{function_name}' returned: {function_response_content[:200]}...")
                    else:
                        logger.warning(f"Function {function_name} not implemented.")
                        function_response_content = json.dumps({"error": f"Tool '{function_name}' not available."})

                except json.JSONDecodeError as e:
                     logger.error(f"Error decoding args for {function_name}: {tool_call.function.arguments} - {e}")
                     function_response_content = json.dumps({"error": f"Invalid arguments received for tool '{function_name}'."})
                except TypeError as e:
                     logger.error(f"Argument mismatch for function {function_name}. Args: {function_args}, Error: {e}")
                     function_response_content = json.dumps({"error": f"Internal error: Tool '{function_name}' called with incorrect arguments."})
                except Exception as e:
                    logger.exception(f"Error executing function {function_name}: {e}")
                    function_response_content = json.dumps({"error": f"Sorry, I encountered an error while trying to use the '{function_name}' tool."})

                # Append tool response to messages list for API
                messages.append({
                    "tool_call_id": tool_call_id,
                    "role": "tool",
                    "content": function_response_content, # Content is the JSON string result
                })
                # Store tool response in DB
                add_chat_message(user_id, "tool", {"tool_call_id": tool_call_id, "content": function_response_content})


            # --- Make the second API Call with tool results ---
            logger.info(f"Sending {len(messages)} messages to OpenAI (incl. tool results).")
            try:
                second_response = client.chat.completions.create(
                    model=MODEL_ID,
                    messages=messages, # Send history including system, user, assistant tool_call, and tool responses
                    temperature=0.7,
                    max_tokens=1500
                )
                final_response_text = second_response.choices[0].message.content
                logger.info("Received final response after tool calls.")

                # Store final assistant text response
                add_chat_message(user_id, "assistant", {"content": final_response_text})
                return final_response_text

            except openai.APIError as e: logger.error(f"OpenAI API Error on second call: {e.status_code} - {e.response}"); return f"AI service error processing tool results (Code: {e.status_code})."
            except openai.RateLimitError: logger.error("OpenAI Rate Limit Exceeded on second call."); return "AI service busy processing results. Try again shortly."
            except Exception as e: logger.exception(f"Unexpected error during second OpenAI call: {e}"); return "Oh dear, something went wrong while processing the tool's results. Could we try that step again?"

        else: # No tool calls were made
            logger.info("No tool calls requested by OpenAI.")
            final_response_text = response_message.content
            # Assistant message already stored above
            if not final_response_text:
                 final_response_text = "Okay, consider it done. How else can I assist you?" # Fallback if content is empty
            return final_response_text

    except Exception as e:
        logger.exception(f"Critical error in get_ai_response: {e}")
        return "A critical error occurred. Please try again later."


# --- Recommendation Generation (Simple version - unchanged) ---
def gen_recommendations_simple(user_id):
    # (Identical to v3)
    logger.info(f"Generating simple recommendations for user {user_id}")
    profile = get_user_profile(user_id); recs = []
    goal = profile.get('career_goal', '').lower(); emotion = profile.get('current_emotion', '').lower()
    if 'job' in goal or 'internship' in goal: recs.append({"title": "Refine Resume", "description": f"Tailor your resume for '{goal}' roles. Use keywords from job descriptions.", "priority": "High", "action_type": "Job Application"}); recs.append({"title": "Practice Interviewing", "description": "Use the STAR method to prepare answers for common behavioral questions.", "priority": "Medium", "action_type": "Skill Building"}); recs.append({"title": "Network Actively", "description": f"Connect with people in '{profile.get('industry', 'your')}' industry on LinkedIn or attend virtual events.", "priority": "Medium", "action_type": "Networking"})
    if 'skill' in goal: recs.append({"title": "Identify Learning Resources", "description": f"Find online courses (Coursera, Udemy, edX) or tutorials for the skills needed for '{goal}'.", "priority": "High", "action_type": "Skill Building"}); recs.append({"title": "Start a Small Project", "description": f"Apply newly learned skills in a personal project to build portfolio evidence.", "priority": "Medium", "action_type": "Skill Building"})
    if emotion in ["anxious", "overwhelmed", "stuck", "unmotivated", "discouraged"]: recs.append({"title": "Focus on Small Wins", "description": "Break down larger tasks into very small, achievable steps. Celebrate completing them!", "priority": "High", "action_type": "Wellbeing"}); recs.append({"title": "Schedule Breaks", "description": "Ensure you take regular short breaks to avoid burnout. Step away from the screen.", "priority": "Medium", "action_type": "Wellbeing"})
    if recs:
        current_recs = profile.get('recommendations', []); pending_titles = {r['recommendation'].get('title') for r in current_recs if r.get('status') == 'pending'}; new_recs_to_add = [r for r in recs if r.get('title') not in pending_titles]
        for rec in new_recs_to_add[:3]: add_recommendation_to_user(user_id, rec)
    return

# --- Chart and Visualization Functions (Identical to v3) ---
# (create_emotion_chart, create_progress_chart, create_routine_completion_gauge, create_skill_radar_chart functions are identical to v3)
def create_emotion_chart(user_id):
    user_profile = get_user_profile(user_id); records = user_profile.get('daily_emotions', [])
    if not records: fig = go.Figure(); fig.add_annotation(text="No emotion data yet. How are you feeling today?", showarrow=False); fig.update_layout(title="Your Emotional Journey"); return fig
    vals = {"Unmotivated": 1, "Discouraged": 1.5, "Stuck": 2, "Anxious": 2.5, "Confused": 3, "Overwhelmed": 3.5, "Hopeful": 4.5, "Focused": 5, "Excited": 6}
    dates = [datetime.fromisoformat(r['date']) for r in records]; scores = [vals.get(r['emotion'], 3) for r in records]; names = [r['emotion'] for r in records]
    df = pd.DataFrame({'Date': dates, 'Score': scores, 'Emotion': names}).sort_values('Date')
    fig = px.line(df, x='Date', y='Score', markers=True, labels={"Score": "State"}, title="Your Emotional Journey")
    fig.update_traces(hovertemplate='%{x|%Y-%m-%d %H:%M}<br>Feeling: %{text}<extra></extra>', text=df['Emotion']); fig.update_yaxes(tickvals=list(vals.values()), ticktext=list(vals.keys())); return fig

def create_progress_chart(user_id):
    user_profile = get_user_profile(user_id); tasks = user_profile.get('completed_tasks', [])
    if not tasks: fig = go.Figure(); fig.add_annotation(text="No tasks completed yet. Let's add one!", showarrow=False); fig.update_layout(title="Progress Points"); return fig
    tasks.sort(key=lambda x: datetime.fromisoformat(x['date']))
    task_dates = {}
    for task in tasks:
        task_date_str = datetime.fromisoformat(task['date']).strftime('%Y-%m-%d')
        pts = task.get('points', random.randint(10, 25))
        if task_date_str not in task_dates: task_dates[task_date_str] = {'date': datetime.fromisoformat(task['date']).date(), 'points': 0, 'tasks': []}
        task_dates[task_date_str]['points'] += pts
        task_dates[task_date_str]['tasks'].append(task['task'])
    sorted_dates = sorted(task_dates.keys()); cumulative_points = 0; chart_dates, chart_points, chart_tasks = [], [], []
    for date_str in sorted_dates:
        day_data = task_dates[date_str]; cumulative_points += day_data['points']; chart_dates.append(day_data['date']); chart_points.append(cumulative_points); chart_tasks.append("<br>".join(day_data['tasks']))
    if not chart_dates: fig = go.Figure(); fig.add_annotation(text="Error processing task data.", showarrow=False); fig.update_layout(title="Progress Points"); return fig
    df = pd.DataFrame({'Date': chart_dates, 'Points': chart_points, 'Tasks': chart_tasks})
    fig = px.line(df, x='Date', y='Points', markers=True, title="Progress Journey"); fig.update_traces(hovertemplate='%{x|%Y-%m-%d}<br>Points: %{y}<br>Tasks:<br>%{text}<extra></extra>', text=df['Tasks']); return fig

def create_routine_completion_gauge(user_id):
    user_profile = get_user_profile(user_id); routines = user_profile.get('routine_history', [])
    if not routines: fig = go.Figure(go.Indicator(mode="gauge", value=0, title={'text': "Active Routine"})); fig.add_annotation(text="No routine active. Create one?", showarrow=False); return fig
    latest = routines[0]; completion = latest.get('completion', 0); name = latest.get('routine', {}).get('name', 'Routine')
    fig = go.Figure(go.Indicator(mode="gauge+number", value=completion, domain={'x': [0, 1], 'y': [0, 1]}, title={'text': f"{name} (%)"}, gauge={'axis': {'range': [0, 100]}, 'bar': {'color': "cornflowerblue"}, 'bgcolor': "white", 'steps': [{'range': [0, 50], 'color': 'whitesmoke'}, {'range': [50, 80], 'color': 'lightgray'}], 'threshold': {'line': {'color': "green", 'width': 4}, 'thickness': 0.75, 'value': 90}})); return fig

def create_skill_radar_chart(user_id):
    logger.info(f"Creating skill chart for {user_id}"); user_profile = get_user_profile(user_id); path = user_profile.get('resume_path')
    if not path or not os.path.exists(path): logger.warning("No resume found for skill chart."); fig = go.Figure(); fig.add_annotation(text="Upload or Analyze Resume for Skill Chart", showarrow=False); fig.update_layout(title="Identified Skills"); return fig
    try:
        with open(path, 'r', encoding='utf-8') as f: text = f.read()
        skills_json_str = extract_and_rate_skills_from_resume(resume_text=text) # Returns JSON string
        skills_data = json.loads(skills_json_str) # Parse JSON string
        if 'skills' in skills_data and skills_data['skills']:
            skills = skills_data['skills'][:8]; cats = [s['name'] for s in skills]; vals = [s['score'] for s in skills]
            if len(cats) < 3: fig = go.Figure(); fig.add_annotation(text="Need at least 3 skills identified for radar chart.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig
            if len(cats) > 2: cats.append(cats[0]); vals.append(vals[0])
            fig = go.Figure(); fig.add_trace(go.Scatterpolar(r=vals, theta=cats, fill='toself', name='Skills', hovertemplate='Skill: %{theta}<br>Score: %{r}<extra></extra>'))
            fig.update_layout(polar=dict(radialaxis=dict(visible=True, range=[0, 10], showline=False, ticksuffix=' pts')), showlegend=False, title="Skill Assessment (from Resume)")
            logger.info(f"Created radar chart with {len(skills)} skills."); return fig
        else: logger.warning("No skills extracted for chart."); fig = go.Figure(); fig.add_annotation(text="No skills extracted from resume yet.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig
    except Exception as e: logger.exception(f"Error creating skill chart: {e}"); fig = go.Figure(); fig.add_annotation(text="Error analyzing skills.", showarrow=False); fig.update_layout(title="Identified Skills"); return fig


# --- Gradio Interface Components (Mostly identical to v3, ensure compatibility) ---
def create_interface():
    """Create the Gradio interface for Aishura v4 (OpenAI)"""
    session_user_id = str(uuid.uuid4())
    logger.info(f"Initializing Gradio interface v4 for session user ID: {session_user_id}")
    get_user_profile(session_user_id) # Initialize profile

    # --- Event Handlers (Adapted slightly if needed) ---
    def welcome(name, location, emotion, goal, industry, exp_level, work_style):
        # (Logic identical to v3 welcome handler)
        logger.info(f"Welcome v4: name='{name}', loc='{location}', emo='{emotion}', goal='{goal}', industry='{industry}', exp='{exp_level}', work='{work_style}'")
        if not all([name, location, emotion, goal]): return ("Please fill in your Name, Location, Emotion, and Goal to get started!", gr.update(visible=True), gr.update(visible=False), gr.update(), gr.update(), gr.update(), gr.update(), gr.update())
        cleaned_goal = goal.rsplit(" ", 1)[0] if goal[-1].isnumeric() == False and goal[-2] == " " else goal
        profile_updates = {"name": name, "location": location, "career_goal": cleaned_goal, "industry": industry, "experience_level": exp_level, "preferred_work_style": work_style}
        update_user_profile(session_user_id, profile_updates)
        add_emotion_record(session_user_id, emotion)
        initial_input = f"Hi Aishura! I'm {name} from {location}. I'm focusing on '{cleaned_goal}' in the {industry} industry ({exp_level}, preferring {work_style} work). Right now, I'm feeling {emotion}. Can you help me get started?"
        ai_response = get_ai_response(session_user_id, initial_input) # Calls the OpenAI version
        # Convert DB history (OpenAI format) to Gradio format [[user, assistant], ...]
        # For initial display, it's just the first exchange
        initial_chat_display = [[initial_input, ai_response]]
        e_fig, p_fig, r_fig, s_fig = create_emotion_chart(session_user_id), create_progress_chart(session_user_id), create_routine_completion_gauge(session_user_id), create_skill_radar_chart(session_user_id)
        gen_recommendations_simple(session_user_id) # Generate initial recommendations
        recs_md = display_recommendations(session_user_id)
        return (gr.update(value=initial_chat_display), gr.update(visible=False), gr.update(visible=True), gr.update(value=e_fig), gr.update(value=p_fig), gr.update(value=r_fig), gr.update(value=s_fig), gr.update(value=recs_md))

    def chat_submit(message_text, history_list_list):
        # (Logic identical to v3 chat_submit handler)
        logger.info(f"Chat submit v4 for {session_user_id}: '{message_text[:50]}...'")
        if not message_text: yield history_list_list, gr.update() # No change if empty message
        else:
            history_list_list.append([message_text, None])
            yield history_list_list, gr.update() # Update UI with user message, clear textbox handled by .then()

            ai_response_text = get_ai_response(session_user_id, message_text) # Calls OpenAI version
            history_list_list[-1][1] = ai_response_text # Update assistant response

            gen_recommendations_simple(session_user_id) # Generate recommendations
            recs_md = display_recommendations(session_user_id)

            yield history_list_list, gr.update(value=recs_md) # Update UI with assistant response and recommendations


    # --- Tool Interface Handlers (Call implementations directly) ---
    def generate_template_interface_handler(doc_type, career_field, experience):
        logger.info(f"Manual Template UI v4: type='{doc_type}'")
        json_str = generate_document_template(doc_type, career_field, experience)
        try: return json.loads(json_str).get('template_markdown', "Error.")
        except: return "Error displaying template."

    def create_routine_interface_handler(emotion, goal, time_available, days):
        logger.info(f"Manual Routine UI v4: emo='{emotion}', goal='{goal}'")
        cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion
        json_str = create_personalized_routine(cleaned_emotion, goal, int(time_available), int(days))
        try:
            data = json.loads(json_str)
            if "error" in data: return f"Error: {data['error']}", gr.update()
            add_routine_to_user(session_user_id, data) # Save the dict structure
            md = f"# {data.get('name', 'Your Routine')}\n\n"
            md += f"_{data.get('support_message', data.get('description', ''))}_\n\n---\n\n"
            for day in data.get('daily_tasks', []):
                md += f"## Day {day.get('day', '?')}\n"; tasks = day.get('tasks', [])
                if not tasks: md += "- Rest day or catch-up.\n"
                else:
                    for task in tasks: md += f"- **{task.get('name', 'Task')}** ({task.get('duration', '?')} min)\n  - _{task.get('description', '...')}_\n"
                md += "\n"
            gauge = create_routine_completion_gauge(session_user_id)
            return md, gr.update(value=gauge)
        except Exception as e: logger.exception("Error displaying routine"); return f"Error displaying routine: {e}", gr.update()

    def analyze_resume_interface_handler(resume_file):
        # (Logic identical to v3, calls the updated tool function)
        logger.info(f"Manual Resume Analysis UI v4: file={resume_file}")
        if resume_file is None: return "Please upload a resume file.", gr.update(value=None), gr.update(value=None)
        try:
             with open(resume_file.name, 'r', encoding='utf-8') as f: resume_text = f.read()
             logger.info(f"Read {len(resume_text)} characters from uploaded resume.")
        except Exception as e: logger.error(f"Error reading uploaded resume file: {e}"); return f"Error reading file: {e}", gr.update(value=None), gr.update(value=None)
        if not resume_text: return "Resume file seems empty.", gr.update(value=None), gr.update(value=None)
        profile = get_user_profile(session_user_id); goal = profile.get('career_goal', 'Not specified')
        resume_path = save_user_resume(session_user_id, resume_text)
        if not resume_path: return "Could not save resume file.", gr.update(value=None), gr.update(value=None)
        analysis_json_str = analyze_resume(resume_text, goal) # Returns JSON string
        try:
            analysis_result = json.loads(analysis_json_str); analysis = analysis_result.get('analysis', {})
            md = f"## Resume Analysis (Simulated)\n\n**Analyzing for Goal:** '{goal}'\n\n"; md += "**Strengths Identified:**\n" + "\n".join([f"* {s}" for s in analysis.get('strengths', ["None identified."])]) + "\n\n"; md += "**Areas for Improvement:**\n" + "\n".join([f"* {s}" for s in analysis.get('areas_for_improvement', ["None identified."])]) + "\n\n"; md += f"**Format Feedback:** {analysis.get('format_feedback', 'N/A')}\n"; md += f"**Content Alignment:** {analysis.get('content_feedback', 'N/A')}\n"; md += f"**Suggested Keywords:** {', '.join(analysis.get('keyword_suggestions', ['N/A']))}\n\n"; md += "**Recommended Next Steps:**\n" + "\n".join([f"* {s}" for s in analysis.get('next_steps', ["Review suggestions."])])
            skill_fig = create_skill_radar_chart(session_user_id)
            return md, gr.update(value=skill_fig), gr.update(value=resume_path)
        except Exception as e: logger.exception("Error formatting resume analysis results."); return "Error displaying analysis results.", gr.update(value=None), gr.update(value=None)


    def analyze_portfolio_interface_handler(portfolio_url, portfolio_description):
        # (Logic identical to v3, calls the updated tool function)
        logger.info(f"Manual Portfolio Analysis UI v4: url='{portfolio_url}'")
        if not portfolio_description: return "Please provide a description of your portfolio."
        profile = get_user_profile(session_user_id); goal = profile.get('career_goal', 'Not specified')
        portfolio_path = save_user_portfolio(session_user_id, portfolio_url, portfolio_description)
        if not portfolio_path: return "Could not save portfolio details."
        analysis_json_str = analyze_portfolio(portfolio_description, goal, portfolio_url) # Returns JSON string
        try:
            analysis_result = json.loads(analysis_json_str); analysis = analysis_result.get('analysis', {})
            md = f"## Portfolio Analysis (Simulated)\n\n**Analyzing for Goal:** '{goal}'\n"; md += f"**URL:** {portfolio_url}\n\n" if portfolio_url else "\n"; md += f"**Alignment with Goal:** {analysis.get('alignment_with_goal', 'N/A')}\n\n"; md += "**Strengths Based on Description:**\n" + "\n".join([f"* {s}" for s in analysis.get('strengths', ["N/A"])]) + "\n\n"; md += "**Areas for Improvement:**\n" + "\n".join([f"* {s}" for s in analysis.get('areas_for_improvement', ["N/A"])]) + "\n\n"; md += f"**Presentation Feedback:** {analysis.get('presentation_feedback', 'N/A')}\n\n"; md += "**Recommended Next Steps:**\n" + "\n".join([f"* {s}" for s in analysis.get('next_steps', ["Review suggestions."])])
            return md
        except Exception as e: logger.exception("Error formatting portfolio analysis results."); return "Error displaying analysis results."

    # --- Progress Tracking Handlers (Identical to v3) ---
    def complete_task_handler(task_name):
        logger.info(f"Complete Task UI v4 for {session_user_id}: task='{task_name}'")
        if not task_name: return ("Please enter the task you completed.", "", gr.update(), gr.update(), gr.update())
        updated_profile = add_task_to_user(session_user_id, task_name)
        if updated_profile and updated_profile.get('routine_history'):
            db = load_user_database(); profile = db.get('users', {}).get(session_user_id)
            if profile and profile.get('routine_history'):
                 latest_routine = profile['routine_history'][0]; increment = random.randint(5, 15)
                 latest_routine['completion'] = min(100, latest_routine.get('completion', 0) + increment); save_user_database(db)
        e_fig, p_fig, g_fig = create_emotion_chart(session_user_id), create_progress_chart(session_user_id), create_routine_completion_gauge(session_user_id)
        return (f"Awesome job completing '{task_name}'! Keep up the great work!", "", gr.update(value=e_fig), gr.update(value=p_fig), gr.update(value=g_fig))

    def update_emotion_handler(emotion):
        logger.info(f"Update Emotion UI v4 for {session_user_id}: emotion='{emotion}'")
        if not emotion: return "Please select how you're feeling.", gr.update()
        add_emotion_record(session_user_id, emotion)
        e_fig = create_emotion_chart(session_user_id)
        cleaned_display = emotion.split(" ")[0] if " " in emotion else emotion
        return f"Got it. Acknowledging how you feel ({cleaned_display}) is a great step.", gr.update(value=e_fig)

    def display_recommendations(current_user_id):
        # (Identical to v3)
        logger.info(f"Displaying recommendations v4 for {current_user_id}")
        profile = get_user_profile(current_user_id); recs = profile.get('recommendations', [])
        if not recs: return "Chat with me about your goals and challenges, and I can suggest some next steps! 😊"
        pending_recs = [r for r in recs if r.get('status') == 'pending'][:5]
        if not pending_recs: return "No pending recommendations right now. Great job, or let's chat to find new ones!"
        md = "### ✨ Here are a few things we could focus on:\n\n"
        for i, entry in enumerate(pending_recs, 1):
            rec = entry.get('recommendation', {})
            md += f"**{i}. {rec.get('title', 'Recommendation')}**\n"; md += f"   - {rec.get('description', 'No description.')}\n"; md += f"   - *Priority: {rec.get('priority', 'Medium')} | Type: {rec.get('action_type', 'General')}*\n---\n"
        return md

    # --- Build Gradio Interface (Structure identical to v3) ---
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky", secondary_hue="blue", font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]), title="Aishura v4 (OpenAI)") as app:
        gr.Markdown("# Aishura - Your Empathetic AI Career Copilot πŸš€")
        gr.Markdown("_Powered by OpenAI GPT-4o & Real-Time Data_") # Updated subtitle

        # Welcome Screen (Identical structure)
        with gr.Group(visible=True) as welcome_group:
            gr.Markdown("## Welcome! Let's personalize your journey.")
            gr.Markdown("Tell me a bit about yourself so I can help you better.")
            with gr.Row():
                with gr.Column(): name_input = gr.Textbox(label="What's your first name?"); location_input = gr.Textbox(label="Where are you located (City, Country)?", placeholder="e.g., London, UK"); industry_input = gr.Textbox(label="What's your primary industry or field?", placeholder="e.g., Technology, Healthcare, Finance")
                with gr.Column(): emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling right now?"); goal_dropdown = gr.Dropdown(choices=GOAL_TYPES, label="What's your main career goal currently?"); exp_level_dropdown = gr.Dropdown(choices=["Student", "Entry-Level (0-2 yrs)", "Mid-Level (3-7 yrs)", "Senior-Level (8+ yrs)", "Executive"], label="What's your experience level?"); work_style_dropdown = gr.Dropdown(choices=["On-site", "Hybrid", "Remote", "Any"], label="Preferred work style?", value="Any")
            welcome_button = gr.Button("✨ Start My Journey with Aishura ✨", variant="primary"); welcome_output = gr.Markdown()

        # Main Interface (Identical structure)
        with gr.Group(visible=False) as main_interface:
            with gr.Tabs():
                # Chat Tab
                with gr.TabItem("πŸ’¬ Chat with Aishura"):
                    with gr.Row():
                        with gr.Column(scale=3):
                             chatbot_display = gr.Chatbot(label="Aishura", height=600, show_copy_button=True, bubble_full_width=False, avatar_images=(None, "https://img.icons8.com/external-those-icons-lineal-color-those-icons/96/external-AI-artificial-intelligence-those-icons-lineal-color-those-icons-9.png"))
                             msg_textbox = gr.Textbox(show_label=False, placeholder="Type your message here...", container=False, scale=1)
                        with gr.Column(scale=1):
                            gr.Markdown("### Recommendations"); recommendation_output = gr.Markdown("Loading recommendations...")
                            refresh_recs_button = gr.Button("πŸ”„ Refresh Recs"); gr.Markdown("---"); gr.Markdown("### Quick Actions")

                # Analysis & Tools Tab
                with gr.TabItem("πŸ› οΈ Analyze & Tools"):
                     with gr.Tabs():
                        with gr.TabItem("πŸ“„ Resume Hub"):
                            gr.Markdown("### Analyze Your Resume"); gr.Markdown("Upload your resume (TXT or PDF - text readable) for analysis and skill identification.")
                            resume_file_input = gr.File(label="Upload Resume (.txt, .pdf)", file_types=['.txt', '.pdf'])
                            resume_path_display = gr.Textbox(label="Current Resume File", interactive=False)
                            analyze_resume_button = gr.Button("Analyze Uploaded Resume", variant="primary")
                            resume_analysis_output = gr.Markdown("Analysis will appear here...")
                            gr.Markdown("---"); gr.Markdown("### Generate Document Templates")
                            doc_type_dropdown = gr.Dropdown(choices=["Resume", "Cover Letter", "LinkedIn Summary", "Networking Email"], label="Document Type"); doc_field_input = gr.Textbox(label="Target Career Field (Optional)", placeholder="e.g., Software Engineering"); doc_exp_dropdown = gr.Dropdown(choices=["Student", "Entry-Level", "Mid-Level", "Senior-Level"], label="Experience Level")
                            generate_template_button = gr.Button("Generate Template"); template_output_md = gr.Markdown("Template will appear here...")
                        with gr.TabItem("🎨 Portfolio Hub"):
                            gr.Markdown("### Analyze Your Portfolio")
                            portfolio_url_input = gr.Textbox(label="Portfolio URL (Optional)", placeholder="https://yourportfolio.com"); portfolio_desc_input = gr.Textbox(label="Describe your portfolio's content and purpose", lines=5, placeholder="e.g., Collection of web development projects...")
                            analyze_portfolio_button = gr.Button("Analyze Portfolio Info", variant="primary"); portfolio_analysis_output = gr.Markdown("Analysis will appear here...")
                        with gr.TabItem("πŸ“… Routine Builder"):
                            gr.Markdown("### Create a Personalized Routine"); gr.Markdown("Feeling stuck? Let's build a manageable routine.")
                            routine_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling?"); profile = get_user_profile(session_user_id); routine_goal_input = gr.Textbox(label="Main Goal for this Routine", value=profile.get('career_goal', ''))
                            routine_time_slider = gr.Slider(15, 120, 45, step=15, label="Minutes you can dedicate per day"); routine_days_slider = gr.Slider(3, 21, 7, step=1, label="Length of routine (days)")
                            create_routine_button = gr.Button("Create My Routine", variant="primary"); routine_output_md = gr.Markdown("Your personalized routine will appear here...")

                # Progress Tab
                with gr.TabItem("πŸ“ˆ Track Your Journey"):
                    gr.Markdown("## Your Progress Dashboard")
                    with gr.Row():
                        with gr.Column(scale=1):
                            gr.Markdown("### βœ… Log Completed Task"); task_input = gr.Textbox(label="What did you accomplish?", placeholder="e.g., Updated resume, Applied for job X...")
                            complete_button = gr.Button("Log Task", variant="primary"); task_output = gr.Markdown()
                            gr.Markdown("---"); gr.Markdown("### 😊 How are you feeling now?")
                            new_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="Select current emotion"); emotion_button = gr.Button("Update Emotion"); emotion_output = gr.Markdown()
                        with gr.Column(scale=2):
                            gr.Markdown("### Emotional Journey"); emotion_chart_output = gr.Plot(label="Emotion Trend")
                            gr.Markdown("### Active Routine Progress"); routine_gauge_output = gr.Plot(label="Routine Completion")
                    with gr.Row():
                         with gr.Column(scale=1): gr.Markdown("### Progress Points"); progress_chart_output = gr.Plot(label="Progress Points Over Time")
                         with gr.Column(scale=1): gr.Markdown("### Skills Assessment (from Resume)"); skill_radar_chart_output = gr.Plot(label="Skills Radar")

        # --- Event Wiring (Identical logic, calls updated functions) ---
        welcome_button.click(fn=welcome, inputs=[name_input, location_input, emotion_dropdown, goal_dropdown, industry_input, exp_level_dropdown, work_style_dropdown], outputs=[chatbot_display, welcome_group, main_interface, emotion_chart_output, progress_chart_output, routine_gauge_output, skill_radar_chart_output, recommendation_output])
        msg_textbox.submit(fn=chat_submit, inputs=[msg_textbox, chatbot_display], outputs=[chatbot_display, recommendation_output]).then(lambda: gr.update(value=""), outputs=[msg_textbox])
        refresh_recs_button.click(fn=lambda: display_recommendations(session_user_id), outputs=[recommendation_output])
        analyze_resume_button.click(fn=analyze_resume_interface_handler, inputs=[resume_file_input], outputs=[resume_analysis_output, skill_radar_chart_output, resume_path_display])
        analyze_portfolio_button.click(fn=analyze_portfolio_interface_handler, inputs=[portfolio_url_input, portfolio_desc_input], outputs=[portfolio_analysis_output])
        generate_template_button.click(fn=generate_template_interface_handler, inputs=[doc_type_dropdown, doc_field_input, doc_exp_dropdown], outputs=[template_output_md])
        create_routine_button.click(fn=create_routine_interface_handler, inputs=[routine_emotion_dropdown, routine_goal_input, routine_time_slider, routine_days_slider], outputs=[routine_output_md, routine_gauge_output])
        complete_button.click(fn=complete_task_handler, inputs=[task_input], outputs=[task_output, task_input, emotion_chart_output, progress_chart_output, routine_gauge_output])
        emotion_button.click(fn=update_emotion_handler, inputs=[new_emotion_dropdown], outputs=[emotion_output, emotion_chart_output])

    return app

# --- Main Execution ---
if __name__ == "__main__":
    print("\n--- Aishura v4 (OpenAI) Configuration Check ---")
    if not OPENAI_API_KEY: print("⚠️ WARNING: OPENAI_API_KEY not found. AI features DISABLED.")
    else: print("βœ… OPENAI_API_KEY found.")
    if not SERPER_API_KEY: print("⚠️ WARNING: SERPER_API_KEY not found. Live web search DISABLED.")
    else: print("βœ… SERPER_API_KEY found.")
    if not client: print("❌ ERROR: OpenAI client failed to initialize. AI features DISABLED.")
    else: print(f"βœ… OpenAI client initialized for model '{MODEL_ID}'.")
    print("-------------------------------------------\n")

    logger.info("Starting Aishura v4 (OpenAI) Gradio application...")
    aishura_app = create_interface()
    aishura_app.launch(share=False, debug=False)
    logger.info("Aishura Gradio application stopped.")