File size: 54,705 Bytes
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
 
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
1eb3ba2
d61ddbe
 
1eb3ba2
 
 
 
 
 
 
 
d61ddbe
 
 
 
 
1eb3ba2
 
d61ddbe
1eb3ba2
 
 
d61ddbe
1eb3ba2
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
d61ddbe
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
d61ddbe
1eb3ba2
 
d61ddbe
 
 
1eb3ba2
d61ddbe
 
 
 
1eb3ba2
d61ddbe
 
 
 
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
1eb3ba2
 
 
 
 
 
 
d61ddbe
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
 
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
 
1eb3ba2
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
 
d61ddbe
 
 
 
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
d61ddbe
1eb3ba2
 
 
 
 
d61ddbe
 
1eb3ba2
d61ddbe
1eb3ba2
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
 
 
 
 
 
d61ddbe
 
1eb3ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
d61ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb3ba2
 
 
 
 
 
 
d61ddbe
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import random
import json
import os
import time
import requests
from typing import List, Dict, Any, Optional
import logging
from dotenv import load_dotenv
import pytz
import uuid
import re
import base64
from io import BytesIO
from PIL import Image

# Import the updated Google GenAI SDK
from google import genai
from google.genai import types

# Load environment variables
load_dotenv()

# Set up logging
logging.basicConfig(level=logging.INFO, 
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Configure API keys
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "your-api-key")
SERPER_API_KEY = os.getenv("SERPER_API_KEY", "your-serper-api-key")

# Configure Google GenAI
genai.configure(api_key=GOOGLE_API_KEY)

# Init the client
client = genai.Client()

# Model configuration - using Gemini latest model
MODEL_ID = "gemini-2.0-flash-001"

# Constants for global app
EMOTIONS = ["Unmotivated", "Anxious", "Confused", "Excited", "Overwhelmed", "Discouraged"]
GOAL_TYPES = ["Get a job at a big company", "Find an internship", "Change careers", "Improve skills", "Network better"]
USER_DB_PATH = "user_database.json"
RESUME_FOLDER = "user_resumes"
PORTFOLIO_FOLDER = "user_portfolios"

# Ensure folders exist
os.makedirs(RESUME_FOLDER, exist_ok=True)
os.makedirs(PORTFOLIO_FOLDER, exist_ok=True)

# Function declarations for tools
get_job_opportunities = types.FunctionDeclaration(
    name="get_job_opportunities",
    description="Get relevant job opportunities based on location and career goals",
    parameters={
        "type": "OBJECT",
        "properties": {
            "location": {
                "type": "STRING",
                "description": "The city or country where the user is located",
            },
            "career_goal": {
                "type": "STRING",
                "description": "The user's career goal or job interest",
            },
            "max_results": {
                "type": "NUMBER",
                "description": "Maximum number of job opportunities to return",
            },
        },
        "required": ["location", "career_goal"],
    },
)

generate_document = types.FunctionDeclaration(
    name="generate_document_template",
    description="Generate a document template for job applications",
    parameters={
        "type": "OBJECT",
        "properties": {
            "document_type": {
                "type": "STRING",
                "description": "Type of document to generate (Resume, Cover Letter, Self-introduction)",
            },
            "career_field": {
                "type": "STRING",
                "description": "The career field or industry the document is for",
            },
            "experience_level": {
                "type": "STRING",
                "description": "User's experience level (Entry, Mid, Senior)",
            },
        },
        "required": ["document_type"],
    },
)

create_routine = types.FunctionDeclaration(
    name="create_personalized_routine",
    description="Create a personalized career development routine",
    parameters={
        "type": "OBJECT",
        "properties": {
            "emotion": {
                "type": "STRING",
                "description": "User's current emotional state",
            },
            "goal": {
                "type": "STRING",
                "description": "User's career goal",
            },
            "available_time_minutes": {
                "type": "NUMBER",
                "description": "Available time in minutes per day",
            },
            "routine_length_days": {
                "type": "NUMBER",
                "description": "Length of routine in days",
            },
        },
        "required": ["emotion", "goal"],
    },
)

analyze_resume = types.FunctionDeclaration(
    name="analyze_resume",
    description="Analyze a user's resume and provide feedback",
    parameters={
        "type": "OBJECT",
        "properties": {
            "resume_text": {
                "type": "STRING",
                "description": "The full text of the user's resume",
            },
            "career_goal": {
                "type": "STRING",
                "description": "The user's career goal or job interest",
            },
        },
        "required": ["resume_text"],
    },
)

analyze_portfolio = types.FunctionDeclaration(
    name="analyze_portfolio",
    description="Analyze a user's portfolio and provide feedback",
    parameters={
        "type": "OBJECT",
        "properties": {
            "portfolio_url": {
                "type": "STRING",
                "description": "URL to the user's portfolio",
            },
            "portfolio_description": {
                "type": "STRING",
                "description": "Description of the portfolio content",
            },
            "career_goal": {
                "type": "STRING",
                "description": "The user's career goal or job interest",
            },
        },
        "required": ["portfolio_description"],
    },
)

# Combine tools
job_tool = types.Tool(function_declarations=[get_job_opportunities])
document_tool = types.Tool(function_declarations=[generate_document])
routine_tool = types.Tool(function_declarations=[create_routine])
resume_tool = types.Tool(function_declarations=[analyze_resume])
portfolio_tool = types.Tool(function_declarations=[analyze_portfolio])

# User database functions
def load_user_database():
    """Load user database from JSON file or create if it doesn't exist"""
    try:
        with open(USER_DB_PATH, 'r') as file:
            return json.load(file)
    except (FileNotFoundError, json.JSONDecodeError):
        # Initialize empty database
        db = {'users': {}}
        save_user_database(db)
        return db

def save_user_database(db):
    """Save user database to JSON file"""
    with open(USER_DB_PATH, 'w') as file:
        json.dump(db, file, indent=4)

def get_user_profile(user_id):
    """Get user profile from database or create new one"""
    db = load_user_database()
    if user_id not in db['users']:
        db['users'][user_id] = {
            "user_id": user_id,
            "name": "",
            "location": "",
            "current_emotion": "",
            "career_goal": "",
            "progress_points": 0,
            "completed_tasks": [],
            "upcoming_events": [],
            "routine_history": [],
            "daily_emotions": [],
            "resume_path": "",
            "portfolio_path": "",
            "recommendations": [],
            "chat_history": [],
            "joined_date": datetime.now().strftime("%Y-%m-%d")
        }
        save_user_database(db)
    return db['users'][user_id]

def update_user_profile(user_id, updates):
    """Update user profile with new information"""
    db = load_user_database()
    if user_id in db['users']:
        for key, value in updates.items():
            db['users'][user_id][key] = value
        save_user_database(db)
    return db['users'][user_id]

def add_task_to_user(user_id, task):
    """Add a new task to user's completed tasks"""
    db = load_user_database()
    if user_id in db['users']:
        if 'completed_tasks' not in db['users'][user_id]:
            db['users'][user_id]['completed_tasks'] = []
        
        task_with_date = {
            "task": task,
            "date": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        }
        db['users'][user_id]['completed_tasks'].append(task_with_date)
        db['users'][user_id]['progress_points'] += random.randint(10, 25)
        save_user_database(db)
    return db['users'][user_id]

def add_emotion_record(user_id, emotion):
    """Add a new emotion record to user's daily emotions"""
    db = load_user_database()
    if user_id in db['users']:
        if 'daily_emotions' not in db['users'][user_id]:
            db['users'][user_id]['daily_emotions'] = []
        
        emotion_record = {
            "emotion": emotion,
            "date": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        }
        db['users'][user_id]['daily_emotions'].append(emotion_record)
        db['users'][user_id]['current_emotion'] = emotion
        save_user_database(db)
    return db['users'][user_id]

def add_routine_to_user(user_id, routine):
    """Add a new routine to user's routine history"""
    db = load_user_database()
    if user_id in db['users']:
        if 'routine_history' not in db['users'][user_id]:
            db['users'][user_id]['routine_history'] = []
        
        routine_with_date = {
            "routine": routine,
            "start_date": datetime.now().strftime("%Y-%m-%d"),
            "end_date": (datetime.now() + timedelta(days=routine.get('days', 7))).strftime("%Y-%m-%d"),
            "completion": 0
        }
        db['users'][user_id]['routine_history'].append(routine_with_date)
        save_user_database(db)
    return db['users'][user_id]

def save_user_resume(user_id, resume_text):
    """Save user's resume to file and update profile"""
    # Create filename
    filename = f"{user_id}_resume.txt"
    filepath = os.path.join(RESUME_FOLDER, filename)
    
    # Save resume text to file
    with open(filepath, 'w') as file:
        file.write(resume_text)
    
    # Update user profile
    update_user_profile(user_id, {"resume_path": filepath})
    
    return filepath

def save_user_portfolio(user_id, portfolio_content):
    """Save user's portfolio info to file and update profile"""
    # Create filename
    filename = f"{user_id}_portfolio.json"
    filepath = os.path.join(PORTFOLIO_FOLDER, filename)
    
    # Save portfolio content to file
    with open(filepath, 'w') as file:
        json.dump(portfolio_content, file, indent=4)
    
    # Update user profile
    update_user_profile(user_id, {"portfolio_path": filepath})
    
    return filepath

def add_recommendation_to_user(user_id, recommendation):
    """Add a new recommendation to user's recommendations list"""
    db = load_user_database()
    if user_id in db['users']:
        if 'recommendations' not in db['users'][user_id]:
            db['users'][user_id]['recommendations'] = []
        
        recommendation_with_date = {
            "recommendation": recommendation,
            "date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "status": "pending"  # pending, completed, dismissed
        }
        db['users'][user_id]['recommendations'].append(recommendation_with_date)
        save_user_database(db)
    return db['users'][user_id]

def add_chat_message(user_id, role, message):
    """Add a message to the user's chat history"""
    db = load_user_database()
    if user_id in db['users']:
        if 'chat_history' not in db['users'][user_id]:
            db['users'][user_id]['chat_history'] = []
        
        chat_message = {
            "role": role,  # user or assistant
            "message": message,
            "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        }
        db['users'][user_id]['chat_history'].append(chat_message)
        save_user_database(db)
    return db['users'][user_id]

# API Helper Functions
def search_jobs_with_serper(query, location, max_results=5):
    """Search for job opportunities using Serper API"""
    try:
        headers = {
            'X-API-KEY': SERPER_API_KEY,
            'Content-Type': 'application/json'
        }
        
        params = {
            'q': f"{query} jobs in {location}",
            'num': max_results
        }
        
        response = requests.get(
            'https://serper.dev/search', 
            headers=headers, 
            params=params
        )
        
        if response.status_code == 200:
            data = response.json()
            # Extract job listings from search results
            job_results = []
            
            # Process organic results
            if 'organic' in data:
                for item in data['organic']:
                    if 'title' in item and 'link' in item and 'snippet' in item:
                        # Check if it looks like a job listing
                        if any(keyword in item['title'].lower() for keyword in ['job', 'career', 'position', 'hiring', 'work']):
                            job_results.append({
                                'title': item['title'],
                                'company': extract_company_from_title(item['title']),
                                'description': item['snippet'],
                                'link': item['link'],
                                'location': location,
                                'date_posted': 'Recent'  # Serper doesn't provide this directly
                            })
            
            return job_results
        else:
            logger.error(f"Error from Serper API: {response.status_code} - {response.text}")
            return []
    except Exception as e:
        logger.error(f"Exception in search_jobs_with_serper: {str(e)}")
        return []

def extract_company_from_title(title):
    """Extract company name from job title if possible"""
    # This is a simple heuristic and can be improved
    if ' at ' in title:
        return title.split(' at ')[1].strip()
    if ' - ' in title:
        return title.split(' - ')[1].strip()
    return "Unknown Company"

def get_ai_response(user_id, user_input, context=None, generate_recommendations=True):
    """Get AI response using Google GenAI"""
    try:
        user_profile = get_user_profile(user_id)
        
        system_instruction = """
        You are Aishura, an emotionally intelligent AI career assistant. Your goal is to empathize with the user's emotions
        and provide realistic information and actionable suggestions. Follow this structure:
        1. Recognize and acknowledge the user's emotion
        2. Respond with high-empathy message
        3. Suggest specific action based on their input
        4. Offer document support, job opportunities, or personalized routine
        
        Remember to be proactive and preemptive - suggest actions before the user asks. Your goal is to provide
        end-to-end support for the user's career journey, from emotional support to concrete action.
        
        If the user has shared a resume or portfolio, refer to insights from those documents to provide
        personalized guidance.
        """
        
        # Build conversation context
        contents = []
        
        # Add user profile information as context
        profile_context = f"""
        User Profile Information:
        - Name: {user_profile.get('name', '')}
        - Current emotion: {user_profile.get('current_emotion', '')}
        - Career goal: {user_profile.get('career_goal', '')}
        - Location: {user_profile.get('location', '')}
        """
        
        # Add resume context if available
        if user_profile.get('resume_path') and os.path.exists(user_profile.get('resume_path')):
            try:
                with open(user_profile.get('resume_path'), 'r') as file:
                    resume_text = file.read()
                profile_context += f"\nUser Resume Summary: The user has shared their resume. They have experience in {resume_text[:100]}..."
            except Exception as e:
                logger.error(f"Error reading resume: {str(e)}")
        
        # Add portfolio context if available
        if user_profile.get('portfolio_path') and os.path.exists(user_profile.get('portfolio_path')):
            try:
                with open(user_profile.get('portfolio_path'), 'r') as file:
                    portfolio_data = json.load(file)
                profile_context += f"\nUser Portfolio: The user has shared their portfolio with URL: {portfolio_data.get('url', 'Not provided')}."
            except Exception as e:
                logger.error(f"Error reading portfolio: {str(e)}")
        
        # Start with context
        user_context = types.Content(
            role="user",
            parts=[types.Part.from_text(profile_context)]
        )
        contents.append(user_context)
        
        # Add previous context if provided
        if context:
            for msg in context:
                if msg["role"] == "user":
                    contents.append(types.Content(
                        role="user",
                        parts=[types.Part.from_text(msg["message"])]
                    ))
                else:
                    contents.append(types.Content(
                        role="model",
                        parts=[types.Part.from_text(msg["message"])]
                    ))
        
        # Add current user input
        contents.append(types.Content(
            role="user",
            parts=[types.Part.from_text(user_input)]
        ))
        
        # Configure tools
        tools = [job_tool, document_tool, routine_tool, resume_tool, portfolio_tool]
        
        # Get response
        response = client.models.generate_content(
            model=MODEL_ID,
            contents=contents,
            system_instruction=system_instruction,
            tools=tools,
            generation_config=types.GenerationConfig(
                temperature=0.7,
                max_output_tokens=2048,
                top_p=0.95,
                top_k=40
            )
        )
        
        ai_response_text = response.text
        
        # Log the message in chat history
        add_chat_message(user_id, "user", user_input)
        add_chat_message(user_id, "assistant", ai_response_text)
        
        # Generate recommendations if enabled
        if generate_recommendations:
            gen_recommendations(user_id, user_input, ai_response_text)
        
        return ai_response_text
    except Exception as e:
        logger.error(f"Error in get_ai_response: {str(e)}")
        return "I apologize, but I'm having trouble processing your request right now. Please try again later."

def gen_recommendations(user_id, user_input, ai_response):
    """Generate recommendations based on conversation"""
    try:
        user_profile = get_user_profile(user_id)
        
        prompt = f"""
        Based on the following conversation between a user and Aishura (an AI career assistant),
        generate 1-3 specific, actionable recommendations for the user's next steps in their career journey.
        
        User Profile:
        - Current emotion: {user_profile.get('current_emotion', '')}
        - Career goal: {user_profile.get('career_goal', '')}
        - Location: {user_profile.get('location', '')}
        
        Recent Conversation:
        User: {user_input}
        
        Aishura: {ai_response}
        
        Generate specific, actionable recommendations in JSON format:
        ```json
        [
          {{
            "title": "Brief recommendation title",
            "description": "Detailed recommendation description",
            "action_type": "job_search|skill_building|networking|resume|portfolio|interview_prep|other",
            "priority": "high|medium|low"
          }}
        ]
        ```
        
        Focus on immediate, practical next steps that align with the user's goals and emotional state.
        """
        
        response = client.models.generate_content(
            model=MODEL_ID,
            contents=prompt
        )
        
        recommendation_text = response.text
        
        # Extract JSON from response
        try:
            # Find JSON content between ```json and ``` if present
            if "```json" in recommendation_text and "```" in recommendation_text.split("```json")[1]:
                json_str = recommendation_text.split("```json")[1].split("```")[0].strip()
            else:
                # Otherwise try to find anything that looks like JSON array
                import re
                json_match = re.search(r'(\[.*\])', recommendation_text, re.DOTALL)
                if json_match:
                    json_str = json_match.group(1)
                else:
                    json_str = recommendation_text
                    
            recommendations = json.loads(json_str)
            
            # Add recommendations to user profile
            for rec in recommendations:
                add_recommendation_to_user(user_id, rec)
                
            return recommendations
        except json.JSONDecodeError:
            logger.error(f"Failed to parse JSON from AI response: {recommendation_text}")
            return []
    except Exception as e:
        logger.error(f"Error in gen_recommendations: {str(e)}")
        return []

def create_personalized_routine_with_ai(user_id, emotion, goal, available_time=60, days=7):
    """Create a personalized routine using AI"""
    try:
        user_profile = get_user_profile(user_id)
        
        prompt = f"""
        Create a personalized {days}-day career development routine for a user who is feeling {emotion} and has a goal to {goal}.
        They have about {available_time} minutes per day to dedicate to this routine.
        
        For each day, suggest 1-3 specific tasks that will help them make progress toward their goal while considering their emotional state.
        
        For each task provide:
        1. Task name
        2. Duration in minutes
        3. Points value (between 10-50)
        4. A brief description of why this task is valuable
        
        Format the routine as a JSON object with this structure:
        ```json
        {{
          "name": "Routine name",
          "description": "Brief description of the routine",
          "days": {days},
          "daily_tasks": [
            {{
              "day": 1,
              "tasks": [
                {{
                  "name": "Task name",
                  "points": 20,
                  "duration": 30,
                  "description": "Why this task is valuable"
                }}
              ]
            }}
          ]
        }}
        ```
        """
        
        # Use resume and portfolio info if available
        if user_profile.get('resume_path') and os.path.exists(user_profile.get('resume_path')):
            try:
                with open(user_profile.get('resume_path'), 'r') as file:
                    resume_text = file.read()
                    prompt += f"\n\nTailor the routine based on the user's resume. Here's a summary: {resume_text[:500]}..."
            except Exception as e:
                logger.error(f"Error reading resume: {str(e)}")
                
        if user_profile.get('portfolio_path') and os.path.exists(user_profile.get('portfolio_path')):
            try:
                with open(user_profile.get('portfolio_path'), 'r') as file:
                    portfolio_data = json.load(file)
                    prompt += f"\n\nConsider the user's portfolio when creating the routine. Portfolio URL: {portfolio_data.get('url', 'Not provided')}"
            except Exception as e:
                logger.error(f"Error reading portfolio: {str(e)}")
        
        response = client.models.generate_content(
            model=MODEL_ID,
            contents=prompt
        )
        
        routine_text = response.text
        
        # Extract JSON portion from the response
        try:
            # Find JSON content between ```json and ``` if present
            if "```json" in routine_text and "```" in routine_text.split("```json")[1]:
                json_str = routine_text.split("```json")[1].split("```")[0].strip()
            else:
                # Otherwise try to find anything that looks like JSON
                import re
                json_match = re.search(r'(\{.*\})', routine_text, re.DOTALL)
                if json_match:
                    json_str = json_match.group(1)
                else:
                    json_str = routine_text
                    
            routine = json.loads(json_str)
            
            # Add to user's routines
            user_profile = add_routine_to_user(user_id, routine)
            return routine
        except json.JSONDecodeError:
            logger.error(f"Failed to parse JSON from AI response: {routine_text}")
            # Fallback to a basic routine
            return generate_basic_routine(emotion, goal, available_time, days)
    except Exception as e:
        logger.error(f"Error in create_personalized_routine_with_ai: {str(e)}")
        # Fallback to a basic routine
        return generate_basic_routine(emotion, goal, available_time, days)

def generate_basic_routine(emotion, goal, available_time=60, days=7):
    """Generate a basic routine as fallback"""
    routine_types = {
        "job_search": [
            {"name": "Research target companies", "points": 10, "duration": 20, "description": "Identify potential employers that align with your career goals"},
            {"name": "Update LinkedIn profile", "points": 15, "duration": 30, "description": "Keep your professional presence current and compelling"},
            {"name": "Practice interview questions", "points": 20, "duration": 45, "description": "Build confidence and prepare for upcoming opportunities"},
            {"name": "Reach out to a contact", "points": 25, "duration": 15, "description": "Grow your network and gather industry insights"}
        ],
        "skill_building": [
            {"name": "Complete one tutorial", "points": 20, "duration": 60, "description": "Develop practical skills in your field"},
            {"name": "Read industry article", "points": 10, "duration": 15, "description": "Stay current with trends and developments"},
            {"name": "Work on portfolio project", "points": 30, "duration": 90, "description": "Create tangible evidence of your abilities"},
            {"name": "Watch expert talk", "points": 15, "duration": 30, "description": "Learn from leaders in your field"}
        ],
        "motivation": [
            {"name": "Write in gratitude journal", "points": 10, "duration": 10, "description": "Cultivate a positive mindset to enhance motivation"},
            {"name": "Set 3 goals for the day", "points": 15, "duration": 15, "description": "Focus your energy on achievable tasks"},
            {"name": "Exercise break", "points": 20, "duration": 20, "description": "Boost energy and mood with physical activity"},
            {"name": "Reflect on progress", "points": 15, "duration": 15, "description": "Acknowledge achievements and identify next steps"}
        ]
    }
    
    # Select routine type based on goal
    if "job" in goal.lower() or "company" in goal.lower():
        routine_type = "job_search"
    elif "skill" in goal.lower() or "learn" in goal.lower():
        routine_type = "skill_building"
    else:
        # Default to motivation if feeling negative emotions
        if emotion.lower() in ["unmotivated", "anxious", "confused", "overwhelmed", "discouraged"]:
            routine_type = "motivation"
        else:
            routine_type = random.choice(list(routine_types.keys()))
    
    # Create daily plan
    daily_tasks = []
    for day in range(1, days + 1):
        # Randomly select 1-3 tasks for the day that fit within available time
        available_tasks = routine_types[routine_type].copy()
        random.shuffle(available_tasks)
        day_tasks = []
        remaining_time = available_time
        
        for task in available_tasks:
            if task["duration"] <= remaining_time and len(day_tasks) < 3:
                day_tasks.append(task)
                remaining_time -= task["duration"]
                
            if remaining_time < 10 or len(day_tasks) >= 3:
                break
                
        daily_tasks.append({
            "day": day,
            "tasks": day_tasks
        })
    
    routine = {
        "name": f"{days}-Day {routine_type.replace('_', ' ').title()} Plan",
        "description": f"A personalized routine to help you {goal} while managing feelings of {emotion}.",
        "days": days,
        "daily_tasks": daily_tasks
    }
    
    return routine

def generate_document_template_with_ai(document_type, career_field="", experience_level=""):
    """Generate document templates using AI"""
    try:
        prompt = f"""
        Create a detailed template for a {document_type} for someone in the {career_field} field 
        with {experience_level} experience level.
        
        The template should include all necessary sections and sample content that can be replaced.
        Format it in markdown.
        """
        
        response = client.models.generate_content(
            model=MODEL_ID,
            contents=prompt
        )
        
        return response.text
    except Exception as e:
        logger.error(f"Error in generate_document_template_with_ai: {str(e)}")
        return f"Error generating {document_type} template. Please try again later."

def analyze_resume_with_ai(user_id, resume_text):
    """Analyze resume with AI and provide feedback"""
    try:
        user_profile = get_user_profile(user_id)
        
        prompt = f"""
        Analyze the following resume for a user who has the career goal of: {user_profile.get('career_goal', 'improving their career')}
        
        Resume Text:
        {resume_text}
        
        Provide detailed feedback on:
        1. Overall strengths and weaknesses
        2. Format and organization
        3. Content effectiveness for their career goal
        4. Specific improvement suggestions
        5. Keywords and skills that should be highlighted
        
        Format your analysis with markdown headings and bullet points.
        """
        
        response = client.models.generate_content(
            model=MODEL_ID,
            contents=prompt
        )
        
        # Save resume
        save_user_resume(user_id, resume_text)
        
        return response.text
    except Exception as e:
        logger.error(f"Error in analyze_resume_with_ai: {str(e)}")
        return "I apologize, but I'm having trouble analyzing your resume right now. Please try again later."

def analyze_portfolio_with_ai(user_id, portfolio_url, portfolio_description):
    """Analyze portfolio with AI and provide feedback"""
    try:
        user_profile = get_user_profile(user_id)
        
        prompt = f"""
        Analyze the following portfolio for a user who has the career goal of: {user_profile.get('career_goal', 'improving their career')}
        
        Portfolio URL: {portfolio_url}
        Portfolio Description: {portfolio_description}
        
        Based on the description provided, analyze:
        1. How well the portfolio aligns with their career goal
        2. Strengths of the portfolio
        3. Areas for improvement
        4. Specific suggestions to enhance the portfolio
        5. How to better showcase skills relevant to their goal
        
        Format your analysis with markdown headings and bullet points.
        """
        
        response = client.models.generate_content(
            model=MODEL_ID,
            contents=prompt
        )
        
        # Save portfolio info
        portfolio_content = {
            "url": portfolio_url,
            "description": portfolio_description
        }
        save_user_portfolio(user_id, portfolio_content)
        
        return response.text
    except Exception as e:
        logger.error(f"Error in analyze_portfolio_with_ai: {str(e)}")
        return "I apologize, but I'm having trouble analyzing your portfolio right now. Please try again later."

# Chart and visualization functions
def create_emotion_chart(user_id):
    """Create a chart of user's emotions over time"""
    user_profile = get_user_profile(user_id)
    emotion_records = user_profile.get('daily_emotions', [])
    
    if not emotion_records:
        # Return empty chart if no data
        fig = px.line(title="Emotion Tracking: No data available yet")
        return fig
    
    # Prepare data
    emotion_values = {
        "Unmotivated": 1,
        "Anxious": 2,
        "Confused": 3,
        "Discouraged": 4,
        "Overwhelmed": 5,
        "Excited": 6
    }
    
    dates = []
    emotion_scores = []
    emotion_names = []
    
    for record in emotion_records:
        dates.append(datetime.strptime(record['date'], "%Y-%m-%d %H:%M:%S"))
        emotion = record['emotion']
        emotion_names.append(emotion)
        emotion_scores.append(emotion_values.get(emotion, 3))
    
    df = pd.DataFrame({
        'Date': dates,
        'Emotion Score': emotion_scores,
        'Emotion': emotion_names
    })
    
    # Create chart
    fig = px.line(df, x='Date', y='Emotion Score', markers=True, 
                 labels={"Emotion Score": "Emotional State"},
                 title="Your Emotional Journey")
    
    # Add emotion names as hover text
    fig.update_traces(hovertemplate='%{x}<br>Feeling: %{text}', text=df['Emotion'])
    
    # Customize y-axis to show emotion names instead of numbers
    fig.update_yaxes(
        tickvals=list(emotion_values.values()),
        ticktext=list(emotion_values.keys())
    )
    
    return fig

def create_progress_chart(user_id):
    """Create a chart showing user's progress over time"""
    user_profile = get_user_profile(user_id)
    tasks = user_profile.get('completed_tasks', [])
    
    if not tasks:
        # Return empty chart if no data
        fig = px.line(title="Progress Tracking: No data available yet")
        return fig
    
    # Prepare data
    dates = []
    points = []
    cumulative_points = 0
    task_labels = []
    
    for task in tasks:
        dates.append(datetime.strptime(task['date'], "%Y-%m-%d %H:%M:%S"))
        # Increment points (assuming each task has inherent points)
        cumulative_points += 20
        points.append(cumulative_points)
        task_labels.append(task['task'])
    
    df = pd.DataFrame({
        'Date': dates,
        'Points': points,
        'Task': task_labels
    })
    
    # Create chart
    fig = px.line(df, x='Date', y='Points', markers=True,
                 title="Your Career Journey Progress")
    
    # Add task names as hover text
    fig.update_traces(hovertemplate='%{x}<br>Points: %{y}<br>Task: %{text}', text=df['Task'])
    
    return fig

def create_routine_completion_gauge(user_id):
    """Create a gauge chart showing routine completion percentage"""
    user_profile = get_user_profile(user_id)
    routines = user_profile.get('routine_history', [])
    
    if not routines:
        # Return empty chart if no data
        fig = go.Figure()
        fig.add_annotation(text="No active routines yet", showarrow=False)
        return fig
    
    # Get the most recent routine
    latest_routine = routines[-1]
    completion = latest_routine.get('completion', 0)
    
    # Create gauge chart
    fig = go.Figure(go.Indicator(
        mode = "gauge+number",
        value = completion,
        domain = {'x': [0, 1], 'y': [0, 1]},
        title = {'text': "Current Routine Completion"},
        gauge = {
            'axis': {'range': [None, 100]},
            'bar': {'color': "darkblue"},
            'steps': [
                {'range': [0, 30], 'color': "lightgray"},
                {'range': [30, 70], 'color': "gray"},
                {'range': [70, 100], 'color': "darkgray"}
            ],
            'threshold': {
                'line': {'color': "red", 'width': 4},
                'thickness': 0.75,
                'value': 90
            }
        }
    ))
    
    return fig

def create_skill_radar_chart(user_id):
    """Create a radar chart of user's skills based on resume analysis"""
    user_profile = get_user_profile(user_id)
    
    # If no resume, return empty chart
    if not user_profile.get('resume_path') or not os.path.exists(user_profile.get('resume_path')):
        fig = go.Figure()
        fig.add_annotation(text="No resume data available yet", showarrow=False)
        return fig
    
    # Read resume
    try:
        with open(user_profile.get('resume_path'), 'r') as file:
            resume_text = file.read()
    except Exception as e:
        logger.error(f"Error reading resume: {str(e)}")
        fig = go.Figure()
        fig.add_annotation(text="Error reading resume data", showarrow=False)
        return fig
    
    # Use AI to extract and score skills
    prompt = f"""
    Based on the following resume, identify 5-8 key skills and rate them on a scale of 1-10.
    
    Resume:
    {resume_text[:2000]}...
    
    Return the results as a JSON object with this structure:
    ```json
    {{
      "skills": [
        {{"name": "Skill Name", "score": 7}},
        {{"name": "Another Skill", "score": 9}}
      ]
    }}
    ```
    """
    
    try:
        response = client.models.generate_content(
            model=MODEL_ID,
            contents=prompt
        )
        
        skill_text = response.text
        
        # Extract JSON
        if "```json" in skill_text and "```" in skill_text.split("```json")[1]:
            json_str = skill_text.split("```json")[1].split("```")[0].strip()
        else:
            import re
            json_match = re.search(r'(\{.*\})', skill_text, re.DOTALL)
            if json_match:
                json_str = json_match.group(1)
            else:
                json_str = skill_text
                
        skill_data = json.loads(json_str)
        
        # Create radar chart
        if 'skills' in skill_data and skill_data['skills']:
            skills = skill_data['skills']
            
            # Prepare data for radar chart
            categories = [skill['name'] for skill in skills]
            values = [skill['score'] for skill in skills]
            
            # Add the first point at the end to close the loop
            categories.append(categories[0])
            values.append(values[0])
            
            fig = go.Figure()
            
            fig.add_trace(go.Scatterpolar(
                r=values,
                theta=categories,
                fill='toself',
                name='Skills'
            ))
            
            fig.update_layout(
                polar=dict(
                    radialaxis=dict(
                        visible=True,
                        range=[0, 10]
                    )
                ),
                showlegend=False,
                title="Skill Assessment Based on Resume"
            )
            
            return fig
        else:
            fig = go.Figure()
            fig.add_annotation(text="Could not extract skills from resume", showarrow=False)
            return fig
            
    except Exception as e:
        logger.error(f"Error creating skill radar chart: {str(e)}")
        fig = go.Figure()
        fig.add_annotation(text="Error analyzing skills", showarrow=False)
        return fig

# Gradio interface components
def create_interface():
    """Create the Gradio interface for Aishura MVP"""
    
    # Generate a unique user ID for this session
    session_user_id = str(uuid.uuid4())
    
    # Welcome page
    def welcome(name, location, emotion, goal):
        if not name or not location or not emotion or not goal:
            return ("Please fill out all fields to continue.", 
                    gr.update(visible=True), 
                    gr.update(visible=False))
        
        # Update user profile
        update_user_profile(session_user_id, {
            "name": name,
            "location": location,
            "career_goal": goal
        })
        
        # Record emotion
        add_emotion_record(session_user_id, emotion)
        
        # Generate initial AI response
        response = get_ai_response(
            session_user_id, 
            f"I'm {name} from {location}. I'm feeling {emotion} and my career goal is to {goal}."
        )
        
        return (response, 
                gr.update(visible=False), 
                gr.update(visible=True))
    
    # Chat function
    def chat(message, history):
        # Get user profile
        user_profile = get_user_profile(session_user_id)
        
        # Convert history to the format expected by get_ai_response
        context = []
        for h in history:
            context.append({"role": "user", "message": h[0]})
            context.append({"role": "assistant", "message": h[1]})
        
        # Get AI response
        response = get_ai_response(session_user_id, message, context)
        
        # Return updated history and empty message
        history.append((message, response))
        return history, ""
    
    # Function to search for jobs
    def search_jobs_interface(query, location, max_results=5):
        jobs = search_jobs_with_serper(query, location, int(max_results))
        
        if not jobs:
            return "No job opportunities found. Try adjusting your search terms."
        
        result = "## Job Opportunities Found\n\n"
        for i, job in enumerate(jobs, 1):
            result += f"### {i}. {job['title']}\n"
            result += f"**Company:** {job['company']}\n"
            result += f"**Location:** {job['location']}\n"
            result += f"**Description:** {job['description']}\n"
            result += f"**Link:** [Apply Here]({job['link']})\n\n"
            
        return result
    
    # Function to generate document templates
    def generate_template(document_type, career_field, experience_level):
        template = generate_document_template_with_ai(document_type, career_field, experience_level)
        return template
    
    # Function to create personal routine
    def create_personal_routine(emotion, goal, available_time, days):
        routine = create_personalized_routine_with_ai(
            session_user_id, emotion, goal, int(available_time), int(days)
        )
        
        # Format routine for display
        result = f"# Your {routine['name']}\n\n"
        result += f"{routine['description']}\n\n"
        
        for day_plan in routine['daily_tasks']:
            result += f"## Day {day_plan['day']}\n\n"
            for task in day_plan['tasks']:
                result += f"- **{task['name']}** ({task['duration']} mins, {task['points']} points)\n"
                result += f"  *{task['description']}*\n\n"
        
        return result
    
    # Function to analyze resume
    def analyze_resume_interface(resume_text):
        if not resume_text:
            return "Please enter your resume text."
        
        analysis = analyze_resume_with_ai(session_user_id, resume_text)
        
        # Update skill chart
        skill_fig = create_skill_radar_chart(session_user_id)
        
        return analysis, skill_fig
    
    # Function to analyze portfolio
    def analyze_portfolio_interface(portfolio_url, portfolio_description):
        if not portfolio_description:
            return "Please enter a description of your portfolio."
        
        analysis = analyze_portfolio_with_ai(session_user_id, portfolio_url, portfolio_description)
        return analysis
    
    # Function to mark a task as complete
    def complete_task(task_name):
        if not task_name:
            return "Please enter a task name."
        
        user_profile = add_task_to_user(session_user_id, task_name)
        
        # Update completion percentage of current routine
        if user_profile.get('routine_history'):
            latest_routine = user_profile['routine_history'][-1]
            # Simple approach: increase completion by random amount between 5-15%
            new_completion = min(100, latest_routine.get('completion', 0) + random.randint(5, 15))
            latest_routine['completion'] = new_completion
            update_user_profile(session_user_id, {"routine_history": user_profile['routine_history']})
        
        # Create updated charts
        emotion_fig = create_emotion_chart(session_user_id)
        progress_fig = create_progress_chart(session_user_id)
        gauge_fig = create_routine_completion_gauge(session_user_id)
        
        return (
            f"Task '{task_name}' completed! You earned {random.randint(10, 25)} points.",
            "",
            emotion_fig,
            progress_fig,
            gauge_fig
        )
    
    # Function to update emotion
    def update_emotion(emotion):
        add_emotion_record(session_user_id, emotion)
        
        # Create updated emotion chart
        emotion_fig = create_emotion_chart(session_user_id)
        
        return (
            f"Your emotional state has been updated to: {emotion}",
            emotion_fig
        )
    
    # Function to display recommendations
    def display_recommendations():
        user_profile = get_user_profile(session_user_id)
        recommendations = user_profile.get('recommendations', [])
        
        if not recommendations:
            return "No recommendations available yet. Continue chatting with Aishura to receive personalized suggestions."
        
        # Show the most recent 5 recommendations
        recent_recs = recommendations[-5:]
        
        result = "# Your Personalized Recommendations\n\n"
        
        for i, rec in enumerate(recent_recs, 1):
            recommendation = rec['recommendation']
            result += f"## {i}. {recommendation['title']}\n\n"
            result += f"{recommendation['description']}\n\n"
            result += f"**Priority:** {recommendation['priority'].title()}\n"
            result += f"**Type:** {recommendation['action_type'].replace('_', ' ').title()}\n\n"
            result += "---\n\n"
        
        return result
    
    # Create the interface
    with gr.Blocks(theme=gr.themes.Soft()) as app:
        gr.Markdown("# Aishura - Your AI Career Assistant")
        
        # Welcome page
        with gr.Group(visible=True) as welcome_group:
            gr.Markdown("## Welcome to Aishura")
            gr.Markdown("Let's start by getting to know you a little better.")
            
            name_input = gr.Textbox(label="Your Name")
            location_input = gr.Textbox(label="Your Location (City/Country)")
            emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling today?")
            goal_dropdown = gr.Dropdown(choices=GOAL_TYPES, label="What's your career goal?")
            
            welcome_button = gr.Button("Get Started")
            welcome_output = gr.Markdown()
        
        # Main interface
        with gr.Group(visible=False) as main_interface:
            with gr.Tabs() as tabs:
                # Chat tab
                with gr.TabItem("Chat with Aishura"):
                    with gr.Row():
                        with gr.Column(scale=2):
                            chatbot = gr.Chatbot(height=500, avatar_images=["πŸ‘€", "πŸ€–"])
                            msg = gr.Textbox(show_label=False, placeholder="Type your message here...", container=False)
                        
                        with gr.Column(scale=1):
                            gr.Markdown("## Your Recommendations")
                            recommendation_output = gr.Markdown()
                            refresh_recs_button = gr.Button("Refresh Recommendations")
                    
                    msg.submit(chat, [msg, chatbot], [chatbot, msg])
                    refresh_recs_button.click(display_recommendations, [], recommendation_output)
                
                # Profile and Career Analysis tab
                with gr.TabItem("Profile & Analysis"):
                    with gr.Tabs() as analysis_tabs:
                        # Resume Analysis
                        with gr.TabItem("Resume Analysis"):
                            gr.Markdown("## Resume Analysis")
                            resume_text = gr.Textbox(label="Paste your resume here", lines=10, placeholder="Copy and paste your entire resume here for analysis...")
                            analyze_resume_button = gr.Button("Analyze Resume")
                            resume_output = gr.Markdown()
                            skill_chart = gr.Plot(label="Skill Assessment")
                            
                            analyze_resume_button.click(
                                analyze_resume_interface, 
                                [resume_text], 
                                [resume_output, skill_chart]
                            )
                        
                        # Portfolio Analysis
                        with gr.TabItem("Portfolio Analysis"):
                            gr.Markdown("## Portfolio Analysis")
                            portfolio_url = gr.Textbox(label="Portfolio URL", placeholder="https://your-portfolio-website.com")
                            portfolio_description = gr.Textbox(label="Describe your portfolio", lines=5, placeholder="Describe the content, structure, and purpose of your portfolio...")
                            analyze_portfolio_button = gr.Button("Analyze Portfolio")
                            portfolio_output = gr.Markdown()
                            
                            analyze_portfolio_button.click(
                                analyze_portfolio_interface, 
                                [portfolio_url, portfolio_description], 
                                portfolio_output
                            )
                
                # Job Search tab
                with gr.TabItem("Find Opportunities"):
                    gr.Markdown("## Search for Job Opportunities")
                    job_query = gr.Textbox(label="What kind of job are you looking for?")
                    job_location = gr.Textbox(label="Location")
                    job_results = gr.Slider(minimum=5, maximum=20, value=10, step=5, label="Number of Results")
                    
                    search_button = gr.Button("Search")
                    job_output = gr.Markdown()
                    
                    search_button.click(search_jobs_interface, [job_query, job_location, job_results], job_output)
                
                # Document Templates tab
                with gr.TabItem("Document Templates"):
                    gr.Markdown("## Generate Document Templates")
                    doc_type = gr.Dropdown(
                        choices=["Resume", "Cover Letter", "Self-Introduction", "LinkedIn Profile", "Portfolio", "Interview Preparation"], 
                        label="Document Type"
                    )
                    career_field = gr.Textbox(label="Career Field/Industry")
                    experience = gr.Dropdown(
                        choices=["Entry Level", "Mid-Career", "Senior"], 
                        label="Experience Level"
                    )
                    
                    template_button = gr.Button("Generate Template")
                    template_output = gr.Markdown()
                    
                    template_button.click(generate_template, [doc_type, career_field, experience], template_output)
                
                # Personal Routine tab
                with gr.TabItem("Personal Routine"):
                    gr.Markdown("## Create Your Personal Development Routine")
                    routine_emotion = gr.Dropdown(choices=EMOTIONS, label="Current Emotional State")
                    routine_goal = gr.Textbox(label="What specific goal are you working toward?")
                    time_available = gr.Slider(minimum=15, maximum=120, value=60, step=15, label="Minutes Available Per Day")
                    routine_days = gr.Slider(minimum=3, maximum=30, value=7, step=1, label="Length of Routine (Days)")
                    
                    routine_button = gr.Button("Create Routine")
                    routine_output = gr.Markdown()
                    
                    routine_button.click(create_personal_routine, 
                                         [routine_emotion, routine_goal, time_available, routine_days], 
                                         routine_output)
                
                # Progress Tracking tab
                with gr.TabItem("Track Progress"):
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown("## Mark Tasks as Complete")
                            task_input = gr.Textbox(label="Enter Task Name")
                            complete_button = gr.Button("Mark as Complete")
                            task_output = gr.Markdown()
                        
                        with gr.Column():
                            gr.Markdown("## Update Your Emotional State")
                            new_emotion = gr.Dropdown(choices=EMOTIONS, label="How are you feeling now?")
                            emotion_button = gr.Button("Update")
                            emotion_output = gr.Markdown()
                    
                    with gr.Row():
                        with gr.Column():
                            emotion_chart = gr.Plot(label="Emotional Journey")
                        
                        with gr.Column():
                            progress_chart = gr.Plot(label="Progress Journey")
                    
                    with gr.Row():
                        gauge_chart = gr.Plot(label="Routine Completion")
                    
                    complete_button.click(
                        complete_task, 
                        [task_input], 
                        [task_output, task_input, emotion_chart, progress_chart, gauge_chart]
                    )
                    
                    emotion_button.click(
                        update_emotion,
                        [new_emotion],
                        [emotion_output, emotion_chart]
                    )
            
        # Welcome button action
        welcome_button.click(
            welcome,
            [name_input, location_input, emotion_dropdown, goal_dropdown],
            [welcome_output, welcome_group, main_interface]
        )
        
        # Load initial recommendations
        app.load(
            display_recommendations,
            [],
            recommendation_output
        )
    
    return app

# Main function to launch the app
def main():
    app = create_interface()
    app.launch(share=True)

if __name__ == "__main__":
    main()